def create_resnet(depth=18): '''Original resnet, where the there is a relue after the addition layer''' net = ffnet.FeedForwardNet() net.add( Conv2D('input-conv', 64, 7, 2, pad=3, use_bias=False, input_sample_shape=(3, 224, 224))) net.add(BatchNormalization('input-bn')) net.add(Activation('input_relu')) net.add(MaxPooling2D('input_pool', 3, 2, pad=1)) conf = cfg[depth] if depth > 34: stage(0, net, conf[0], 64, 64, 256, 1, bottleneck) stage(1, net, conf[1], 256, 128, 512, 2, bottleneck) stage(2, net, conf[2], 512, 256, 1024, 2, bottleneck) stage(3, net, conf[3], 1024, 512, 2048, 2, bottleneck) else: stage(0, net, conf[0], 64, 64, 64, 1, basicblock) stage(1, net, conf[1], 64, 128, 128, 2, basicblock) stage(2, net, conf[2], 128, 256, 256, 2, basicblock) stage(3, net, conf[3], 256, 512, 512, 2, basicblock) net.add(AvgPooling2D('avg', 7, 1, pad=0)) net.add(Flatten('flat')) net.add(Dense('dense', 1000)) return net
def create_preact_resnet(depth=200): '''Resnet with the batchnorm and relu moved to before the conv layer for each block''' net = ffnet.FeedForwardNet() net.add( Conv2D('input-conv', 64, 7, 2, pad=3, use_bias=False, input_sample_shape=(3, 224, 224))) net.add(BatchNormalization('input-bn')) net.add(Activation('input_relu')) net.add(MaxPooling2D('input_pool', 3, 2, pad=1)) conf = cfg[depth] if depth > 34: stage(0, net, conf[0], 64, 64, 256, 1, bottleneck, preact=True) stage(1, net, conf[1], 256, 128, 512, 2, bottleneck, preact=True) stage(2, net, conf[2], 512, 256, 1024, 2, bottleneck, preact=True) stage(3, net, conf[3], 1024, 512, 2048, 2, bottleneck, preact=True) else: stage(0, net, conf[0], 64, 64, 64, 1, basicblock, preact=True) stage(1, net, conf[1], 64, 128, 128, 2, basicblock, preact=True) stage(2, net, conf[2], 128, 256, 256, 2, basicblock, preact=True) stage(3, net, conf[3], 256, 512, 512, 2, basicblock, preact=True) net.add(BatchNormalization('final-bn')) net.add(Activation('final-relu')) net.add(AvgPooling2D('avg', 7, 1, pad=0)) net.add(Flatten('flat')) net.add(Dense('dense', 1000)) return net
def create_net(depth, nb_classes, batchnorm=False, use_cpu=False): if use_cpu: layer.engine = 'singacpp' net = ffnet.FeedForwardNet() net = create_layers(net, cfg[depth], (3, 224, 224), batchnorm) net.add(Flatten('flat')) net.add(Dense('dense/classifier.0', 4096)) net.add(Activation('act/classifier.1')) net.add(Dropout('dropout/classifier.2')) net.add(Dense('dense/classifier.3', 4096)) net.add(Activation('act/classifier.4')) net.add(Dropout('dropout/classifier.5')) net.add(Dense('dense/classifier.6', nb_classes)) return net
def add_transition(name, net, n_channels, last=False): net.add(BatchNormalization('%s/norm' % name)) lyr = net.add(Activation('%s/relu' % name)) if last: net.add( AvgPooling2D('%s/pool' % name, lyr.get_output_sample_shape()[1:3], pad=0)) net.add(Flatten('flat')) else: net.add( Conv2D('%s/conv' % name, n_channels, 1, 1, pad=0, use_bias=conv_bias)) net.add(AvgPooling2D('%s/pool' % name, 2, 2, pad=0))
def create_net(shape, weight_path='bvlc_googlenet.pickle'): net = ffnet.FeedForwardNet() net.add(Conv2D('conv1/7x7_s2', 64, 7, 2, pad=3, input_sample_shape=shape)) c1 = net.add(Activation('conv1/relu_7x7')) pool1 = pool(net, c1, 'pool1/3x3_s2', 3, 2) norm1 = net.add(LRN('pool1/norm1', 5, 0.0001, 0.75)) c3x3r = conv(net, norm1, 'conv2', 64, 1, suffix='3x3_reduce') c3x3 = conv(net, c3x3r, 'conv2', 192, 3, pad=1, suffix='3x3') norm2 = net.add(LRN('conv2/norm2', 5, 0.0001, 0.75)) pool2 = pool(net, norm2, 'pool2/3x3_s2', 3, 2) i3a = inception(net, pool2, 'inception_3a', 64, 96, 128, 16, 32, 32) i3b = inception(net, i3a, 'inception_3b', 128, 128, 192, 32, 96, 64) pool3 = pool(net, i3b, 'pool3/3x3_s2', 3, 2) i4a = inception(net, pool3, 'inception_4a', 192, 96, 208, 16, 48, 64) i4b = inception(net, i4a, 'inception_4b', 160, 112, 224, 24, 64, 64) i4c = inception(net, i4b, 'inception_4c', 128, 128, 256, 24, 64, 64) i4d = inception(net, i4c, 'inception_4d', 112, 144, 288, 32, 64, 64) i4e = inception(net, i4d, 'inception_4e', 256, 160, 320, 32, 128, 128) pool4 = pool(net, i4e, 'pool4/3x3_s2', 3, 2) i5a = inception(net, pool4, 'inception_5a', 256, 160, 320, 32, 128, 128) i5b = inception(net, i5a, 'inception_5b', 384, 192, 384, 48, 128, 128) pool5 = net.add(AvgPooling2D('pool5/7x7_s1', 7, 1, pad=0)) drop5 = net.add(Dropout('drop', 0.4)) flat = net.add(Flatten('flat')) dense = net.add(Dense('loss3/classifier', 1000)) # prob=net.add(Softmax('softmax')) net.load(weight_path, use_pickle=True) print('total num of params %d' % (len(net.param_names()))) # SINGA and Caffe have different layout for the weight matrix of the dense # layer for key, val in zip(net.param_names(), net.param_values()): # print key if key == 'loss3/classifier_weight' or key == 'loss3/classifier/weight': tmp = tensor.to_numpy(val) tmp = tmp.reshape(tmp.shape[::-1]) val.copy_from_numpy(np.transpose(tmp)) return net
def create_wide_resnet(depth=50): '''Similar original resnet except that a<=b<=c for the bottleneck block''' net = ffnet.FeedForwardNet() net.add( Conv2D('input-conv', 64, 7, 2, pad=3, use_bias=False, input_sample_shape=(3, 224, 224))) net.add(BatchNormalization('input-bn')) net.add(Activation('input_relu')) net.add(MaxPooling2D('input_pool', 3, 2, pad=1)) stage(0, net, 3, 64, 128, 256, 1, bottleneck) stage(1, net, 4, 256, 256, 512, 2, bottleneck) stage(2, net, 6, 512, 512, 1024, 2, bottleneck) stage(3, net, 3, 1024, 1024, 2048, 2, bottleneck) net.add(AvgPooling2D('avg_pool', 7, 1, pad=0)) net.add(Flatten('flag')) net.add(Dense('dense', 1000)) return net