def initialize(self, **kwargs): if not np.any(self.mask): self.coords = [] return tmp = np.array(self.img) tmp[~(self.mask)] = np.median(tmp[self.mask]) self.coords = simplexy(tmp, **kwargs)
def source_extract(image_data, srcext=None): x, y, flux, sigma = simplexy( image_data, dpsf=dpsf, plim=plim, dlim=dlim, saddle=saddle, maxper=maxper, maxnpeaks=maxnpeaks, maxsize=maxsize, halfbox=halfbox, ) print "simplexy: shapes", x.shape, y.shape cx = pyfits.Column(name="X", format="E", array=x, unit="pix") cy = pyfits.Column(name="Y", format="E", array=y, unit="pix") cflux = pyfits.Column(name="FLUX", format="E", array=flux) tbhdu = pyfits.new_table([cx, cy, cflux]) h = tbhdu.header h.add_comment("Parameters used in source extraction") h.update("dpsf", dpsf, "Gaussian psf width") h.update("plim", plim, "Significance to keep") h.update("dlim", dlim, "Closest two peaks can be") h.update("saddle", saddle, "Saddle in difference (in sig)") h.update("maxper", maxper, "Max num of peaks per object") h.update("maxpeaks", maxnpeaks, "Max num of peaks total") h.update("maxsize", maxsize, "Max size of extended objects") h.update("halfbox", halfbox, "Half-size of sliding sky window") if srcext != None: h.update("srcext", i, "Extension number in src image") h.update("estsigma", sigma, "Estimated source image variance") h.add_comment("The X and Y points are specified assuming 1,1 is ") h.add_comment("the center of the leftmost bottom pixel of the ") h.add_comment("image in accordance with the FITS standard.") h.add_comment("Extracted by image2xy.py") h.add_comment("on %s %s" % (time.ctime(), time.tzname[0])) cards = tbhdu.header.ascardlist() cards["TTYPE1"].comment = "X coordinate" cards["TTYPE2"].comment = "Y coordinate" cards["TTYPE3"].comment = "Flux of source" return tbhdu
def source_extract(image_data, srcext=None): x, y, flux, sigma = simplexy(image_data, dpsf=dpsf, plim=plim, dlim=dlim, saddle=saddle, maxper=maxper, maxnpeaks=maxnpeaks, maxsize=maxsize, halfbox=halfbox) print 'simplexy: shapes', x.shape, y.shape cx = pyfits.Column(name='X', format='E', array=x, unit='pix') cy = pyfits.Column(name='Y', format='E', array=y, unit='pix') cflux = pyfits.Column(name='FLUX', format='E', array=flux) tbhdu = pyfits.new_table([cx, cy, cflux]) h = tbhdu.header h.add_comment('Parameters used in source extraction') h.update('dpsf', dpsf, 'Gaussian psf width') h.update('plim', plim, 'Significance to keep') h.update('dlim', dlim, 'Closest two peaks can be') h.update('saddle', saddle, 'Saddle in difference (in sig)') h.update('maxper', maxper, 'Max num of peaks per object') h.update('maxpeaks', maxnpeaks, 'Max num of peaks total') h.update('maxsize', maxsize, 'Max size of extended objects') h.update('halfbox', halfbox, 'Half-size of sliding sky window') if srcext != None: h.update('srcext', i, 'Extension number in src image') h.update('estsigma', sigma, 'Estimated source image variance') h.add_comment('The X and Y points are specified assuming 1,1 is ') h.add_comment('the center of the leftmost bottom pixel of the ') h.add_comment('image in accordance with the FITS standard.') h.add_comment('Extracted by image2xy.py') h.add_comment('on %s %s' % (time.ctime(), time.tzname[0])) cards = tbhdu.header.ascardlist() cards['TTYPE1'].comment = 'X coordinate' cards['TTYPE2'].comment = 'Y coordinate' cards['TTYPE3'].comment = 'Flux of source' return tbhdu
def source_extract(image_data, srcext=None): x,y,flux,sigma = simplexy(image_data, dpsf=dpsf, plim=plim, dlim=dlim, saddle=saddle, maxper=maxper, maxnpeaks=maxnpeaks, maxsize=maxsize, halfbox=halfbox) print 'simplexy: shapes',x.shape, y.shape cx = pyfits.Column(name='X', format='E', array=x, unit='pix') cy = pyfits.Column(name='Y', format='E', array=y, unit='pix') cflux = pyfits.Column(name='FLUX', format='E', array=flux) tbhdu = pyfits.new_table([cx, cy, cflux]) h = tbhdu.header h.add_comment('Parameters used in source extraction') h.update('dpsf', dpsf, 'Gaussian psf width') h.update('plim', plim, 'Significance to keep') h.update('dlim', dlim, 'Closest two peaks can be') h.update('saddle', saddle, 'Saddle in difference (in sig)') h.update('maxper', maxper, 'Max num of peaks per object') h.update('maxpeaks', maxnpeaks, 'Max num of peaks total') h.update('maxsize', maxsize, 'Max size of extended objects') h.update('halfbox', halfbox, 'Half-size of sliding sky window') if srcext != None: h.update('srcext', i, 'Extension number in src image') h.update('estsigma', sigma, 'Estimated source image variance') h.add_comment('The X and Y points are specified assuming 1,1 is ') h.add_comment('the center of the leftmost bottom pixel of the ') h.add_comment('image in accordance with the FITS standard.') h.add_comment('Extracted by image2xy.py') h.add_comment('on %s %s' % (time.ctime(), time.tzname[0])) cards = tbhdu.header.ascardlist() cards['TTYPE1'].comment = 'X coordinate' cards['TTYPE2'].comment = 'Y coordinate' cards['TTYPE3'].comment = 'Flux of source' return tbhdu
assert 0 img = flux_images[-1000] img[img == 0.0] = np.nan frame = Frame(img) frame.initialize() print(frame.coords) assert 0 obs = flux[-1000] pixel_mask = np.isfinite(obs) pixel_mask[pixel_mask] *= (obs[pixel_mask] > 0.0) tmp = np.array(obs) tmp[~pixel_mask] = np.median(obs[pixel_mask]) coords = simplexy(tmp) mu = np.median(tmp) sig = np.sqrt(np.median((tmp - mu)**2)) vmin, vmax = mu - sig, mu + 100 * sig shape = obs.shape x, y = np.meshgrid(range(shape[0]), range(shape[1]), indexing="ij") x = np.array(x[pixel_mask], dtype=np.float64) y = np.array(y[pixel_mask], dtype=np.float64) psfpars = np.array([0.25, 0.25, 0.0] + [ v for j in range(2) for v in [-2.0 - 100 * j, 0.0, 0.0, 2.0 + j, 2.0 + j, -0.5] ])
import numpy as np import matplotlib.pyplot as pl from simplexy import simplexy cx, cy = 3.0, 3.0 x, y = np.meshgrid(range(50), range(10), indexing="ij") r2 = (x - cx) ** 2 + (y - cy) ** 2 img = np.exp(-0.5 * r2) pl.imshow(img, cmap="gray", interpolation="nearest") pl.savefig("sup.png") print(simplexy(img)["flux"])
img = flux_images[-1000] img[img == 0.0] = np.nan frame = Frame(img) frame.initialize() print(frame.coords) assert 0 obs = flux[-1000] pixel_mask = np.isfinite(obs) pixel_mask[pixel_mask] *= (obs[pixel_mask] > 0.0) tmp = np.array(obs) tmp[~pixel_mask] = np.median(obs[pixel_mask]) coords = simplexy(tmp) mu = np.median(tmp) sig = np.sqrt(np.median((tmp - mu) ** 2)) vmin, vmax = mu - sig, mu + 100 * sig shape = obs.shape x, y = np.meshgrid(range(shape[0]), range(shape[1]), indexing="ij") x = np.array(x[pixel_mask], dtype=np.float64) y = np.array(y[pixel_mask], dtype=np.float64) psfpars = np.array([0.25, 0.25, 0.0] + [v for j in range(2) for v in [-2.0 - 100 * j, 0.0, 0.0, 2.0+j, 2.0+j, -0.5]]) norm = compute_psf(psfpars, 0.0, 0.0)