Beispiel #1
0
def load_palantir_data(smoothed=False):
    fn = '../../data/external/Palantir/human_cd34_bm_rep1.h5ad'
    an = anndata.read_h5ad(fn)

    genes = an.var_names
    cells = an.obs_names

    if not smoothed:
        counts = singlet.CountsTable(
            data=an.raw.X.todense().T,
            index=genes,
            columns=cells,
        )
    else:
        counts = singlet.CountsTable(
            data=an.obsm['MAGIC_imputed_data'].T,
            index=genes,
            columns=cells,
        )

    ss = singlet.SampleSheet(an.obs)
    ss['tsne_1'] = an.obsm['tsne'][:, 0]
    ss['tsne_2'] = an.obsm['tsne'][:, 1]
    ss['clusters'] = ss['clusters'].astype(str)

    ds = singlet.Dataset(
            counts_table=counts,
            samplesheet=ss,
        )
    return ds
Beispiel #2
0
def load_palantir_data(smoothed=False):
    fn = '../../data/external/Palantir/human_cd34_bm_rep1.h5ad'
    an = anndata.read_h5ad(fn)

    genes = an.var_names
    cells = an.obs_names

    if not smoothed:
        counts = singlet.CountsTable(
            data=an.raw.X.todense().T,
            index=genes,
            columns=cells,
        )
    else:
        counts = singlet.CountsTable(
            data=an.obsm['MAGIC_imputed_data'].T,
            index=genes,
            columns=cells,
        )

    ss = singlet.SampleSheet(an.obs)
    ss['tsne_1'] = an.obsm['tsne'][:, 0]
    ss['tsne_2'] = an.obsm['tsne'][:, 1]
    ss['clusters'] = ss['clusters'].astype(str)

    ds = singlet.Dataset(
        counts_table=counts,
        samplesheet=ss,
    )

    ds.samplesheet['Cell Subtype'] = ds.samplesheet['clusters'].replace({
        '0':
        'HSC',
        '1':
        'HSC',
        '2':
        'Ery-precursor',
        '3':
        'Mono',
        '4':
        'Mono-precursor',
        '5':
        'CLP',
        '6':
        'Mono',
        '7':
        'pDC',
        '8':
        'Ery',
        '9':
        'Mega',
    })

    return ds
Beispiel #3
0
import anndata

if __name__ == '__main__':

    fn = '../../data/external/Palantir/human_cd34_bm_rep1.h5ad'
    an = anndata.read_h5ad(fn)

    genes = an.var_names
    cells = an.obs_names

    counts = singlet.CountsTable(
        data=an.X.T,
        index=genes,
        columns=cells,
    )
    ss = singlet.SampleSheet(an.obs)
    ss['tsne_1'] = an.obsm['tsne'][:, 0]
    ss['tsne_2'] = an.obsm['tsne'][:, 1]
    ss['clusters'] = ss['clusters'].astype(str)

    ds = singlet.Dataset(
        counts_table=counts,
        samplesheet=ss,
    )

    print('Get MAGIC smoothed data')
    counts = singlet.CountsTable(
        data=an.obsm['MAGIC_imputed_data'].T,
        index=genes,
        columns=cells,
    )