Beispiel #1
0
def main():
    # jason's f-f curve for model cell #156 in Schwartz2012
    # (supposedly the one closest to having average parameter values),
    # in presence of tonic GABA
    jason_stim_range = np.arange(60, 660, 60)/4
    jason_rates_156 = np.array([0.0, 0.7755102040816326, 4.55813953488372, 20.65625, 49.46153846153846, 88.9047619047619, 139.2222222222222, 187.6875, 227.64285714285717, 253.7142857142857])

    n_stims_range = np.arange(1, 11, 1, dtype=np.int)
    n_stims_range = np.array([4])
    exc_rate_range = np.arange(10, 155, 5)
    out_rates = np.zeros(shape=(n_stims_range.size, exc_rate_range.size))
    sim_duration = 50 # s
    
    for d, n_stims in enumerate(n_stims_range):
        for k, exc_rate in enumerate(exc_rate_range):
            sim_data = simulation_tools.simulate_poisson_stimulation([exc_rate for each in range(n_stims)], sim_duration)

            spike_count = sim_data[-1,2]
            out_rates[d,k] = float(spike_count) / sim_duration
            print("stims: {}; input: {}Hz; output: {:.2f}Hz".format(n_stims,
                                                                    exc_rate,
                                                                    out_rates[d,k]))

    # plotting setup
    ff_fig, ff_ax = plt.subplots()
    #ff_ax.plot(jason_stim_range, jason_rates_156, color='k', linewidth=1.5, marker='o', label='Schwartz2012 cell #156')
    cm = plt.get_cmap('RdYlBu') 
    c_norm  = colors.Normalize(vmin=0, vmax=n_stims_range[-1])
    scalar_map = cmx.ScalarMappable(norm=c_norm, cmap=cm)

    matplotlib.rcParams.update({'axes.labelsize': 30})
    matplotlib.rcParams.update({'xtick.labelsize': 30})
    matplotlib.rcParams.update({'ytick.labelsize': 30})

    for d, n_stims in enumerate(n_stims_range):
        color = scalar_map.to_rgba(n_stims)
        ff_ax.plot(exc_rate_range,
                   out_rates[d],
                   linewidth=1.5,
                   marker='o',
                   color='b')

    ff_ax.set_title('GrC model: rate I/O with {} to {} Poisson stimuli and tonic GABA'.format(n_stims_range[0], n_stims_range[-1]))
    ff_ax.legend(loc='best')
    ff_ax.set_xlabel("MF firing rate (Hz)")
    ff_ax.set_ylabel("GrC firing rate (Hz)")
    ff_ax.xaxis.set_ticks_position('bottom')
    ff_ax.yaxis.set_ticks_position('left')
    ff_ax.spines['top'].set_color('none')
    ff_ax.spines['right'].set_color('none')

    plt.show()
def main():
    exc_rates = [80, 80, 10, 10] # Hertz
    # use excitatory conductance scaling
    exc_scaling_factor = 4./len(exc_rates)
    sim_duration = 0.25 # seconds

    linewidth = 2.5

    n_stims = len(exc_rates)
    sim_data = simulation_tools.simulate_poisson_stimulation(exc_rates, sim_duration, save_synaptic_conductances=True, exc_scaling_factor=exc_scaling_factor)
    time = sim_data[:,0] * 1000
    voltage = sim_data[:,1] * 1000
    derivative = np.diff(voltage)
    voltage[derivative<-1] = 40
    
    # plot GrC membrane potential
    fig_v, ax_v = plt.subplots()
    ax_v.plot(time, voltage, linewidth=linewidth, color='b')
    ax_v.set_xlabel("Time (ms)")
    ax_v.set_ylabel("Membrane potential (mV)")
    bottom_left_axes(ax_v)

    # plot excitatory conductance trains
    fig_c, ax_c = plt.subplots(nrows=n_stims+1, ncols=1, sharex=True, sharey=True)
    for stim in range(n_stims):
        conductance_AMPA = sim_data[:,3+2*stim]*1e9
        conductance_NMDA = sim_data[:,4+2*stim]*1e9
        ax_c[stim].plot(time, conductance_AMPA, linewidth=linewidth, color='r')
        ax_c[stim].plot(time, conductance_NMDA, linewidth=linewidth, color='#5F04B4')
    # plot tonic inhibition
    ax_c[-1].plot(time, 0.438+np.zeros_like(time), linewidth=linewidth, color='g')

    # prettify conductance axes
    for ax in ax_c:
        ax.axes.get_yaxis().set_ticks([0, 0.3, 0.6])
        bottom_left_axes(ax)
    ax_c[-1].set_xlabel("Time (ms)")
    ax_c[-1].set_ylabel("Conductance (nS)")

    plt.show()
def main():
    exc_rate_range = np.array([80])
    out_rates = np.zeros_like(exc_rate_range)
    sim_duration = 400. # s
    n_bins = 200
    upper_hist_limit = 0.100 # s

    for k, exc_rate in enumerate(exc_rate_range):
        exc_rates = [exc_rate, exc_rate, exc_rate, 10]
        sim_data = simulation_tools.simulate_poisson_stimulation(exc_rates, sim_duration)
        
        timepoints = sim_data[:,0]
        voltage = sim_data[:,1]
        spike_times = timepoints[np.diff(sim_data[:,2]) != 0]
        out_rates[k] = float(spike_times.size) / sim_duration
        print("input: {}Hz; output: {}Hz".format(exc_rate, out_rates[k]))

        relative_times = []
        for s, t in enumerate(spike_times):
            stop_idx = np.searchsorted(spike_times, t+upper_hist_limit)
            relative_times.extend((spike_times[s+1:stop_idx] - t).tolist())
        small_relative_times = np.array(relative_times)
        if small_relative_times.size:
            fig, ax = plt.subplots()
            bin_length = upper_hist_limit/n_bins
            weights = np.ones_like(small_relative_times)/(bin_length*sim_duration)
            n, bins, patches = ax.hist(small_relative_times*1000, bins=n_bins, color='k', weights=weights, normed=False)
            uniform_baseline_spikes_per_bin = out_rates[k]*bin_length
            ax.plot([0, bins[-1]], [out_rates[k]**2, out_rates[k]**2], color='r', linewidth=1.5)
            ax.set_title('Spike time autocorrelation for stim rate {}Hz'.format(exc_rate))
            ax.set_xlabel('lag (ms)')
            ax.set_ylabel('autocorrelation (Hz$^2$)')

    if out_rates.size > 1:
        ff_fig, ff_ax = plt.subplots()
        ff_ax.plot(exc_rate_range, out_rates, color='k', linewidth=1.5)
        ff_ax.set_xlabel("MF firing rate (Hz)")
        ff_ax.set_xlabel("GrC firing rate (Hz)")
    plt.show()
def main():
    # jason's f-f curve for model cell #156 in Schwartz2012
    # (supposedly the one closest to having average parameter values),
    # in presence of tonic GABA
    jason_stim_range = np.arange(60, 660, 60)/4
    jason_rates_156 = np.array([0.0, 0.7755102040816326, 4.55813953488372, 20.65625, 49.46153846153846, 88.9047619047619, 139.2222222222222, 187.6875, 227.64285714285717, 253.7142857142857])

    scale_exc = False
    scale_inh = True

    n_stims_range = np.arange(1,9,1)
    exc_rate_range = np.arange(10, 155, 10)
    #exc_scaling_factor_range = np.arange(0.5, 1.6, 0.25)
    out_rates = np.zeros(shape=(n_stims_range.size, exc_rate_range.size))
    sim_duration = 6 # s
    
    for i, n_stims in enumerate(n_stims_range):
        if scale_exc:
            exc_scaling_factor = 4./n_stims
            inh_scaling_factor = 1.
        elif scale_inh:
            exc_scaling_factor = 1.
            inh_scaling_factor = n_stims/4.
        else:
            exc_scaling_factor = 1.
            inh_scaling_factor = 1.
        for k, exc_rate in enumerate(exc_rate_range):
            sim_data = simulation_tools.simulate_poisson_stimulation([exc_rate for each in range(n_stims)], sim_duration, inh_scaling_factor=inh_scaling_factor, exc_scaling_factor=exc_scaling_factor)

            spike_count = sim_data[-1,2]
            out_rates[i,k] = float(spike_count) / sim_duration
            print("inh: {}; exc: {}; input: {}Hz; output: {:.2f}Hz".format(inh_scaling_factor, exc_scaling_factor, exc_rate, out_rates[i,k]))

    # plotting setup
    ff_fig, ff_ax = plt.subplots()
    #ff_ax.plot(jason_stim_range, jason_rates_156, color='k', linewidth=1.5, marker='o', label='Schwartz2012 cell #156')
    cm = plt.get_cmap('RdYlBu_r') 
    c_norm  = colors.Normalize(vmin=n_stims_range[0], vmax=n_stims_range[-1])
    scalar_map = cmx.ScalarMappable(norm=c_norm, cmap=cm)

    matplotlib.rcParams.update({'axes.labelsize': 30})
    matplotlib.rcParams.update({'xtick.labelsize': 30})
    matplotlib.rcParams.update({'ytick.labelsize': 30})

    for i, exc_scaling_factor in enumerate(n_stims_range):
        color = scalar_map.to_rgba(exc_scaling_factor)
        ff_ax.plot(exc_rate_range,
                   out_rates[i],
                   linewidth=1.5,
                   marker='o',
                   color=color)
        print('input: {}'.format(exc_rate_range))
        print('output: {}'.format(out_rates[i]))

    #ff_ax.legend(loc='best')
    ff_ax.set_xlabel("MF firing rate (Hz)")
    ff_ax.set_ylabel("GrC firing rate (Hz)")
    ff_ax.xaxis.set_ticks_position('bottom')
    ff_ax.yaxis.set_ticks_position('left')
    ff_ax.spines['top'].set_color('none')
    ff_ax.spines['right'].set_color('none')

    cb_ax, kw = matplotlib.colorbar.make_axes(ff_ax)
    cb = matplotlib.colorbar.ColorbarBase(cb_ax, cmap=cm, norm=c_norm, **kw)
    cb.set_ticks(n_stims_range)
    cb.set_label('dendrites')

    plt.show()