def train(self, dataset_path, features=None, target=None, **kwargs): # Record features & target self._features = features self._target = target # Load CSV file as pandas dataframe csv_path = dataset_path data = pd.read_csv(csv_path) # Extract X & y from dataframe (X, y) = self._extract_xy(data) X = self.prepare_X(X) self._clf.fit(X, y) # Compute train accuracy score = self._clf.score(X, y) logger.log('Train accuracy: {}'.format(score))
def train(self, dataset_path, features=None, target=None, **kwargs): # Record features & target self._features = features self._target = target # Load CSV file as pandas dataframe csv_path = dataset_path data = pd.read_csv(csv_path) # Extract X & y from dataframe (X, y) = self._extract_xy(data) # Encode categorical features X = self._encoding_categorical_type(X) self._clf.fit(X, y) # Compute train root mean square error preds = self._clf.predict(X) rmse = np.sqrt(mean_squared_error(y, preds)) logger.log('Train RMSE: {}'.format(rmse))