#Coordinates of point point = (-122.486, 37.698) #Set map type and file location map_type = "visual" crop_file = "/home/user/FinalAssignment/Downloads/DownloadFile_"+map_type+".tif" #Download the image try: select_image(url, key, point, map_type, crop_file) except: print "ERROR: No map available" #Cut to size cut_size(crop_file, 1500, 1000, 1500, 2000, in_file) #Creating model to classify trees create_model(in_file, statistics_file, training_poly, output_model, confusion_matrix) #Apply model classify(output_model, in_file, statistics_file, output_map) #Delete all none trees from dataset select_trees(output_map, selection_map) #Calculate percentage green per quadrant (format: nw, sw, ne, se) print greencalculator(output_map) ##Apply model to other map
#Data source url = "https://api.planet.com/v0/scenes/ortho/" key =#Add own key #Coordinates of point point_obj = (-118.4, 34.084) #Set map type and file location map_type_obj = "visual" crop_file_obj = "/home/user/FinalAssignment/Downloads/DownloadFileObject_"+map_type_obj+".tif" #Download the image try: select_image(url, key, point_obj, map_type_obj, crop_file_obj) except: print "ERROR: No map available" #Cut to size cut_size(crop_file_obj, 1250, 1500, 750, 750, in_file_obj) ##Use object based selection min_size = 5 #Expression to select all dark-green objects expression = "(p1b2 < 100) and ((p1b2 > p1b1)or(p1b2>p1b3)) and (p1b1 < 90) and (p1b3<90)" #Select all objects OBIA_none = '' select_object(in_file_obj, expression, min_size, OBIA_none, out_file_all) #Select all round objects OBIA = "SHAPE_RegionRatio > 0.65" select_object(in_file_obj, expression, min_size, OBIA, out_file_object)