Beispiel #1
0
def simulate_res1(env, iteration):
    """Test the performane of evolved behavior."""
    phenotypes = env[0]
    threshold = 1.0

    sim = SimModel(
        100, 100, 100, 10, iter=iteration, xmlstrings=phenotypes, pname=env[1],
        expname='MSFRes1', agent='SimAgentRes1')
    sim.build_environment_from_json()

    # for all agents store the information about hub
    for agent in sim.agents:
        agent.shared_content['Hub'] = {sim.hub}
        # agent.shared_content['Sites'] = {sim.site}

    simresults = SimulationResults(
        sim.pname, sim.connect, sim.sn, sim.stepcnt, sim.food_in_hub(),
        phenotypes[0]
        )

    simresults.save_phenotype()
    simresults.save_to_file()

    # Iterate and execute each step in the environment
    for i in range(iteration):
        # For every iteration we need to store the results
        # Save them into db or a file
        sim.step()
        simresults = SimulationResults(
            sim.pname, sim.connect, sim.sn, sim.stepcnt, sim.food_in_hub(),
            phenotypes[0]
            )
        simresults.save_to_file()

    # print ('food at site', len(sim.food_in_loc(sim.site.location)))
    # print ('food at hub', len(sim.food_in_loc(sim.hub.location)))
    # print("Total food in the hub", len(food_objects))

    food_objects = sim.food_in_loc(sim.hub.location)

    for food in food_objects:
        print('simulate phenotye:', dir(food))
    value = sim.food_in_hub()

    foraging_percent = (
        value * 100.0) / (sim.num_agents * 2.0)

    sucess = False
    print('Foraging percent', value)

    if foraging_percent >= threshold:
        print('Foraging success')
        sucess = True

    sim.experiment.update_experiment_simulation(value, sucess)

    # Plot the fitness in the graph
    graph = GraphACC(sim.pname, 'simulation.csv')
    graph.gen_plot()
Beispiel #2
0
def main():
    iteration = 1500

    env = SimModel(100, width, height, 10, iter=iteration, viewer=False)
    env.build_environment_from_json()

    # for all agents store the information about hub
    for agent in env.agents:
        agent.shared_content['Hub'] = {env.hub}

    # Iterate and execute each step in the environment
    # print ('Step', 'Name', 'TS', 'DEL', 'OVF', 'EXP', 'CAR', 'FOR', 'GNM')
    for i in range(iteration):
        env.step()

    print(len(env.food_in_loc(env.hub.location)))
Beispiel #3
0
def simulate_res1(env, iteration):
    """Test the performane of evolved behavior with type 1 resilience."""
    phenotypes = env[0]
    threshold = 1.0

    sim = SimModel(100,
                   100,
                   100,
                   10,
                   iter=iteration,
                   xmlstrings=phenotypes,
                   pname=env[1],
                   expname='NMRes1',
                   agent='SimAgentRes1')
    sim.build_environment_from_json()

    after_simulation(sim, phenotypes, iteration, threshold)
Beispiel #4
0
def simulate_res2(env, iteration):
    """Test the performane of evolved behavior."""
    phenotypes = env[0]
    threshold = 1.0

    sim = SimModel(100,
                   100,
                   100,
                   10,
                   iter=iteration,
                   xmlstrings=phenotypes,
                   pname=env[1],
                   expname='COTCommRes2',
                   agent='SimAgentResComm2')
    sim.build_environment_from_json()

    after_simluation(sim, phenotypes, iteration, threshold)
Beispiel #5
0
def simulate(env, iteration):
    """Test the performane of evolved behavior."""
    # phenotype = agent.individual[0].phenotype
    # phenotypes = extract_phenotype(agents)
    phenotypes = env[0]
    threshold = 1.0

    sim = SimModel(100,
                   100,
                   100,
                   10,
                   iter=iteration,
                   xmlstrings=phenotypes,
                   pname=env[1])
    sim.build_environment_from_json()

    after_simulation(sim, phenotypes, iteration, threshold)
Beispiel #6
0
def simulate(env, iteration, N=100):
    """Test the performane of evolved behavior."""
    phenotypes = env[0]
    threshold = 1.0

    sim = SimModel(N,
                   100,
                   100,
                   10,
                   seed=None,
                   iter=iteration,
                   xmlstrings=phenotypes,
                   pname=env[1])
    sim.build_environment_from_json()

    # print(len(sim.obstacles), len(sim.debris))
    # py_trees.display.print_ascii_tree(sim.agents[0].bt.behaviour_tree.root)

    after_simulation(sim, phenotypes, iteration, threshold)