def test_Y_values(self): X, Y = self.X, self.Y Y[0, 0] = -1 with npt.assert_raises(ValueError): CCA(Y, X, None, None) Y[0] = 0 with npt.assert_raises(ValueError): CCA(Y, X, None, None)
def setup(self): """Data from table 11.3 in Legendre & Legendre 1998 (p. 590). Loaded results as computed with vegan 2.0-8 and compared with table 11.5 if also there.""" Y = np.loadtxt(get_data_path('example3_Y')) X = np.loadtxt(get_data_path('example3_X')) self.ordination = CCA(Y, X[:, :-1], ['Site0', 'Site1', 'Site2', 'Site3', 'Site4', 'Site5', 'Site6', 'Site7', 'Site8', 'Site9'], ['Species0', 'Species1', 'Species2', 'Species3', 'Species4', 'Species5', 'Species6', 'Species7', 'Species8'])
class TestCCAResults(object): def setup(self): """Data from table 11.3 in Legendre & Legendre 1998 (p. 590). Loaded results as computed with vegan 2.0-8 and compared with table 11.5 if also there.""" Y = np.loadtxt(get_data_path("example3_Y")) X = np.loadtxt(get_data_path("example3_X")) self.ordination = CCA( Y, X[:, :-1], ["Site0", "Site1", "Site2", "Site3", "Site4", "Site5", "Site6", "Site7", "Site8", "Site9"], [ "Species0", "Species1", "Species2", "Species3", "Species4", "Species5", "Species6", "Species7", "Species8", ], ) def test_scaling1_species(self): scores = self.ordination.scores(1) vegan_species = np.loadtxt(get_data_path("example3_species_scaling1_from_vegan")) npt.assert_almost_equal(scores.species, vegan_species, decimal=6) def test_scaling1_site(self): scores = self.ordination.scores(1) vegan_site = np.loadtxt(get_data_path("example3_site_scaling1_from_vegan")) npt.assert_almost_equal(scores.site, vegan_site, decimal=4) def test_scaling2_species(self): scores = self.ordination.scores(2) vegan_species = np.loadtxt(get_data_path("example3_species_scaling2_from_vegan")) npt.assert_almost_equal(scores.species, vegan_species, decimal=5) def test_scaling2_site(self): scores = self.ordination.scores(2) vegan_site = np.loadtxt(get_data_path("example3_site_scaling2_from_vegan")) npt.assert_almost_equal(scores.site, vegan_site, decimal=4)
class TestCCAResults(object): def setup(self): """Data from table 11.3 in Legendre & Legendre 1998 (p. 590). Loaded results as computed with vegan 2.0-8 and compared with table 11.5 if also there.""" Y = np.loadtxt(get_data_path('example3_Y')) X = np.loadtxt(get_data_path('example3_X')) self.ordination = CCA(Y, X[:, :-1], [ 'Site0', 'Site1', 'Site2', 'Site3', 'Site4', 'Site5', 'Site6', 'Site7', 'Site8', 'Site9' ], [ 'Species0', 'Species1', 'Species2', 'Species3', 'Species4', 'Species5', 'Species6', 'Species7', 'Species8' ]) def test_scaling1_species(self): scores = self.ordination.scores(1) vegan_species = np.loadtxt( get_data_path('example3_species_scaling1_from_vegan')) npt.assert_almost_equal(scores.species, vegan_species, decimal=6) def test_scaling1_site(self): scores = self.ordination.scores(1) vegan_site = np.loadtxt( get_data_path('example3_site_scaling1_from_vegan')) npt.assert_almost_equal(scores.site, vegan_site, decimal=4) def test_scaling2_species(self): scores = self.ordination.scores(2) vegan_species = np.loadtxt( get_data_path('example3_species_scaling2_from_vegan')) npt.assert_almost_equal(scores.species, vegan_species, decimal=5) def test_scaling2_site(self): scores = self.ordination.scores(2) vegan_site = np.loadtxt( get_data_path('example3_site_scaling2_from_vegan')) npt.assert_almost_equal(scores.site, vegan_site, decimal=4)
class TestCCAResults(object): def setup(self): """Data from table 11.3 in Legendre & Legendre 1998 (p. 590). Loaded results as computed with vegan 2.0-8 and compared with table 11.5 if also there.""" Y = np.loadtxt(get_data_path('example3_Y')) X = np.loadtxt(get_data_path('example3_X')) self.ordination = CCA(Y, X[:, :-1], ['Site0', 'Site1', 'Site2', 'Site3', 'Site4', 'Site5', 'Site6', 'Site7', 'Site8', 'Site9'], ['Species0', 'Species1', 'Species2', 'Species3', 'Species4', 'Species5', 'Species6', 'Species7', 'Species8']) def test_scaling1_species(self): scores = self.ordination.scores(1) vegan_species = np.loadtxt(get_data_path( 'example3_species_scaling1_from_vegan')) npt.assert_almost_equal(scores.species, vegan_species, decimal=6) def test_scaling1_site(self): scores = self.ordination.scores(1) vegan_site = np.loadtxt(get_data_path( 'example3_site_scaling1_from_vegan')) npt.assert_almost_equal(scores.site, vegan_site, decimal=4) def test_scaling2_species(self): scores = self.ordination.scores(2) vegan_species = np.loadtxt(get_data_path( 'example3_species_scaling2_from_vegan')) npt.assert_almost_equal(scores.species, vegan_species, decimal=5) def test_scaling2_site(self): scores = self.ordination.scores(2) vegan_site = np.loadtxt(get_data_path( 'example3_site_scaling2_from_vegan')) npt.assert_almost_equal(scores.site, vegan_site, decimal=4)
def setup(self): """Data from table 11.3 in Legendre & Legendre 1998 (p. 590). Loaded results as computed with vegan 2.0-8 and compared with table 11.5 if also there.""" Y = np.loadtxt(get_data_path("example3_Y")) X = np.loadtxt(get_data_path("example3_X")) self.ordination = CCA( Y, X[:, :-1], ["Site0", "Site1", "Site2", "Site3", "Site4", "Site5", "Site6", "Site7", "Site8", "Site9"], [ "Species0", "Species1", "Species2", "Species3", "Species4", "Species5", "Species6", "Species7", "Species8", ], )
def test_shape(self): X, Y = self.X, self.Y with npt.assert_raises(ValueError): CCA(Y, X[:-1], None, None)