Beispiel #1
0
    def print_results(self, node):
        print("\n Found a solution! \n")
        CPU_time = timer.time() - self.start_time
        print("CPU time (s):    {:.2f}".format(CPU_time))
        print("Sum of costs:    {}".format(get_sum_of_cost(node['paths'])))
        print("Expanded nodes:  {}".format(self.num_of_expanded))
        print("Generated nodes: {}".format(self.num_of_generated))

        result_file = open("results.csv", "a", buffering=1)
        cost = get_sum_of_cost(node['paths'])
        result_file.write("{},{},{},{}\n".format(cost, CPU_time,
                                                 self.num_of_expanded,
                                                 self.num_of_generated))
        result_file.close()
Beispiel #2
0
    def find_solution(self):
        """ Finds paths for all agents from their start locations to their goal locations."""

        start_time = timer.time()
        result = []
        constraints = []

        for i in range(self.num_of_agents):  # Find path for each agent
            path = a_star(self.my_map, self.starts[i], self.goals[i],
                          self.heuristics[i], i, constraints)
            if path is None:
                raise BaseException('No solutions')
            result.append(path)

            ##############################
            # Task 2: Add constraints here
            #         Useful variables:
            #            * path contains the solution path of the current (i'th) agent, e.g., [(1,1),(1,2),(1,3)]
            #            * self.num_of_agents has the number of total agents
            #            * constraints: array of constraints to consider for future A* searches

            ##############################

        self.CPU_time = timer.time() - start_time

        print("\n Found a solution! \n")
        print("CPU time (s):    {:.2f}".format(self.CPU_time))
        print("Sum of costs:    {}".format(get_sum_of_cost(result)))
        print(result)
        return result
Beispiel #3
0
    def find_solution(self):
        """ Finds paths for all agents from their start locations to their goal locations."""
        start_time = timer.time()
        result = []
        constraints = []

        # constraints = [{'agent': 0, 'loc': [(1,5)], 'timestep': 4, 'type': 'vertex'}]  # For Task 1,2
        # constraints = [{'agent': 0, 'loc': [(1,5)], 'timestep': 4}]  # For Task 1,2
        # constraints = [{'agent': 1, 'loc': [(1,2), (1,3)], 'timestep': 1, 'type': 'edge'}]  # For Task 1,3
        # constraints = [{'agent': 1, 'loc': [(1,2), (1,3)], 'timestep': 1}]  # For Task 1,3
        # constraints = [{'agent': 0, 'loc': [(1,5)], 'timestep': 6, 'type': 'vertex'},
        #                {'agent': 0, 'loc': [(1,5)], 'timestep': 15, 'type': 'vertex'},
        #                 {'agent': 0, 'loc': [(1,5)], 'timestep': 9, 'type': 'vertex'}]  # For Task 1.4
        # constraints = [{'agent':1, 'loc': [(1,3), (1,4)], 'timestep': 2},
        #        {'agent':1, 'loc': [(1,3)], 'timestep': 2},
        #        {'agent':1, 'loc': [(1,2)], 'timestep': 2},
        #        {'agent': 0, 'loc': [(1,5)], 'timestep': 6, 'type': 'vertex'}]  # For Task 1.5

        # agent_priorities = [1,0]  # Bad ordering for exp2_1.txt
        agent_priorities = range(self.num_of_agents)  # Linear ordering

        for ind, i in enumerate(agent_priorities):  # Find path for each agent
            path = a_star(self.my_map, self.starts[i], self.goals[i],
                          self.heuristics[i], i, constraints)
            if path is None:
                raise BaseException('No solutions')
            result.append(path)

            for j in range(ind + 1, len(agent_priorities)):
                agent = agent_priorities[j]
                for timestep in range(len(path) - 1):
                    curr_loc = path[timestep]
                    next_loc = path[timestep + 1]
                    constraints.append({
                        'agent': agent,
                        'loc': [curr_loc],
                        'timestep': timestep,
                        'type': 'vertex'
                    })
                    constraints.append({
                        'agent': agent,
                        'loc': [next_loc, curr_loc],
                        'timestep': timestep + 1,
                        'type': 'edge'
                    })
                constraints.append({
                    'agent': agent,
                    'loc': path[-1],
                    'timestep': len(path) - 1,
                    'type': 'inf'
                })

        self.CPU_time = timer.time() - start_time

        print("\n Found a solution! \n")
        print("CPU time (s):    {:.2f}".format(self.CPU_time))
        print("Sum of costs:    {}".format(get_sum_of_cost(result)))
        print(result)

        return result
Beispiel #4
0
    def find_solution(self):
        """ Finds paths for all agents from their start locations to their goal locations."""

        start_time = timer.time()
        result = []

        ##############################
        # Task 1: Understand the following code (see the lab description for some hints)

        for i in range(self.num_of_agents):  # Find path for each agent
            path = a_star(self.my_map, self.starts[i], self.goals[i],
                          self.heuristics[i], i, [], [])
            if path is None:
                raise BaseException('No solutions')
            result.append(path)

        ##############################

        self.CPU_time = timer.time() - start_time

        print("\n Found a solution! \n")
        print("CPU time (s):    {:.2f}".format(self.CPU_time))
        print("Sum of costs:    {}".format(get_sum_of_cost(result)))

        return result
 def print_results(self, node):
     print("\n Found a solution! \n")
     CPU_time = timer.time() - self.start_time
     print("CPU time (s):    {:.2f}".format(CPU_time))
     print("Sum of costs:    {}".format(get_sum_of_cost(node['paths'])))
     print("Expanded nodes:  {}".format(self.num_of_expanded))
     print("Generated nodes: {}".format(self.num_of_generated))
Beispiel #6
0
    def find_solution(self):
        """ Finds paths for all agents from their start locations to their goal locations."""

        start_time = timer.time()
        result = []
        constraints = []
        max_path_len = 0
        map_size = sum(x.count(False) for x in self.my_map)
        upperbound = max_path_len + map_size
        # constraints.append({'agent': 0, 'loc': [(1, 5)], 'timestep': 4}) # 1.2
        # constraints.append({'agent': 1, 'loc': [(1, 2), (1,3)], 'timestep': 1}) # 1.3
        # constraints.append({'agent': 0, 'loc': [(1, 5)], 'timestep': 10}) # 1.4
        # 1.5
        # constraints.append({'agent': 1, 'loc': [(1, 2)], 'timestep': 2})
        # constraints.append({'agent': 1, 'loc': [(1, 3)], 'timestep': 2})
        # constraints.append({'agent': 1, 'loc': [(1, 4)], 'timestep': 2})

        for i in range(self.num_of_agents):  # Find path for each agent
            path = a_star(self.my_map, self.starts[i], self.goals[i], self.heuristics[i],
                          i, constraints)
            if path is None:
                raise BaseException('No solutions')
            
            # Task 2.4
            if len(path) > upperbound:
                print("Reach upper bound {} for agent {} with path length {}".format(upperbound, i,len(path)))
                raise BaseException('No solutions')

            # Calculate an upper bound on the path length
            max_path_len = max(max_path_len, len(path))
            upperbound = max_path_len + map_size

            result.append(path)

            ##############################
            # Task 2: Add constraints here
            #         Useful variables:
            #            * path contains the solution path of the current (i'th) agent, e.g., [(1,1),(1,2),(1,3)]
            #            * self.num_of_agents has the number of total agents
            #            * constraints: array of constraints to consider for future A* searches
            for agent in range(i + 1, self.num_of_agents + 1): # future agents
                for t in range(len(path)):
                    constraints.append({'agent': agent, 'loc': [path[t]], 'timestep': t})  # vertex
                    if t > 0:
                        constraints.append({'agent': agent, 'loc': [path[t], path[t-1]], 'timestep': t}) # edge
                        constraints.append({'agent': agent, 'loc': [path[t-1], path[t]], 'timestep': t}) # edge
           
                # Task 2.3 Additional Constraints (can also implemented by modify is_constrained function in single_agent_planner.py,then need to comment out it when choosing CBS)
                for t_future in range(len(path), upperbound):
                    constraints.append({'agent': agent, 'loc': [path[len(path) - 1]], 'timestep': t_future})
            ##############################

        self.CPU_time = timer.time() - start_time

        print("\n Found a solution! \n")
        print("CPU time (s):    {:.2f}".format(self.CPU_time))
        print("Sum of costs:    {}".format(get_sum_of_cost(result)))
        print(result)
        return result
Beispiel #7
0
    def find_solution(self):
        """ Finds paths for all agents from their start locations to their goal locations."""

        start_time = timer.time()
        result = []
        constraints = []

        for i in range(self.num_of_agents):  # Find path for each agent
            path = a_star(self.my_map, self.starts[i], self.goals[i],
                          self.heuristics[i], i, constraints)
            if path is None:
                raise BaseException('No solutions')
            result.append(path)

            ##############################
            # Task 2: Add constraints here
            #         Useful variables:
            #            * path contains the solution path of the current (i'th) agent, e.g., [(1,1),(1,2),(1,3)]
            #            * self.num_of_agents has the number of total agents
            #            * constraints: array of constraints to consider for future A* searches
            for timestep, loc in enumerate(path):
                for agent in range(i + 1, self.num_of_agents):
                    constraints.append({
                        'agent': agent,
                        'loc': [loc],
                        'timestep': timestep,
                        'positive': False
                    })
                    if timestep + 1 < len(path):
                        next_loc = path[timestep + 1]
                        constraints.append({
                            'agent': agent,
                            'loc': [next_loc, loc],
                            'timestep': timestep + 1,
                            'positive': False
                        })
                    # Code to handle Task 2.3 (Adding Additional Constraints)
                    else:  # At goal = Negative timestep = Constrain for all future timesteps too
                        constraints.append({
                            'agent': agent,
                            'loc': [loc],
                            'timestep': -(timestep + 1),
                            'positive': False
                        })
            ##############################

        self.CPU_time = timer.time() - start_time

        print("\n Found a solution! \n")
        print("CPU time (s):    {:.2f}".format(self.CPU_time))
        print("Sum of costs:    {}".format(get_sum_of_cost(result)))
        print(result)
        return result
    def find_solution(self):
        """ Finds paths for all agents from their start locations to their goal locations."""

        start_time = timer.time()
        result = []
        constraints = []

        for i in range(self.num_of_agents):  # Find path for each agent
            path = a_star(self.my_map, self.starts[i], self.goals[i],
                          self.heuristics[i], i, constraints, [])
            if path is None:
                raise BaseException('No solutions')
            result.append(path)

            ##############################
            # Task 2: Add constraints here
            #         Useful variables:
            #            * path contains the solution path of the current (i'th) agent, e.g., [(1,1),(1,2),(1,3)]
            #            * self.num_of_agents has the total number of agents
            #            * constraints: array of constraints to consider for future A* searches

            ##############################
            for sid, place in enumerate(path):
                for agent in range(i, self.num_of_agents):
                    constraints.append({
                        'agent': agent + 1,
                        'loc': [place],
                        'timestep': sid,
                        'positive': False
                    })
                    #constraints.append({'agent' : agent + 1, 'loc': [place], 'timestep': sid+1, 'positive': False})
                    if sid < len(path) - 1:
                        constraints.append({
                            'agent': agent + 1,
                            'loc': [path[sid], path[sid + 1]],
                            'timestep': sid + 1,
                            'positive': False
                        })
                        constraints.append({
                            'agent': agent + 1,
                            'loc': [path[sid + 1], path[sid]],
                            'timestep': sid + 1,
                            'positive': False
                        })

        self.CPU_time = timer.time() - start_time

        print("\n Found a solution! \n")
        print("CPU time (s):    {:.2f}".format(self.CPU_time))
        print("Sum of costs:    {}".format(get_sum_of_cost(result)))
        print(result)
        return result
Beispiel #9
0
    def find_solution(self):
        """ Finds paths for all agents from their start locations to their goal locations."""

        start_time = timer.time()
        result = []
        blocks = []
        constraints = []

        for i in range(self.num_of_agents):  # Find path for each agent
            path = a_star(self.my_map, self.starts[i], self.goals[i],
                          self.heuristics[i], i, constraints)
            if path is None:
                raise BaseException('No solutions')
            result.append(path)
            for count in range(len(path)):
                blocks.append({'loc': [path[count]], 'timestep': count})
                if count == len(path) - 1:
                    blocks.append({
                        'loc': [path[count]],
                        'timestep': '>' + str(count)
                    })
                if count == 0:
                    continue
                else:
                    blocks.append({
                        'loc': [path[count], path[count - 1]],
                        'timestep': count
                    })
            for j in range(i + 1, self.num_of_agents):
                for block in blocks:
                    constraints.append({
                        'agent': j,
                        'loc': block['loc'],
                        'timestep': block['timestep']
                    })

            ##############################
            # Task 2: Add constraints here
            #         Useful variables:
            #            * path contains the solution path of the current (i'th) agent, e.g., [(1,1),(1,2),(1,3)]
            #            * self.num_of_agents has the number of total agents
            #            * constraints: array of constraints to consider for future A* searches

            ##############################

        self.CPU_time = timer.time() - start_time

        print("\n Found a solution! \n")
        print("CPU time (s):    {:.2f}".format(self.CPU_time))
        print("Sum of costs:    {}".format(get_sum_of_cost(result)))
        print(result)
        return result
Beispiel #10
0
    def print_results(self, node):
        CPU_time = timer.time() - self.start_time
        process = psutil.Process(os.getpid())
        memory = process.memory_info().rss / 1000000
        cost = get_sum_of_cost(node['paths'])

        print("\n Found a solution! \n")
        print("Memory usage:    {} mb".format(memory))
        print("CPU time (s):    {:.2f}".format(CPU_time))
        print("Sum of costs:    {}".format(cost))
        print("Expanded nodes:  {}".format(self.num_of_expanded))
        print("Generated nodes: {}".format(self.num_of_generated))
        
        # Write results to file
        with open("results.csv", "a", buffering=1) as result_file:
            result_file.write("{},{},{},{},{},{}\n".format(self.instance, CPU_time, memory, cost, self.num_of_expanded, self.num_of_generated))
Beispiel #11
0
    def find_solution(self, disjoint=True):
        """ Finds paths for all agents from their start locations to their goal locations

        disjoint    - use disjoint splitting or not
        """

        self.start_time = timer.time()

        # Generate the root node
        # constraints   - list of constraints
        # paths         - list of paths, one for each agent
        #               [[(x11, y11), (x12, y12), ...], [(x21, y21), (x22, y22), ...], ...]
        # collisions     - list of collisions in paths
        root = {'cost': 0, 'constraints': [], 'paths': [], 'collisions': []}
        for i in range(self.num_of_agents):  # Find initial path for each agent
            path = a_star(self.my_map, self.starts[i], self.goals[i],
                          self.heuristics[i], i, root['constraints'])
            if path is None:
                raise BaseException('No solutions')
            root['paths'].append(path)

        root['cost'] = get_sum_of_cost(root['paths'])
        root['collisions'] = detect_collisions(root['paths'])
        self.push_node(root)

        # Task 3.1: Testing
        print(root['collisions'])

        # Task 3.2: Testing
        for collision in root['collisions']:
            print(standard_splitting(collision))

        ##############################
        # Task 3.3: High-Level Search
        #           Repeat the following as long as the open list is not empty:
        #             1. Get the next node from the open list (you can use self.pop_node()
        #             2. If this node has no collision, return solution
        #             3. Otherwise, choose the first collision and convert to a list of constraints (using your
        #                standard_splitting function). Add a new child node to your open list for each constraint
        #           Ensure to create a copy of any objects that your child nodes might inherit

        self.print_results(root)
        return root['paths']
Beispiel #12
0
    def find_solution(self):
        """ Finds paths for all agents from their start locations to their goal locations."""

        start_time = timer.time()
        result = []
        constraints = []

        # Test Task 1.2, add constraint for agent
        #constraints.append({'agent':0, 'loc':[(1,5)], 'timestep':4})
        #constraints.append({'agent':1, 'loc':[(1,2), (1,3)], 'timestep':1})

        # Test Task 1.5
        """
        constraints.append({'agent':1, 'loc':[(1,3), (1,2)], 'timestep':2})
        constraints.append({'agent':1, 'loc':[(1,3), (1,3)], 'timestep':2})
        constraints.append({'agent':1, 'loc':[(1,3), (1,4)], 'timestep':2})
        constraints.append({'agent':1, 'loc':[(1,2)], 'timestep':1})
        """

        for i in range(self.num_of_agents):  # Find path for each agent
            path = a_star(self.my_map, self.starts[i], self.goals[i],
                          self.heuristics[i], i, constraints)
            if path is None:
                print(result)
                raise BaseException('No solutions')
            result.append(path)

            ##############################
            # Task 2: Add constraints here
            #         Useful variables:
            #            * path contains the solution path of the current (i'th) agent, e.g., [(1,1),(1,2),(1,3)]
            #            * self.num_of_agents has the number of total agents
            #            * constraints: array of constraints to consider for future A* searches

            # add constraints for all after agents
            current_path = result[i]

            # add vertex constraints
            timestep = 0
            for position in current_path:
                # each agent need to add constraint relate to current path
                for each_agent in range(i + 1, self.num_of_agents):
                    need_to_append = {
                        'agent': each_agent,
                        'loc': [position],
                        'timestep': timestep,
                        'positive': 0
                    }
                    if need_to_append not in constraints:
                        constraints.append(need_to_append)
                timestep += 1

            # add edge constraints
            timestep = 1
            for j in range(len(current_path) - 1):
                for each_agent in range(i + 1, self.num_of_agents):
                    need_to_append = {
                        'agent': each_agent,
                        'loc': [current_path[j + 1], current_path[j]],
                        'timestep': timestep,
                        'positive': 0
                    }
                    if need_to_append not in constraints:
                        constraints.append(need_to_append)
                timestep += 1

            # add additional constraints
            # -1 represent all future time
            for each_agent in range(i + 1, self.num_of_agents):
                need_to_append = {
                    'agent': each_agent,
                    'loc': [current_path[len(current_path) - 1]],
                    'timestep': (-1, len(current_path) - 1),
                    'positive': 0
                }
                if need_to_append not in constraints:
                    constraints.append(need_to_append)

            ##############################

        self.CPU_time = timer.time() - start_time

        print("\n Found a solution! \n")
        print("CPU time (s):    {:.2f}".format(self.CPU_time))
        print("Sum of costs:    {}".format(get_sum_of_cost(result)))
        print(result)
        return result
    def find_solution(self, disjoint=True):
        """ Finds paths for all agents from their start locations to their goal locations

        disjoint    - use disjoint splitting or not
        """

        self.start_time = timer.time()

        # Generate the root node
        # constraints   - list of constraints
        # paths         - list of paths, one for each agent
        #               [[(x11, y11), (x12, y12), ...], [(x21, y21), (x22, y22), ...], ...]
        # collisions     - list of collisions in paths
        root = {'cost': 0, 'constraints': [], 'paths': [], 'collisions': []}
        for i in range(self.num_of_agents):  # Find initial path for each agent
            path = a_star(self.my_map, self.starts[i], self.goals[i],
                          self.heuristics[i], i, root['constraints'])
            if path is None:
                raise BaseException('No solutions')
            root['paths'].append(path)

        root['cost'] = get_sum_of_cost(root['paths'])
        root['collisions'] = detect_collisions(root['paths'])
        self.push_node(root)

        # Task 3.1: Testing
        print(root['collisions'])

        # Task 3.2: Testing
        for collision in root['collisions']:
            print(standard_splitting(collision))

        ##############################
        # Task 3.3: High-Level Search
        #           Repeat the following as long as the open list is not empty:
        #             1. Get the next node from the open list (you can use self.pop_node()
        #             2. If this node has no collision, return solution
        #             3. Otherwise, choose the first collision and convert to a list of constraints (using your
        #                standard_splitting function). Add a new child node to your open list for each constraint
        #           Ensure to create a copy of any objects that your child nodes might inherit

        standard = False
        disjoint = True

        while len(self.open_list) > 0:
            new_node = self.pop_node()

            if len(new_node['collisions']) == 0:
                print("No collision")
                return new_node['paths']

            collision = new_node['collisions'][0]

            if standard == True:
                constraints = standard_splitting(collision)
            if disjoint == True:
                constraints = disjoint_splitting(collision)

            for constraint in constraints:

                Q = {
                    'constraints': [],
                    'paths': [],
                    'cost': [],
                    'collisions': []
                }

                for i in new_node['constraints']:
                    Q['constraints'].append(i)
                    Q['constraints'].append(constraint)

                for i in new_node['paths']:
                    Q['paths'].append(i)
                    agent = constraint['agent']

                path = a_star(self.my_map, self.starts[agent],
                              self.goals[agent], self.heuristics[agent], agent,
                              Q['constraints'])

                if path is not None:

                    Q['paths'][agent] = path
                    paths_violate = list()

                    if constraint['positive'] == True:
                        paths_violate = paths_violate_constraint(
                            constraint, Q['paths'])

                    for new_agent in paths_violate:
                        new_constraint = {
                            'agent': new_agent,
                            'loc': constraint['loc'],
                            'timestep': constraint['timestep'],
                            'positive': False
                        }
                        Q['constraints'].append(new_constraint)
                        new_path = a_star(self.my_map, self.starts[new_agent],
                                          self.goals[new_agent],
                                          self.heuristics[new_agent],
                                          new_agent, Q['constraints'])

                        if new_path is None:
                            break
                        Q['paths'][new_agent] = new_path

                    Q['cost'] = get_sum_of_cost(Q['paths'])
                    Q['collisions'] = detect_collisions(Q['paths'])
                    self.push_node(Q)

        raise BaseException('No solutions')
Beispiel #14
0
    def find_solution(self, disjoint=True, heuristic=None):
        """ Finds paths for all agents from their start locations to their goal locations

        disjoint    - use disjoint splitting or not
        """

        self.start_time = timer.time()

        # Generate the root node
        # constraints   - list of constraints
        # paths         - list of paths, one for each agent
        #               [[(x11, y11), (x12, y12), ...], [(x21, y21), (x22, y22), ...], ...]
        # collisions     - list of collisions in paths
        root = {'cost': 0, 'constraints': [], 'paths': [], 'collisions': []}
        for i in range(self.num_of_agents):  # Find initial path for each agent
            path = a_star(self.my_map, self.starts[i], self.goals[i],
                          self.heuristics[i], i, root['constraints'])
            if path is None:
                raise BaseException('No solutions')
            root['paths'].append(path)

        root['cost'] = get_sum_of_cost(root['paths'])
        root['collisions'] = detect_collisions(root['paths'])
        root['h_val'] = 0

        self.push_node(root)
        # Task 3.1: Testing
        #print(root['collisions'])

        # Task 3.2: Testing
        #for collision in root['collisions']:
        #    print(standard_splitting(collision))

        ##############################
        # Task 3.3: High-Level Search
        #           Repeat the following as long as the open list is not empty:
        #             1. Get the next node from the open list (you can use self.pop_node()
        #             2. If this node has no collision, return solution
        #             3. Otherwise, choose the first collision and convert to a list of constraints (using your
        #                standard_splitting function). Add a new child node to your open list for each constraint
        #           Ensure to create a copy of any objects that your child nodes might inherit

        while len(self.open_list) > 0:
            p = self.pop_node()
            if len(p['collisions']) == 0:
                self.sum_of_costs = get_sum_of_cost(p['paths'])
                return p['paths']

            collision = p['collisions'][0]
            constraints = standard_splitting(
                collision)  #disjoint_splitting(collision)
            for constraint in constraints:
                q = {
                    'cost': 0,
                    'constraints':
                    copy.deepcopy(p['constraints'] + [constraint]),
                    'paths': copy.deepcopy(p['paths']),
                    'collisions': []
                }
                """ Task 4  
                if constraint['positive'] == True:
                    if paths_violate_constraint(constraint, q['paths']):
                        continue
                """

                agent = constraint['agent']
                path = a_star(self.my_map, self.starts[agent],
                              self.goals[agent], self.heuristics[agent], agent,
                              q['constraints'])

                if path != None:
                    q['paths'][agent] = path
                    q['collisions'] = detect_collisions(q['paths'])
                    q['cost'] = get_sum_of_cost(q['paths'])

                    if self.CT_heuristic == None:
                        q['h_val'] = 0
                    else:
                        MDD_list = [mdd.MDD(self.my_map, self.starts[i], self.goals[i],\
                                compute_heuristics(self.my_map, self.goals[i]), i, q['constraints'])\
                                for i in range(len(self.starts))]
                        if self.CT_heuristic == "CG":
                            graph_inst = mdd.graph_from_MDD(MDD_list)
                            mvc_inst = mvc.BruteForceMVC(graph_inst)
                            q['h_val'] = mvc_inst.getMVC()
                        elif self.CT_heuristic == "DG":
                            graph_inst = joint_mdd.graph_from_MDD(MDD_list)
                            mvc_inst = mvc.BruteForceMVC(graph_inst)
                            q['h_val'] = mvc_inst.getMVC()
                        elif self.CT_heuristic == "WDG":
                            graph_inst = joint_mdd.weighted_graph_from_MDD(
                                MDD_list, self.my_map, self.starts, self.goals)
                            ewmvc_inst = mvc.BruteForceEWMVC(graph_inst)
                            q['h_val'] = ewmvc_inst.getEWMVC()

                    self.push_node(q)

        if path is None:
            raise BaseException('No solutions')

        self.print_results(root)
        return root['paths']
    def find_solution(self, disjoint=True, time_limit=60):
        """ Finds paths for all agents from their start locations to their goal locations

        disjoint    - use disjoint splitting or not
        time_limit  - maximum amount of execution time allowed
        """

        start_time = timer.time()

        # Generate the root node
        # constraints   - list of constraints
        # paths         - list of paths, one for each agent
        #               [[(x11, y11), (x12, y12), ...], [(x21, y21), (x22, y22), ...], ...]
        # conflicts     - list of conflicts in paths
        root = {
            'cost': 0,
            'constraints': [],
            'paths': [],
            'conflicts': [],
            'parent': None
        }
        for i in range(self.num_of_agents):  # Find initial path for each agent
            path = a_star(self.my_map, self.starts[i], self.goals[i],
                          self.heuristics[i], i, root['constraints'],
                          root['paths'])
            if path is None:
                raise BaseException('No solutions')
            root['paths'].append(path)

        root['cost'] = get_sum_of_cost(root['paths'])
        root['conflicts'] = detect_conflicts(root['paths'])
        self.push_node(root)

        # Task 3.1: Testing
        print(root['conflicts'])

        # Task 3.2: Testing
        for conflict in root['conflicts']:
            print(standard_splitting(conflict))

        ##############################
        # Task 3.3: High-Level Search
        #           Repeat the following as long as the open list is not empty:
        #             1. Get the next node from the open list (you can use self.pop_node()
        #             2. If this node has no conflict, return solution
        #             3. Otherwise, choose the first conflict and convert to a list of constraints (using your
        #                standard_splitting function). Add a new child node to your open list for each constraint
        #           Ensure to create a copy of any objects that your child nodes might inherit

        while len(self.open_list) > 0:
            node = self.pop_node()
            if node['conflicts'] == []:
                self.print_results(node)
                return node['paths']

            conflict = node['conflicts'][0]
            print(
                "Choose a conflict between {} and {} at location {} at timestep {}"
                .format(conflict['a1'], conflict['a2'], conflict['loc'],
                        conflict['timestep']))

            #new_constraints = standard_splitting(conflict)
            new_constraints = disjoint_splitting(conflict)

            for constraint in new_constraints:
                #i = constraint['agent']
                print(
                    "Negative constraint on agent {} at location {} at timestep {}"
                    .format(constraint['agent'], constraint['loc'],
                            constraint['timestep']))
                constraints = list(node['constraints'])
                constraints.append(constraint)

                paths = list(node['paths'])
                #paths[i] = a_star(self.my_map, self.starts[i], self.goals[i], self.heuristics[i],
                #                    i, constraints, paths)

                replan = []
                if constraint['positive']:
                    replan = paths_violate_constraint(constraint, paths)
                else:
                    replan.append(constraint['agent'])
                #child_node = {'cost': get_sum_of_cost(paths),
                #              'constraints':constraints,
                #              'paths': paths,
                #              'conflicts': detect_conflicts(paths),
                #              'parent': node}
                #self.push_node(child_node)

                prune = False
                for i in replan:
                    paths[i] = a_star(self.my_map, self.starts[i],
                                      self.goals[i], self.heuristics[i], i,
                                      constraints, paths)

                    if paths[i] is None:
                        prune = True
                        break

                if not prune:
                    child_node = {
                        'cost': get_sum_of_cost(paths),
                        'constraints': constraints,
                        'paths': paths,
                        'conflicts': detect_conflicts(paths),
                        'parent': node
                    }
                    self.push_node(child_node)
    def find_solution(self):
        """ Finds paths for all agents from their start locations to their goal locations."""

        start_time = timer.time()
        result = []
        constraints = []

        for i in range(self.num_of_agents):  # Find path for each agent
            path = a_star(self.my_map, self.starts[i], self.goals[i], self.heuristics[i],
                          i, constraints)             
            if path is None:
                raise BaseException('No solutions')
            result.append(path)

            ##############################
            # Task 2: Add constraints here
            #         Useful variables:
            #            * path contains the solution path of the current (i'th) agent, e.g., [(1,1),(1,2),(1,3)]
            #            * self.num_of_agents has the number of total agents
            #            * constraints: array of constraints to consider for future A* searches
            for node_index in range(len(path)):
                for agent_index in range(self.num_of_agents):
                    if agent_index != i:
                        # Adding Vertex Constraints
                        vertex_constraint = {'agent': agent_index, 'loc':[path[node_index]], 'timestep': node_index}
                        constraints.append(vertex_constraint)
                        
                        # Adding Edge Constraints
                        for dir in range(4):
                            curr_pos = move(path[node_index], dir)
                            if self.my_map[curr_pos[0]][curr_pos[1]]:
                                continue
                            edge_constraint = {'agent': agent_index, 'loc':[curr_pos, path[node_index]], 'timestep':node_index+1}
                            constraints.append(edge_constraint)
            
            # Calculate the edge_constraints for goal state nodes            
            path_upperbound = 0
            for p in result:
                path_upperbound += len(p)
            path_upperbound += len(self.my_map)+len(self.my_map[0]) ### Look for something more specific to find upper bound
            for index, route in enumerate(result):
                for i in range(path_upperbound-len(route)):
                    goal_state = route[len(route)-1]
                    time = len(route) + i - 1
                    # create constraints for every agent
                    for a in range(self.num_of_agents):
                        if a == index: continue
                        for dir in range(4):
                            curr_pos = move(goal_state, dir)
                            if self.my_map[curr_pos[0]][curr_pos[1]]:
                                continue
                            edge_constraint = {'agent': a, 'loc':[curr_pos, goal_state], 'timestep':time+1}
                            constraints.append(edge_constraint)
            ##############################

        self.CPU_time = timer.time() - start_time

        print("\n Found a solution! \n")
        print("CPU time (s):    {:.2f}".format(self.CPU_time))
        print("Sum of costs:    {}".format(get_sum_of_cost(result)))
        print(result)
        return result
Beispiel #17
0
    def find_solution(self, disjoint=True):
        """ Finds paths for all agents from their start locations to their goal locations

        disjoint    - use disjoint splitting or not
        """

        self.start_time = timer.time()

        root = {'cost': 0, 'constraints': [], 'paths': [], 'collisions': []}

        for i in range(self.num_of_agents):  # Find initial path for each agent
            path = a_star(self.my_map, self.starts[i], self.goals[i],
                          self.heuristics[i], i, root['constraints'])
            if path is None:
                raise BaseException('No solutions')
            root['paths'].append(path)

        root['cost'] = get_sum_of_cost(root['paths'])
        root['collisions'] = detect_collisions(root['paths'])
        self.push_node(root)

        ##############################
        # Task 3.3: High-Level Search
        #           Repeat the following as long as the open list is not empty:
        #             1. Get the next node from the open list (you can use self.pop_node()
        #             2. If this node has no collision, return solution
        #             3. Otherwise, choose the first collision and convert to a list of constraints (using your
        #                standard_splitting function). Add a new child node to your open list for each constraint
        #           Ensure to create a copy of any objects that your child nodes might inherit

        while len(self.open_list) > 0:
            curr = self.pop_node(
            )  # firstly sorted with cost then sorted with #constraints
            # no collision return solution
            if len(curr['collisions']) == 0:
                self.print_results(curr)
                print(curr)
                return curr['paths']

            first_collision = curr['collisions'][0]
            constraints = []
            # standard CBS
            if disjoint == False:
                constraints = standard_splitting(first_collision)
            # CBS with disjoint splitting
            else:
                constraints = disjoint_splitting(first_collision)

            # for each constraint add a new child node
            for constraint in constraints:
                # deep copy parent attributes to child
                child_constarints = copy_parent(curr['constraints'])
                if constraint not in child_constarints:
                    child_constarints.append(constraint)
                child_paths = copy_parent(curr['paths'])
                constrainted_agent = constraint['agent']
                child = {
                    'cost': 0,
                    'constraints': child_constarints,
                    'paths': child_paths,
                    'collisions': []
                }

                if constraint['positive'] == 0:
                    path = a_star(self.my_map, self.starts[constrainted_agent],
                                  self.goals[constrainted_agent],
                                  self.heuristics[constrainted_agent],
                                  constrainted_agent, child['constraints'])
                    path = eliminate_duplicates(path)
                    if path is not None:
                        # replace the constrainted agent path by new path in parent paths
                        child['paths'][constrainted_agent] = path
                        child['collisions'] = detect_collisions(child['paths'])
                        child['cost'] = get_sum_of_cost(child['paths'])
                        self.push_node(child)
                else:
                    Add = True
                    # update all agents' path
                    violate_IDs = paths_violate_constraint(
                        constraint, curr['paths'])

                    # replace the constrainted agent path by new path in parent paths
                    for each_agent in violate_IDs:
                        path = a_star(self.my_map, self.starts[each_agent],
                                      self.goals[each_agent],
                                      self.heuristics[each_agent], each_agent,
                                      child['constraints'])
                        path = eliminate_duplicates(path)
                        if path is not None:
                            child['paths'][each_agent] = path
                        else:
                            Add = False
                            break

                    #update the constraint agent
                    path = a_star(self.my_map, self.starts[constrainted_agent],
                                  self.goals[constrainted_agent],
                                  self.heuristics[constrainted_agent],
                                  constrainted_agent, child['constraints'])
                    path = eliminate_duplicates(path)
                    if path is not None:
                        child['paths'][constrainted_agent] = path
                        child['collisions'] = detect_collisions(child['paths'])
                        child['cost'] = get_sum_of_cost(child['paths'])
                    else:
                        Add = False
                    if Add:
                        self.push_node(child)

        raise BaseException('No solutions')
Beispiel #18
0
    def find_solution(self):
        """ Finds paths for all agents from their start locations to their goal locations

        disjoint    - use disjoint splitting or not
        """

        self.start_time = timer.time()

        # Generate the root node
        # constraints   - list of constraints
        # paths         - list of paths, one for each agent
        #               [[(x11, y11), (x12, y12), ...], [(x21, y21), (x22, y22), ...], ...]
        # collisions     - list of collisions in paths
        root = {'cost': 0,
                'constraints': [],
                'paths': [],
                'collisions': []}
        for i in range(self.num_of_agents):  # Find initial path for each agent
            path = a_star(self.my_map,
                          self.starts[i],
                          self.goals[i],
                          self.heuristics[i],
                          i,
                          root['constraints'])

            if path is None:
                raise BaseException('No solutions')
            root['paths'].append(path)

        root['cost'] = get_sum_of_cost(root['paths'])
        root['collisions'] = detect_collisions(root['paths'])
        self.push_node(root)

        while len(self.open_list) > 0:
            next_node = self.pop_node()
            if len(next_node['collisions']) == 0:
                self.print_results(next_node)
                return next_node['paths']
            collision = next_node['collisions'][0]
            constraints = standard_splitting(collision)

            for constraint in constraints:
                new_child_node = dict()
                new_child_node['constraints'] = [constraint] + next_node['constraints']
                new_child_node['paths'] = [] + next_node['paths']

                agent_in_constraint = constraint['agent']
                path = a_star(self.my_map,
                              self.starts[agent_in_constraint],
                              self.goals[agent_in_constraint],
                              self.heuristics[agent_in_constraint],
                              agent_in_constraint,
                              new_child_node['constraints'])

                if path is not None and len(path) > 0:
                    new_child_node['paths'][agent_in_constraint] = [] + path
                    new_child_node['collisions'] = detect_collisions(new_child_node['paths'])
                    new_child_node['cost'] = get_sum_of_cost(new_child_node['paths'])
                    self.push_node(new_child_node)

        self.print_results(root)
        return None
Beispiel #19
0
    def find_solution(self, disjoint=True):
        """ Finds paths for all agents from their start locations to their goal locations

        disjoint    - use disjoint splitting or not
        """

        self.start_time = timer.time()

        # Generate the root node
        # constraints   - list of constraints
        # paths         - list of paths, one for each agent
        #               [[(x11, y11), (x12, y12), ...], [(x21, y21), (x22, y22), ...], ...]
        # collisions     - list of collisions in paths
        root = {'cost': 0,
                'constraints': [],
                'paths': [],
                'collisions': []}
        for i in range(self.num_of_agents):  # Find initial path for each agent
            print("Time through init loop -", i+1)
            path = a_star(self.my_map, self.starts[i], self.goals[i], self.heuristics[i],
                          i, root['constraints'])
            if path is None:
                raise BaseException('No solutions')
            root['paths'].append(path)

        root['cost'] = get_sum_of_cost(root['paths'])
        root['collisions'] = detect_collisions(root['paths'])
        self.push_node(root)

        # Task 3.1: Testing
        print(root['collisions'])

        # Task 3.2: Testing
        for collision in root['collisions']:
            print(disjoint_splitting(collision))

        ##############################
        # Task 3.3: High-Level Search
        #           Repeat the following as long as the open list is not empty:
        #             1. Get the next node from the open list (you can use self.pop_node()
        #             2. If this node has no collision, return solution
        #             3. Otherwise, choose the first collision and convert to a list of constraints (using your
        #                standard_splitting function). Add a new child node to your open list for each constraint
        #           Ensure to create a copy of any objects that your child nodes might inherit

        while len(self.open_list) > 0:
            curr = self.pop_node()

            if len(curr['collisions']) == 0: # paths found
                print("PATH REACHED:")
                for i in curr['paths']:
                    print(i)
                return curr['paths']

            collision = curr['collisions'].pop(0)
            constraints = standard_splitting(collision)
            for constraint in constraints:
                child = {'cost': 0,
                        'constraints': [],
                        'paths': [],
                        'collisions': []}
                child['constraints'] = curr['constraints']
                child['constraints'].append(constraint)
                child['paths'] = curr['paths']
                agents = paths_violate_constraint(curr['paths'], constraint, self.num_of_agents) # disjoint splitting
                agent = constraint['agent']
                path = a_star(self.my_map, self.starts[agent], self.goals[agent], self.heuristics[agent], agent, child['constraints'])
                if path != None and len(path) > 0:
                    child['paths'][agent] = path
                    child['collisions'] = detect_collisions(child['paths'])
                    child['cost'] = get_sum_of_cost(child['paths'])
                    self.push_node(child)
                # end of if statement
            # end of for loop
        # end of while loop

        self.print_results(root)
        return root['paths']
Beispiel #20
0
    def find_solution(self, disjoint):
        """ Finds paths for all agents from their start locations to their goal locations

        disjoint    - use disjoint splitting or not
        """

        self.start_time = timer.time()

        # Generate the root node
        # constraints   - list of constraints
        # paths         - list of paths, one for each agent
        #               [[(x11, y11), (x12, y12), ...], [(x21, y21), (x22, y22), ...], ...]
        # collisions     - list of collisions in paths
        root = {'cost': 0, 'constraints': [], 'paths': [], 'collisions': []}
        for i in range(self.num_of_agents):  # Find initial path for each agent
            path = a_star(self.my_map, self.starts[i], self.goals[i],
                          self.heuristics[i], i, root['constraints'])
            if path is None:
                raise BaseException('No solutions for agent ' + str(i))

            root['paths'].append(path)

        root['cost'] = get_sum_of_cost(root['paths'])
        root['collisions'] = detect_collisions(root['paths'])
        self.push_node(root)

        # Task 3.1: Testing
        print(root['collisions'])

        # Task 3.2: Testing
        for collision in root['collisions']:
            print(standard_splitting(collision))

        ##############################
        # Task 3.3: High-Level Search
        #           Repeat the following as long as the open list is not empty:
        #             1. Get the next node from the open list (you can use self.pop_node()
        #             2. If this node has no collision, return solution
        #             3. Otherwise, choose the first collision and convert to a list of constraints (using your
        #                standard_splitting function). Add a new child node to your open list for each constraint
        #           Ensure to create a copy of any objects that your child nodes might inherit

        while len(self.open_list) > 0:
            curr = self.pop_node()
            if len(curr['collisions']) == 0:
                self.print_results(curr)
                return curr['paths']
            #collision = curr['collisions'][0]
            collision = ICBS(curr['collisions'], curr['paths'],
                             curr['constraints'], self)
            if disjoint:
                constraints = disjoint_splitting(collision)
            else:
                constraints = standard_splitting(collision)
            for constraint in constraints:
                Q = {
                    'cost': 0,
                    'constraints': [],
                    'paths': [],
                    'collisions': []
                }
                Q['constraints'] = copy.deepcopy(curr['constraints'])
                Q['constraints'].append(constraint)
                Q['paths'] = copy.deepcopy(curr['paths'])
                if disjoint:
                    if constraint['positive'] == 0:
                        ai = constraint['agent']
                        path = a_star(self.my_map, self.starts[ai],
                                      self.goals[ai], self.heuristics[ai], ai,
                                      Q['constraints'])
                        if path is None:
                            continue
                        Q['paths'][ai] = path
                    else:
                        newc = new_constraints(constraint, self.num_of_agents)
                        for c in newc:
                            Q['constraints'].append(c)
                        agentsId = paths_violate_constraint(
                            curr['paths'], constraint)
                        ai = constraint['agent']
                        path = a_star(self.my_map, self.starts[ai],
                                      self.goals[ai], self.heuristics[ai], ai,
                                      Q['constraints'])
                        if path is None:
                            continue
                        Q['paths'][ai] = path
                        no_path = 0
                        for agent in agentsId:
                            path = a_star(self.my_map, self.starts[agent],
                                          self.goals[agent],
                                          self.heuristics[agent], agent,
                                          Q['constraints'])
                            if path is None:
                                no_path = 1
                                break
                            Q['paths'][agent] = path
                        if no_path == 1:
                            continue
                else:
                    ai = constraint['agent']
                    path = a_star(self.my_map, self.starts[ai], self.goals[ai],
                                  self.heuristics[ai], ai, Q['constraints'])
                    if path is None:
                        continue
                    Q['paths'][ai] = path

                Q['collisions'] = detect_collisions(Q['paths'])
                Q['cost'] = get_sum_of_cost(Q['paths'])
                self.push_node(Q)
        raise BaseException('No solutions')
Beispiel #21
0
    def find_solution(
        self,
        disjoint=True,
        meta_constraints=None
    ):  # add constraint as param to support low lever search for meta agent cbs
        """ Finds paths for all agents from their start locations to their goal locations

        disjoint    - use disjoint splitting or not
        """

        self.start_time = timer.time()

        # Generate the root node
        # constraints   - list of constraints
        # paths         - list of paths, one for each agent
        #               [[(x11, y11), (x12, y12), ...], [(x21, y21), (x22, y22), ...], ...]
        # collisions     - list of collisions in paths
        root = {'cost': 0, 'constraints': [], 'paths': [], 'collisions': []}
        if meta_constraints != None:
            root['constraints'] = copy.copy(meta_constraints)
        for i in range(self.num_of_agents):  # Find initial path for each agent
            path = a_star(self.my_map, self.starts[i], self.goals[i],
                          self.heuristics[i], i, root['constraints'])
            if path is None:
                raise BaseException('No solutions')
            root['paths'].append(path)

        root['cost'] = get_sum_of_cost(root['paths'])
        root['collisions'] = detect_collisions(root['paths'])
        self.push_node(root)

        # Task 3.1: Testing
        # print(root['collisions'])

        # Task 3.2: Testing
        # for collision in root['collisions']:
        #     print(standard_splitting(collision))

        ##############################
        # Task 3.3: High-Level Search
        #           Repeat the following as long as the open list is not empty:
        #             1. Get the next node from the open list (you can use self.pop_node()
        #             2. If this node has no collision, return solution
        #             3. Otherwise, choose the first collision and convert to a list of constraints (using your
        #                standard_splitting function). Add a new child node to your open list for each constraint
        #           Ensure to create a copy of any objects that your child nodes might inherit
        # expanded_nodes = []
        while len(self.open_list) > 0:
            if meta_constraints is None:
                if timer.time() - self.start_time > 100:
                    raise Exception(
                        'timeout|' + str(self.num_of_expanded) + '|' +
                        str(self.num_of_generated) + '|' +
                        str(round(timer.time() - self.start_time, 2)))
            else:
                if timer.time() - self.start_time > 20:
                    return None
            # print("Open list: {}".format(self.open_list))
            curr = self.pop_node()
            # expanded_nodes.append(curr)
            if len(curr['collisions']) == 0:
                # print("Expanded nodes list: {}".format(str(expanded_nodes)))
                # self.print_results(curr)
                CPU_time = timer.time() - self.start_time
                return (curr['paths'], "{:.03f}".format(CPU_time),
                        self.num_of_expanded, self.num_of_generated)
            else:
                collision = curr['collisions'][0]
                # print("In parent collisions, pick one collision {}".format(collision))
                # constraints = standard_splitting(collision)
                constraints = disjoint_splitting(collision)
                for constraint in constraints:
                    child_contraints = list(curr['constraints'])
                    child_contraints.append(constraint)
                    child_paths = list(curr['paths'])
                    agents_need_update = []
                    if constraint['positive']:
                        agents_need_update = paths_violate_constraint(
                            constraint, child_paths)
                    else:
                        agents_need_update.append(constraint['agent'])
                    keep = True
                    for j in agents_need_update:
                        child_paths[j] = a_star(self.my_map, self.starts[j],
                                                self.goals[j],
                                                self.heuristics[j], j,
                                                child_contraints)
                        if child_paths[j] is None:
                            keep = False
                            break
                    if keep:
                        child = {
                            'cost': get_sum_of_cost(child_paths),
                            'constraints': child_contraints,
                            'paths': child_paths,
                            'collisions': detect_collisions(child_paths)
                        }
                        self.push_node(child)
        # print("Expanded nodes list: {}".format(str(expanded_nodes)))
        if meta_constraints != None:
            return None
        else:
            raise Exception('no solutions|' + str(self.num_of_expanded) + '|' +
                            str(self.num_of_generated) + '|' +
                            str(round(timer.time() - self.start_time, 2)))
Beispiel #22
0
    def find_solution(self):
        """ Finds paths for all agents from their start locations to their goal locations."""

        start_time = timer.time()
        result = []
        constraints = []

        # Constraint for Task 1.2
        # constraints = [{'agent': 0,'loc': [(1,5)],'timestep': 4}]

        # Constraint for Task 1.3
        # constraints = [{'agent': 1,'loc': [(1,2),(1,3)],'timestep': 1}]

        # Constraints for Task 1.4
        # constraints = [{'agent': 0,'loc': [(1,5)],'timestep': 10},
        #                 {'agent': 0,'loc': [(1,3),(1,4)],'timestep': 5},
        #                 {'agent': 0,'loc': [(1,3),(1,4)],'timestep': 7},
        #                 {'agent': 0,'loc': [(1,2),(1,3)],'timestep': 2}]

        # Constraints for Task 1.5
        # constraints = [{'agent': 1,'loc': [(1,4)],'timestep': 2},
        #                 {'agent': 1,'loc': [(1,3),(1,2)],'timestep': 2}]

        for i in range(self.num_of_agents):  # Find path for each agent

            path = a_star(self.my_map, self.starts[i], self.goals[i],
                          self.heuristics[i], i, constraints)

            if path is None:
                raise BaseException('No solutions')
            result.append(path)

            ##############################
            # Task 2: Add constraints here
            #         Useful variables:
            #            * path contains the solution path of the current (i'th) agent, e.g., [(1,1),(1,2),(1,3)]
            #            * self.num_of_agents has the number of total agents
            #            * constraints: array of constraints to consider for future A* searches

            ##############################

            # if len(constraint_table.keys()) != 0:
            #     if next_time > max(constraint_table.keys()):
            #         next_time = max(constraint_table.keys())

            # print(path)

            for next_agent in range(self.num_of_agents):

                for i in range(0, 10):

                    #     # Task 2.3 Adding goal constraints and max timestep allowed was 10

                    constraints.append({
                        'agent': next_agent,
                        'loc': [path[len(path) - 1]],
                        'timestep': len(path) + i - 1
                    })

                for nPath in range(len(path)):
                    # print(path[len(path) - 1])

                    # constraints.append({'agent' : next_agent, 'loc' : [path[len(path) - 1]], 'timestep' : nPath})

                    # constraints.append({'agent' : next_agent, 'loc' : [path[len(path) - 1]], 'timestep' : nPath+len(path)})

                    # Task 2.1 Vertex Constraints
                    if next_agent != i:

                        constraints.append({
                            'agent': next_agent,
                            'loc': [path[nPath]],
                            'timestep': nPath
                        })

                        # Task 2.2 Edge Constraints

                        if nPath > 0:
                            constraints.append({
                                'agent':
                                next_agent,
                                'loc': [path[nPath], path[nPath - 1]],
                                'timestep':
                                nPath
                            })

        self.CPU_time = timer.time() - start_time
        # print(constraints)

        print("\n Found a solution! \n")
        print("CPU time (s):    {:.2f}".format(self.CPU_time))
        print("Sum of costs:    {}".format(get_sum_of_cost(result)))
        print(result)
        return result
Beispiel #23
0
    def find_solution(self, disjoint=True):
        """ Finds paths for all agents from their start locations to their goal locations

        disjoint    - use disjoint splitting or not
        """

        self.start_time = timer.time()

        # Generate the root node
        # constraints   - list of constraints
        # paths         - list of paths, one for each agent
        #               [[(x11, y11), (x12, y12), ...], [(x21, y21), (x22, y22), ...], ...]
        # collisions     - list of collisions in paths
        root = {'cost': 0, 'constraints': [], 'paths': [], 'collisions': []}
        for i in range(self.num_of_agents):  # Find initial path for each agent
            path = a_star(self.my_map, self.starts[i], self.goals[i],
                          self.heuristics[i], i, root['constraints'])
            if path is None:
                raise BaseException('No solutions')
            root['paths'].append(path)

        root['cost'] = get_sum_of_cost(root['paths'])
        root['collisions'] = detect_collisions(root['paths'])
        self.push_node(root)

        # Task 3.1: Testing
        print(root['collisions'])

        # Task 3.2: Testing
        for collision in root['collisions']:
            print(standard_splitting(collision))

        ##############################
        # Task 3.3: High-Level Search
        #           Repeat the following as long as the open list is not empty:
        #             1. Get the next node from the open list (you can use self.pop_node()
        #             2. If this node has no collision, return solution
        #             3. Otherwise, choose the first collision and convert to a list of constraints (using your
        #                standard_splitting function). Add a new child node to your open list for each constraint
        #           Ensure to create a copy of any objects that your child nodes might inherit

        while len(self.open_list) > 0:
            P = self.pop_node()
            # if this node has no collision, return solution
            if len(P['collisions']) == 0:
                self.print_results(P)
                return P['paths']
            # else convert the first collision to a list of constraints
            collision = P['collisions'][0]
            # constraints = standard_splitting(collision)
            constraints = disjoint_splitting(collision)
            for constraint in constraints:
                Q = {
                    'cost': 0,
                    'constraints': P['constraints'].copy(),
                    'paths': [],
                    'collisions': []
                }
                # shallow copy constraints of P and add the new constraint
                Q['constraints'].append(constraint)
                # shallow copy paths of P
                Q['paths'] = P['paths'].copy()
                agent_idx = constraint['agent']
                path = a_star(self.my_map, self.starts[agent_idx],
                              self.goals[agent_idx],
                              self.heuristics[agent_idx], agent_idx,
                              Q['constraints'])
                if path is not None:
                    Q['paths'][agent_idx] = path
                    flag = False
                    if constraint['positive']:
                        violate_agents = paths_violate_constraint(
                            constraint, Q['paths'])
                        for violate_agent_idx in violate_agents:
                            Q['constraints'].append({
                                'agent':
                                violate_agent_idx,
                                'loc':
                                constraint['loc'],
                                'timestep':
                                constraint['timestep'],
                                'positive':
                                False
                            })
                            temp_path = a_star(
                                self.my_map, self.starts[violate_agent_idx],
                                self.goals[violate_agent_idx],
                                self.heuristics[violate_agent_idx],
                                violate_agent_idx, Q['constraints'])
                            if temp_path is not None:
                                Q['paths'][violate_agent_idx] = temp_path
                            else:
                                flag = True
                                break
                    if not flag:
                        Q['collisions'] = detect_collisions(Q['paths'])
                        Q['cost'] = get_sum_of_cost(Q['paths'])
                        self.push_node(Q)
        # self.print_results(root)
        # return root['paths']
        raise BaseException('No solutions')
Beispiel #24
0
    def find_solution(self):
        """ Finds paths for all agents from their start locations to their goal locations."""

        start_time = timer.time()
        result = []
        # 1.2
        # constraints = [
        #     {
        #         'agent': 0,
        #         'loc': [(1, 5)],
        #         'timestep': 4
        #     }
        # ]

        # 1.3
        # constraints = [
        #     {
        #         'agent': 1,
        #         'loc': [(1,2), (1, 3)],
        #         'timestep': 1
        #     }
        # ]
        # 1.4
        # constraints = [
        #     {
        #         'agent': 0,
        #         'loc': [(1, 5)],
        #         'timestep': 10
        #     }
        # ]
        # 1.5
        # constraints = [
        #     {
        #         'agent': 1,
        #         'loc': [(1,3), (1,4)],
        #         'timestep': 2
        #     },
        #     {
        #         'agent': 1,
        #         'loc': [(1,2)],
        #         'timestep': 2
        #     },
        #     {
        #         'agent': 1,
        #         'loc': [(1,3)],
        #         'timestep': 2
        #     }
        # ]
        constraints = []
        mymap_size = len(max(self.my_map)) * len(self.my_map)
        print("mymap_size: ", mymap_size)
        for i in range(self.num_of_agents):  # Find path for each agent
            path = a_star(self.my_map, self.starts[i], self.goals[i],
                          self.heuristics[i], i, constraints)
            if path is None:
                raise BaseException('No solutions')
            ##############################
            # Task 2: Add constraints here
            #         Useful variables:
            #            * path contains the solution path of the current (i'th) agent, e.g., [(1,1),(1,2),(1,3)]
            #            * self.num_of_agents has the number of total agents
            #            * constraints: array of constraints to consider for future A* searches
            for j in range(self.num_of_agents):
                if (j == i):
                    continue
                timestep = 0
                for cell in path:
                    constraints.append({
                        'agent': j,
                        'loc': [cell],
                        'timestep': timestep
                    })
                    timestep += 1
                    if (timestep < len(path)):
                        constraints.append({
                            'agent': j,
                            'loc': [cell, path[timestep]],
                            'timestep': timestep
                        })
                        # goal_timestep = timestep
                # add constraint once it reaches goal to the upper bound timestep

                while (timestep <= mymap_size):
                    constraints.append({
                        'agent': j,
                        'loc': [path[-1]],
                        'timestep': timestep
                    })
                    timestep += 1
            result.append(path)

            ##############################

        self.CPU_time = timer.time() - start_time

        print("\n Found a solution! \n")
        print("CPU time (s):    {:.2f}".format(self.CPU_time))
        print("Sum of costs:    {}".format(get_sum_of_cost(result)))
        print(result)
        return result
Beispiel #25
0
        elif args.solver == "Independent":
            print("***Run Independent***")
            solver = IndependentSolver(my_map, starts, goals)
            paths = solver.find_solution()
        elif args.solver == "Prioritized":
            print("***Run Prioritized***")
            solver = PrioritizedPlanningSolver(my_map, starts, goals)
            paths = solver.find_solution()
        elif args.solver == "LP":
            print("***Run LP***")
            solver = LPSolver(my_map, starts, goals)
            paths, solve_time = solver.find_solution()
            total_solve_time += solve_time
        elif args.solver == "mdd":
            solver = MDDSolver(my_map, starts, goals)
            paths = solver.find_solution()
        else:
            raise RuntimeError("Unknown solver!")

        cost = get_sum_of_cost(paths)
        result_file.write("{},{}\n".format(file, cost))

        if not args.batch:
            print("***Test paths on a simulation***")
            animation = Animation(my_map, starts, goals, paths)
            animation.save("output.webm", 1.0)
            animation.show()
    result_file.close()
    if args.solver in {'LP', 'CBS'}:
        print('Total solve time: %f' % total_solve_time)
Beispiel #26
0
    def find_solution(self, disjoint=True):
        """ Finds paths for all agents from their start locations to their goal locations

        disjoint    - use disjoint splitting or not
        """

        self.start_time = timer.time()

        # Generate the root node
        # constraints   - list of constraints
        # paths         - list of paths, one for each agent
        #               [[(x11, y11), (x12, y12), ...], [(x21, y21), (x22, y22), ...], ...]
        # collisions     - list of collisions in paths
        root = {'cost': 0,
                'constraints': [],
                'paths': [],
                'collisions': []}
        for i in range(self.num_of_agents):  # Find initial path for each agent
            path = a_star(self.my_map, self.starts[i], self.goals[i], self.heuristics[i],
                          i, root['constraints'])
            if path is None:
                raise BaseException('No solutions')
            root['paths'].append(path)

        root['cost'] = get_sum_of_cost(root['paths'])
        root['collisions'] = detect_collisions(root['paths'])
        self.push_node(root)

        # Task 3.1: Testing
        print(root['collisions'])

        # Task 3.2: Testing
        for collision in root['collisions']:
            print(standard_splitting(collision))

        ##############################
        # Task 3.3: High-Level Search
        #           Repeat the following as long as the open list is not empty:
        #             1. Get the next node from the open list (you can use self.pop_node()
        #             2. If this node has no collision, return solution
        #             3. Otherwise, choose the first collision and convert to a list of constraints (using your
        #                standard_splitting function). Add a new child node to your open list for each constraint
        #           Ensure to create a copy of any objects that your child nodes might inherit

        while len(self.open_list) > 0:
            P = self.pop_node()
            if len(P['collisions']) < 1:
                self.print_results(P)
                return P['paths']

            # select first collision
            collision = P['collisions'][0]
            constraints = standard_splitting(collision) if disjoint is False else disjoint_splitting(collision)

            for c_idx, constraint in enumerate(constraints):

                Q = {'cost': 0,
                     'constraints': [],
                     'paths': [],
                     'collisions': []}
                Q['constraints'] = copy.copy(P['constraints'])
                self.add_constraint(constraint, Q['constraints'])
                Q['paths'] = copy.copy(P['paths'])

                agent = constraint['agent']
                new_path = a_star(self.my_map, self.starts[agent], self.goals[agent], self.heuristics[agent], agent, Q['constraints'])

                # find the violated agent given the new path with positive constraints (valid when disjoint == True)
                if disjoint and 'positive' in constraint:
                    violate_agents = paths_violate_constraint(constraint, Q['paths'])
                    for c_neg_idx, neg_constraint in enumerate(constraints):
                        if 'positive' not in neg_constraint:
                            self.add_constraint(neg_constraint, Q['constraints'])
                else:
                    violate_agents = []

                # update other agent path given new negative constraints (valid when disjoint == True)
                violate_paths = {}
                num_new_paths = 0
                for violate_agent in violate_agents:
                    new_vio_path = a_star(self.my_map, self.starts[violate_agent], self.goals[violate_agent], self.heuristics[violate_agent], violate_agent, Q['constraints'])
                    violate_paths[violate_agent] = new_vio_path

                    if new_vio_path is not None and len(new_vio_path) > 0:
                        num_new_paths += 1

                # add new child node if new path of current agent and new paths from other agents exsit.
                if len(new_path) > 0 and num_new_paths == len(violate_agents):

                    # update pathes
                    Q['paths'][agent] = new_path
                    for violate_agent in violate_agents:
                        Q['paths'][violate_agent] = violate_paths[violate_agent]

                    # update collison and costs
                    new_collison = detect_collisions(Q['paths'])
                    Q['collisions'] = new_collison
                    Q['cost'] = get_sum_of_cost(Q['paths'])

                    self.push_node(Q)

        self.print_results(root)
        return root['paths']
    def find_solution(self, disjoint=True):
        """ Finds paths for all agents from their start locations to their goal locations

        disjoint    - use disjoint splitting or not
        """

        self.start_time = timer.time()

        # Generate the root node
        # constraints   - list of constraints
        # paths         - list of paths, one for each agent
        #               [[(x11, y11), (x12, y12), ...], [(x21, y21), (x22, y22), ...], ...]
        # collisions     - list of collisions in paths
        root = {'cost': 0, 'constraints': [], 'paths': [], 'collisions': []}
        for i in range(self.num_of_agents):  # Find initial path for each agent
            path = a_star(self.my_map, self.starts[i], self.goals[i],
                          self.heuristics[i], i, root['constraints'])
            if path is None:
                raise BaseException('No solutions')
            root['paths'].append(path)

        root['cost'] = get_sum_of_cost(root['paths'])
        root['collisions'] = detect_collisions(root['paths'])
        self.push_node(root)

        ##############################
        # Task 3.3: High-Level Search
        #           Repeat the following as long as the open list is not empty:
        #             1. Get the next node from the open list (you can use self.pop_node()
        #             2. If this node has no collision, return solution
        #             3. Otherwise, choose the first collision and convert to a list of constraints (using your
        #                standard_splitting function). Add a new child node to your open list for each constraint
        #           Ensure to create a copy of any objects that your child nodes might inherit
        split_func = disjoint_splitting if disjoint else standard_splitting
        while self.open_list:
            p = self.pop_node()
            # print(p['paths'])
            # print(p['constraints'])
            # print(p['collisions'])
            if not p['collisions']:
                solve_time = self.print_results(p)
                return p['paths'], solve_time
            collision = p['collisions'][0]
            constraints = split_func(collision)
            # print(constraints)

            for constraint in constraints:
                q = {  # 'cost': 0,
                    'constraints':
                    p['constraints'] + [constraint] if constraint
                    not in p['constraints'] else list(p['constraints']),
                    'paths':
                    list(p['paths']),
                    # 'collisions': []
                }
                if constraint['positive']:
                    agents = paths_violate_constraint(constraint, q['paths'])
                    paths_exist = True
                    for i in agents:
                        path = a_star(self.my_map, self.starts[i],
                                      self.goals[i], self.heuristics[i], i,
                                      q['constraints'])
                        if not path:
                            paths_exist = False
                            break
                        q['paths'][i] = path
                    if paths_exist:
                        q['collisions'] = detect_collisions(q['paths'])
                        q['cost'] = get_sum_of_cost(q['paths'])
                        self.push_node(q)
                else:
                    i = constraint['agent']
                    path = a_star(self.my_map, self.starts[i], self.goals[i],
                                  self.heuristics[i], i, q['constraints'])
                    if path:
                        q['paths'][i] = path
                        q['collisions'] = detect_collisions(q['paths'])
                        q['cost'] = get_sum_of_cost(q['paths'])
                        self.push_node(q)

        raise BaseException('No solutions')
Beispiel #28
0
    def find_solution(self, disjoint=True, mode=None):
        """ Finds paths for all agents from their start locations to their goal locations

        disjoint    - use disjoint splitting or not
        """

        if mode is None:
            self.mode = CBSSolver.NORMAL
        else:
            self.mode = mode

        self.start_time = timer.time()

        # Generate the root node
        # constraints   - list of constraints
        # paths         - list of paths, one for each agent
        #               [[(x11, y11), (x12, y12), ...], [(x21, y21), (x22, y22), ...], ...]
        # collisions     - list of collisions in paths
        root = {'cost': 0, 'constraints': [], 'paths': [], 'collisions': []}
        for i in range(self.num_of_agents):  # Find initial path for each agent
            path = a_star(self.my_map, self.starts[i], self.goals[i],
                          self.heuristics[i], i, root['constraints'])

            if path is None:
                raise BaseException('No solutions')
            root['paths'].append(path)

        root['cost'] = get_sum_of_cost(root['paths'])
        root['collisions'] = detect_collisions(root['paths'])
        self.push_node(root)

        ##############################
        # Task 3.3: High-Level Search
        #           Repeat the following as long as the open list is not empty:
        #             1. Get the next node from the open list (you can use self.pop_node()
        #             2. If this node has no collision, return solution
        #             3. Otherwise, choose the first collision and convert to a list of constraints (using your
        #                standard_splitting function). Add a new child node to your open list for each constraint
        #           Ensure to create a copy of any objects that your child nodes might inherit

        while self.open_list:
            node = self.pop_node()
            if self.mode == CBSSolver.DIAGNOSTIC:
                self.print_node(node)

            collisions = detect_collisions(node['paths'])
            if not collisions:
                self.print_results(node)
                return node['paths']

            first_collision = collisions[0]
            constraints = standard_splitting(first_collision)

            for constraint in constraints:
                child = {
                    'cost': 0,
                    'constraints': [],
                    'paths': [],
                    'collisions': []
                }
                child['constraints'] = node['constraints'].copy()
                child['constraints'].append(constraint)

                child['paths'] = node['paths'].copy()
                agent_id = constraint['agent']
                new_path = a_star(self.my_map, self.starts[agent_id],
                                  self.goals[agent_id],
                                  self.heuristics[agent_id], agent_id,
                                  child['constraints'])

                if new_path is not None:
                    child['paths'][agent_id] = new_path
                    child['collisions'] = detect_collisions(child['paths'])
                    child['cost'] = get_sum_of_cost(child['paths'])
                    self.push_node(child)

        print('\n No Solution Found! \n')
        CPU_time = timer.time() - self.start_time
        print("CPU time (s):    {:.2f}".format(CPU_time))
        return None
Beispiel #29
0
    def find_solution(self, disjoint=True):
        """ Finds paths for all agents from their start locations to their goal locations

        disjoint    - use disjoint splitting or not
        """

        self.start_time = timer.time()

        # Generate the root node
        # constraints   - list of constraints
        # paths         - list of paths, one for each agent
        #               [[(x11, y11), (x12, y12), ...], [(x21, y21), (x22, y22), ...], ...]
        # collisions     - list of collisions in paths
        root = {'cost': 0, 'constraints': [], 'paths': [], 'collisions': []}
        for i in range(self.num_of_agents):  # Find initial path for each agent
            path = a_star(self.my_map, self.starts[i], self.goals[i],
                          self.heuristics[i], i, root['constraints'])
            if path is None:
                raise BaseException('No solutions')
            root['paths'].append(path)

        root['cost'] = get_sum_of_cost(root['paths'])
        root['collisions'] = detect_collisions(root['paths'])
        self.push_node(root)

        # Task 3.1: Testing
        print(root['collisions'])

        # Task 3.2: Testing
        for collision in root['collisions']:
            print(standard_splitting(collision))

        ##############################
        # Task 3.3: High-Level Search
        #           Repeat the following as long as the open list is not empty:
        #             1. Get the next node from the open list (you can use self.pop_node()
        #             2. If this node has no collision, return solution
        #             3. Otherwise, choose the first collision and convert to a list of constraints (using your
        #                standard_splitting function). Add a new child node to your open list for each constraint
        #           Ensure to create a copy of any objects that your child nodes might inherit

        # loop while open_list is not empty
        while len(self.open_list) > 0:

            # pop node from the open list
            node = self.pop_node()
            print("Expanded Nodes: " + str(self.num_of_expanded))
            # check if there are any collisions
            if len(node['collisions']) == 0:
                return node['paths']

            # choose the first collision
            collision = node['collisions'][0]
            # use standard_splitting to create a list of constraints
            # constraints = standard_splitting(collision)
            # use disjoint_splitting to create a list of constraints
            constraints = disjoint_splitting(collision)

            for constraint in constraints:
                # Q is new node -> constraints, paths, collisions, cost
                Q = {
                    'constraints': [],
                    'paths': [],
                    'collisions': [],
                    'cost': 0
                }

                # was overwriting all ['constraints'] by not creating a deep copy lmao
                Q['constraints'] = copy.deepcopy(node['constraints'])
                Q['constraints'].append(constraint)
                Q['paths'] = copy.deepcopy(node['paths'])
                agent = constraint['agent']

                path = a_star(self.my_map, self.starts[agent],
                              self.goals[agent], self.heuristics[agent], agent,
                              Q['constraints'])

                # print("Path: " + str(path))

                if path is not None:
                    Q['paths'][agent] = path
                    # use paths_violate_constraint to create a new path list of the paths that violate constraint
                    if constraint['positive'] == True:
                        constraintPath = paths_violate_constraint(
                            constraint, Q['paths'])
                        # print("here")
                        # print(constraintPath)
                        for disjointAgent in constraintPath:
                            constraint = {
                                'agent': disjointAgent,
                                'loc': constraint['loc'],
                                'timestep': constraint['timestep']
                            }
                            Q['constraints'].append(constraint)
                            disjointPath = a_star(
                                self.my_map, self.starts[disjointAgent],
                                self.goals[disjointAgent],
                                self.heuristics[disjointAgent], disjointAgent,
                                Q['constraints'])

                            # Condition to not add constraint if no such path exists
                            # break and push the new node Q
                            if disjointPath is None:
                                break

                    # keep same
                    Q['collisions'] = detect_collisions(Q['paths'])
                    Q['cost'] = get_sum_of_cost(Q['paths'])

                    self.push_node(Q)

        raise BaseException('No Solutions')
        self.print_results(root)
        return root['paths']
    def find_solution(self):
        """ Finds paths for all agents from their start locations to their goal locations."""

        start_time = timer.time()
        result = []
        constraints = []

        # for testing Task 1.2 Handling Vertex Constraints
        # constraints.append({'agent': 0, 'loc': [(1, 5)], 'timestep': 4})

        # for testing Task 1.3 Handling Edge Constraints
        # constraints.append({'agent': 1, 'loc': [(1, 2), (1, 3)], 'timestep': 1})

        # for testing Task 1.4 Handling Goal Constraints
        # constraints.append({'agent': 0, 'loc': [(1, 5)], 'timestep': 10})

        # for testing Task 1.5 Designing Constraints
        # constraints = [
        #     {'agent': 1, 'loc': [(1, 1)], 'timestep': 2},
        #     {'agent': 1, 'loc': [(1, 2)], 'timestep': 2},
        #     {'agent': 1, 'loc': [(1, 3)], 'timestep': 2},
        #     {'agent': 1, 'loc': [(1, 4)], 'timestep': 2}
        # ]

        for i in range(self.num_of_agents):  # Find path for each agent
            path = a_star(self.my_map, self.starts[i], self.goals[i],
                          self.heuristics[i], i, constraints)
            if path is None:
                raise BaseException('No solutions')
            result.append(path)

            ##############################
            # Task 2: Add constraints here
            #         Useful variables:
            #            * path contains the solution path of the current (i'th) agent, e.g., [(1,1),(1,2),(1,3)]
            #            * self.num_of_agents has the number of total agents
            #            * constraints: array of constraints to consider for future A* searches

            # iterate over the path of the current agent
            for path_idx in range(len(path)):
                for agent in range(i + 1, self.num_of_agents):
                    # add vertex constraints for all future agents
                    constraints.append({
                        'agent': agent,
                        'loc': [path[path_idx]],
                        'timestep': path_idx
                    })
                    # add edge constraints for all future agents
                    if path_idx > 0:
                        constraints.append({
                            'agent':
                            agent,
                            'loc': [path[path_idx], path[path_idx - 1]],
                            'timestep':
                            path_idx
                        })
            ##############################

        self.CPU_time = timer.time() - start_time

        print("\n Found a solution! \n")
        print("CPU time (s):    {:.2f}".format(self.CPU_time))
        print("Sum of costs:    {}".format(get_sum_of_cost(result)))
        print(result)
        return result