Beispiel #1
0
    def predict(self, X):
        """

        :param X: shape [n_row*n_clm, n_band]
        :return:
        """
        # construct affinity matrix
        kwargs = {
            "metric": "euclidean",
            "neighborMode": "knn",
            "weightMode": "heatKernel",
            "k": 5,
            't': 1
        }
        W = construct_W.construct_W(X, **kwargs)

        # obtain the feature weight matrix
        Weight = NDFS.ndfs(X, W=W, n_clusters=self.n_cluster)

        # sort the feature scores in an ascending order according to the feature scores
        idx = feature_ranking(Weight)

        # obtain the dataset on the selected features
        selected_features = X[:, idx[0:self.n_band]]
        return selected_features
Beispiel #2
0
def main():
    # load data
    mat = scipy.io.loadmat('../data/COIL20.mat')
    X = mat['X']    # data
    X = X.astype(float)
    y = mat['Y']    # label
    y = y[:, 0]

    # perform evaluation on clustering task
    num_fea = 100    # number of selected features
    num_cluster = 20    # number of clusters, it is usually set as the number of classes in the ground truth

    # obtain the feature weight matrix
    Weight = UDFS.udfs(X, gamma=0.1, n_clusters=num_cluster)

    # sort the feature scores in an ascending order according to the feature scores
    idx = feature_ranking(Weight)

    # obtain the dataset on the selected features
    selected_features = X[:, idx[0:num_fea]]

    # perform kmeans clustering based on the selected features and repeats 20 times
    nmi_total = 0
    acc_total = 0
    for i in range(0, 20):
        nmi, acc = unsupervised_evaluation.evaluation(X_selected=selected_features, n_clusters=num_cluster, y=y)
        nmi_total += nmi
        acc_total += acc

    # output the average NMI and average ACC
    print 'NMI:', float(nmi_total)/20
    print 'ACC:', float(acc_total)/20
Beispiel #3
0
def main():
    # load data
    mat = scipy.io.loadmat('../data/COIL20.mat')
    X = mat['X']    # data
    X = X.astype(float)
    y = mat['Y']    # label
    y = y[:, 0]

    # perform evaluation on clustering task
    num_fea = 100    # number of selected features
    num_cluster = 20    # number of clusters, it is usually set as the number of classes in the ground truth

    # obtain the feature weight matrix
    Weight = UDFS.udfs(X, gamma=0.1, n_clusters=num_cluster)

    # sort the feature scores in an ascending order according to the feature scores
    idx = feature_ranking(Weight)

    # obtain the dataset on the selected features
    selected_features = X[:, idx[0:num_fea]]

    # perform kmeans clustering based on the selected features and repeats 20 times
    nmi_total = 0
    acc_total = 0
    for i in range(0, 20):
        nmi, acc = unsupervised_evaluation.evaluation(X_selected=selected_features, n_clusters=num_cluster, y=y)
        nmi_total += nmi
        acc_total += acc

    # output the average NMI and average ACC
    print 'NMI:', float(nmi_total)/20
    print 'ACC:', float(acc_total)/20
Beispiel #4
0
def ls_l21_FS(X_train, y, train_index):
    Y = construct_label_matrix_pan(y)
    Y_train = Y[train_index]
    W, obj, value_gamma = ls_l21.proximal_gradient_descent(X_train,
                                                           Y_train,
                                                           0.1,
                                                           verbose=False)
    idx = feature_ranking(W)

    return (idx, W)
Beispiel #5
0
def ll_l21_FS(X_train, y, train_index):
    Y = construct_label_matrix_pan(y)
    Y_train = Y[train_index]
    Weight, obj, value_gamma = ll_l21.proximal_gradient_descent(X_train,
                                                                Y[train_index],
                                                                0.1,
                                                                verbose=False)
    #print("weight ",Weight)
    idx = feature_ranking(Weight)
    return (idx, Weight)
def SKF_ndfs(X, y):
    # construct affinity matrix
    kwargs = {
        "metric": "euclidean",
        "neighborMode": "knn",
        "weightMode": "heatKernel",
        "k": 5,
        't': 1
    }
    W = construct_W(X, **kwargs)
    num_cluster = len(
        set(y)
    )  # specify the number of clusters, it is usually set as the number of classes in the ground truth
    # obtain the feature weight matrix
    Weight = NDFS.ndfs(X, W=W, n_clusters=num_cluster)
    return sparse_learning.feature_ranking(Weight)
Beispiel #7
0
def udfs_score(diheds):
  import scipy.io
  import numpy
  from numpy import mean
  import os 
  #os.chdir('/home/anu/Downloads/scikit-feature-1.0.0')
  from skfeature.function.sparse_learning_based import UDFS
  from skfeature.utility.sparse_learning import feature_ranking
  idx = []
    # sort the feature scores in an ascending order according to the feature scores
  for i in range(0,len(diheds),5):
   X= diheds[i]
   score = UDFS.udfs(X, gamma=0.1, n_clusters=20)
   idx.append(score)
  col_mean = mean(idx, axis =0)
  imp_features= feature_ranking(col_mean)
  return col_mean,imp_features
Beispiel #8
0
def main():
    # load data
    mat = scipy.io.loadmat('../data/COIL20.mat')
    X = mat['X']  # data
    X = X.astype(float)
    y = mat['Y']  # label
    y = y[:, 0]

    # construct affinity matrix
    kwargs = {
        "metric": "euclidean",
        "neighborMode": "knn",
        "weightMode": "heatKernel",
        "k": 5,
        't': 1
    }
    W = construct_W.construct_W(X, **kwargs)

    # obtain the feature weight matrix
    Weight = NDFS.ndfs(X, W=W, n_clusters=20)

    # sort the feature scores in an ascending order according to the feature scores
    idx = feature_ranking(Weight)

    # perform evaluation on clustering task
    num_fea = 100  # number of selected features
    num_cluster = 20  # number of clusters, it is usually set as the number of classes in the ground truth

    # obtain the dataset on the selected features
    selected_features = X[:, idx[0:num_fea]]

    # perform kmeans clustering based on the selected features and repeats 20 times
    nmi_total = 0
    acc_total = 0
    for i in range(0, 20):
        nmi, acc = unsupervised_evaluation.evaluation(
            X_selected=selected_features, n_clusters=num_cluster, y=y)
        nmi_total += nmi
        acc_total += acc

    # output the average NMI and average ACC
    print('NMI:', float(nmi_total) / 20)
    print('ACC:', float(acc_total) / 20)
Beispiel #9
0
        def get_sel_idx(high_th_year, low_th_year, feature_list,
                        sel_feature_num):
            high_risk_th = high_th_year * 365
            low_risk_th = low_th_year * 365
            high_risk_group, low_risk_group = helper.get_risk_group(
                x, c, s, high_risk_th, low_risk_th)
            trn_x, trn_y = helper.get_train(
                high_risk_group,
                low_risk_group,
                is_categori_y=False,
                seed=self.random_seed)  #without validation set

            W, _, _ = ll_l21.proximal_gradient_descent(trn_x,
                                                       trn_y,
                                                       z=0.01,
                                                       mode='raw')
            sort_idx = feature_ranking(W)

            return sort_idx[:sel_feature_num]
def main():
    # load data
    mat = scipy.io.loadmat('../data/COIL20.mat')
    X = mat['X']    # data
    X = X.astype(float)
    y = mat['Y']    # label
    y = y[:, 0]
    Y = construct_label_matrix(y)
    n_samples, n_features = X.shape

    # split data into 10 folds
    ss = cross_validation.KFold(n_samples, n_folds=10, shuffle=True)

    # perform evaluation on classification task
    num_fea = 100    # number of selected features
    clf = svm.LinearSVC()    # linear SVM

    correct = 0
    for train, test in ss:
        # obtain the feature weight matrix
        Weight = RFS.rfs(X[train, :], Y[train, :], gamma=0.1)

        # sort the feature scores in an ascending order according to the feature scores
        idx = feature_ranking(Weight)

        # obtain the dataset on the selected features
        selected_features = X[:, idx[0:num_fea]]

        # train a classification model with the selected features on the training dataset
        clf.fit(selected_features[train], y[train])

        # predict the class labels of test data
        y_predict = clf.predict(selected_features[test])

        # obtain the classification accuracy on the test data
        acc = accuracy_score(y[test], y_predict)
        print acc
        correct = correct + acc

    # output the average classification accuracy over all 10 folds
    print 'Accuracy:', float(correct)/10
Beispiel #11
0
def ndfs_score(diheds):
  import scipy.io
  import numpy
  from numpy import mean
  import os 
  #os.chdir('/home/anu/Downloads/scikit-feature-1.0.0')
  from skfeature.function.sparse_learning_based import NDFS
  from skfeature.utility import construct_W
  from skfeature.utility import unsupervised_evaluation
  from skfeature.utility.sparse_learning import feature_ranking
  idx = []
  kwargs = {"metric": "euclidean", "neighborMode": "knn", "weightMode": "heatKernel", "k": 5, 't': 1}
  #change the path for every system to be run.
  #os.chdir('/home/anu/Downloads/DESRES-Trajectory_GTT-1-protein/GTT-1-protein')
  for i in range(0,len(diheds),5):
   X= diheds[i]
   W = construct_W.construct_W(X, **kwargs)
   score = NDFS.ndfs(X, W=W, n_clusters=20)
     
   idx.append(score)
  col_mean = mean(idx, axis =0)
  imp_features=feature_ranking(col_mean)
  return col_mean,imp_features
Beispiel #12
0
def main():
    # load data
    mat = scipy.io.loadmat('../data/COIL20.mat')
    X = mat['X']    # data
    X = X.astype(float)
    y = mat['Y']    # label
    y = y[:, 0]

    # construct affinity matrix
    kwargs = {"metric": "euclidean", "neighborMode": "knn", "weightMode": "heatKernel", "k": 5, 't': 1}
    W = construct_W.construct_W(X, **kwargs)

    # obtain the feature weight matrix
    Weight = NDFS.ndfs(X, W=W, n_clusters=20)

    # sort the feature scores in an ascending order according to the feature scores
    idx = feature_ranking(Weight)

    # perform evaluation on clustering task
    num_fea = 100    # number of selected features
    num_cluster = 20    # number of clusters, it is usually set as the number of classes in the ground truth

    # obtain the dataset on the selected features
    selected_features = X[:, idx[0:num_fea]]

    # perform kmeans clustering based on the selected features and repeats 20 times
    nmi_total = 0
    acc_total = 0
    for i in range(0, 20):
        nmi, acc = unsupervised_evaluation.evaluation(X_selected=selected_features, n_clusters=num_cluster, y=y)
        nmi_total += nmi
        acc_total += acc

    # output the average NMI and average ACC
    print 'NMI:', float(nmi_total)/20
    print 'ACC:', float(acc_total)/20
Beispiel #13
0
def UDFS_FS(X):
    Weight = UDFS.udfs(X)
    idx = feature_ranking(Weight)
    return (idx, Weight)
Beispiel #14
0
def proximal_gradient_descent(X, Y_flat, z, mode="rank", **kwargs):
    """
    This function implements supervised sparse feature selection via l2,1 norm, i.e.,
    min_{W} ||XW-Y||_F^2 + z*||W||_{2,1}

    Input
    -----
    X: {numpy array}, shape (n_samples, n_features)
        input data, guaranteed to be a numpy array
    Y: {numpy array}, shape (n_samples, n_classes)
        input class labels, each row is a one-hot-coding class label
    z: {float}
        regularization parameter
    kwargs: {dictionary}
        verbose: {boolean}
            True if user want to print out the objective function value in each iteration, false if not

    Output
    ------
        W: {numpy array}, shape (n_features, n_classes)
            weight matrix
        obj: {numpy array}, shape (n_iterations,)
            objective function value during iterations
        value_gamma: {numpy array}, shape (n_iterations,)
            suitable step size during iterations

    Reference
    ---------
        Liu, Jun, et al. "Multi-Task Feature Learning Via Efficient l2,1-Norm Minimization." UAI. 2009.
    """
    def init_factor(W_norm, XW, Y, z):
        """
        Initialize the starting point of W, according to the author's code
        """
        n_samples, n_classes = XW.shape
        a = np.inner(np.reshape(XW, n_samples * n_classes),
                     np.reshape(Y, n_samples * n_classes)) - z * W_norm
        b = LA.norm(XW, 'fro')**2
        ratio = a / b
        return ratio

    if 'verbose' not in kwargs:
        verbose = False
    else:
        verbose = kwargs['verbose']

    # convert Y_flat to one hot encoded
    Y = construct_label_matrix_pan(Y_flat)
    # starting point initialization
    n_samples, n_features = X.shape
    n_samples, n_classes = Y.shape

    # compute X'Y
    XtY = np.dot(np.transpose(X), Y)

    # initialize a starting point
    W = XtY

    # compute XW = X*W
    XW = np.dot(X, W)

    # compute l2,1 norm of W
    W_norm = calculate_l21_norm(W)

    if W_norm >= 1e-6:
        ratio = init_factor(W_norm, XW, Y, z)
        W = ratio * W
        XW = ratio * XW

    # starting the main program, the Armijo Goldstein line search scheme + accelerated gradient descent
    # initialize step size gamma = 1
    gamma = 1

    # assign Wp with W, and XWp with XW
    XWp = XW
    WWp = np.zeros((n_features, n_classes))
    alphap = 0
    alpha = 1

    # indicate whether the gradient step only changes a little
    flag = False

    max_iter = 1000
    value_gamma = np.zeros(max_iter)
    obj = np.zeros(max_iter)
    for iter_step in range(max_iter):
        # step1: compute search point S based on Wp and W (with beta)
        beta = (alphap - 1) / alpha
        S = W + beta * WWp

        # step2: line search for gamma and compute the new approximation solution W
        XS = XW + beta * (XW - XWp)
        # compute X'* XS
        XtXS = np.dot(np.transpose(X), XS)
        # obtain the gradient g
        G = XtXS - XtY
        # copy W and XW to Wp and XWp
        Wp = W
        XWp = XW

        while True:
            # let S walk in a step in the antigradient of S to get V and then do the L1/L2-norm regularized projection
            V = S - G / gamma
            W = euclidean_projection(V, n_features, n_classes, z, gamma)
            # the difference between the new approximate solution W and the search point S
            V = W - S
            # compute XW = X*W
            XW = np.dot(X, W)
            XV = XW - XS
            r_sum = LA.norm(V, 'fro')**2
            l_sum = LA.norm(XV, 'fro')**2

            # determine weather the gradient step makes little improvement
            if r_sum <= 1e-20:
                flag = True
                break

            # the condition is ||XV||_2^2 <= gamma * ||V||_2^2
            if l_sum < r_sum * gamma:
                break
            else:
                gamma = max(2 * gamma, l_sum / r_sum)
        value_gamma[iter_step] = gamma

        # step3: update alpha and alphap, and check weather converge
        alphap = alpha
        alpha = (1 + math.sqrt(4 * alpha * alpha + 1)) / 2

        WWp = W - Wp
        XWY = XW - Y

        # calculate obj
        obj[iter_step] = LA.norm(XWY, 'fro')**2 / 2
        obj[iter_step] += z * calculate_l21_norm(W)

        if verbose:
            print('obj at iter {0}: {1}'.format(iter_step + 1, obj[iter_step]))
        if flag is True:
            break

        # determine weather converge
        if iter_step >= 1 and math.fabs(obj[iter_step] -
                                        obj[iter_step - 1]) < 1e-3:
            break
    if mode == "raw":
        return W, obj, value_gamma
    elif mode == "rank":
        # feature vector is to sort in ascending order according to the Weight
        idx = feature_ranking(W).tolist()
        return reverse_argsort(idx, size=X.shape[1])
    else:
        print("Invalid mode {} selected, should be one of \"raw\" or \"rank\"".
              format(mode))
Beispiel #15
0
X = X.astype(float)

Y = construct_label_matrix(y)
n_samples, n_features = X.shape

# split data into 10 folds
cv = StratifiedKFold(n_splits=13)

# perform evaluation on classification task
num_fea = 11  # number of selected features

for train, test in cv.split(X, y):
    # obtain the feature weight matrix
    Weight = RFS.rfs(X[train, :], Y[train, :], gamma=0.1)
    # sort the feature scores in an ascending order according to the feature scores
    idx = feature_ranking(Weight)

X_resampled = X[:, idx[0:11]]
#X1 = X_resampled.iloc[:, [idx[0], idx[1], idx[2], idx[3], idx[4],idx[5]]]
ad = pd.read_csv('D:\Spring2017\Artificial Intelligence\Lymph.csv')
ad.head()
X_data = ad.iloc[:, 0:27]
X_data = pd.DataFrame(X_data)
X_data = X_data.iloc[:, idx[0:11]]
print(X_data.columns.values)
#print(X_resampled.columns.values)
y_resampled = y

#Decision Tree
dtc = DecisionTreeClassifier(random_state=0)
scores = cross_val_score(dtc,
Beispiel #16
0
def proximal_gradient_descent(X, Y_flat, z, mode="rank", **kwargs):
    """
    This function implements supervised sparse feature selection via l2,1 norm, i.e.,
    min_{W} sum_{i}log(1+exp(-yi*(W'*x+C))) + z*||W||_{2,1}

    Input
    -----
    X: {numpy array}, shape (n_samples, n_features)
        input data
    Y: {numpy array}, shape (n_samples, n_classes)
        input class labels, each row is a one-hot-coding class label, guaranteed to be a numpy array
    z: {float}
        regularization parameter
    kwargs: {dictionary}
        verbose: {boolean}
            True if user want to print out the objective function value in each iteration, false if not

    Output
    ------
    W: {numpy array}, shape (n_features, n_classes)
        weight matrix
    obj: {numpy array}, shape (n_iterations,)
        objective function value during iterations
    value_gamma: {numpy array}, shape (n_iterations,s)
        suitable step size during iterations


    Reference:
        Liu, Jun, et al. "Multi-Task Feature Learning Via Efficient l2,1-Norm Minimization." UAI. 2009.
    """

    if 'verbose' not in kwargs:
        verbose = False
    else:
        verbose = kwargs['verbose']

    # Starting point initialization #

    # convert Y_flat to one hot encoded
    Y = construct_label_matrix_pan(Y_flat)
    n_samples, n_features = X.shape
    n_samples, n_classes = Y.shape

    # the indices of positive samples
    p_flag = (Y == 1)
    # the total number of positive samples
    n_positive_samples = np.sum(p_flag, 0)
    # the total number of negative samples
    n_negative_samples = n_samples - n_positive_samples
    n_positive_samples = n_positive_samples.astype(float)
    n_negative_samples = n_negative_samples.astype(float)

    # initialize a starting point
    W = np.zeros((n_features, n_classes))
    C = np.log(np.divide(n_positive_samples, n_negative_samples))

    # compute XW = X*W
    XW = np.dot(X, W)

    # starting the main program, the Armijo Goldstein line search scheme + accelerated gradient descent
    # the intial guess of the Lipschitz continuous gradient
    gamma = 1.0 / (n_samples * n_classes)

    # assign Wp with W, and XWp with XW
    XWp = XW
    WWp = np.zeros((n_features, n_classes))
    CCp = np.zeros((1, n_classes))

    alphap = 0
    alpha = 1

    # indicates whether the gradient step only changes a little
    flag = False

    max_iter = 1000
    value_gamma = np.zeros(max_iter)
    obj = np.zeros(max_iter)
    for iter_step in range(max_iter):
        # step1: compute search point S based on Wp and W (with beta)
        beta = (alphap - 1) / alpha
        S = W + beta * WWp
        SC = C + beta * CCp

        # step2: line search for gamma and compute the new approximation solution W
        XS = XW + beta * (XW - XWp)
        aa = -np.multiply(Y, XS + np.tile(SC, (n_samples, 1)))
        # fun_S is the logistic loss at the search point
        bb = np.maximum(aa, 0)
        fun_S = np.sum(np.log(np.exp(-bb) + np.exp(aa - bb)) +
                       bb) / (n_samples * n_classes)
        # compute prob = [p_1;p_2;...;p_m]
        prob = 1.0 / (1 + np.exp(aa))

        b = np.multiply(-Y, (1 - prob)) / (n_samples * n_classes)
        # compute the gradient of C
        GC = np.sum(b, 0)
        # compute the gradient of W as X'*b
        G = np.dot(np.transpose(X), b)

        # copy W and XW to Wp and XWp
        Wp = W
        XWp = XW
        Cp = C

        while True:
            # let S walk in a step in the antigradient of S to get V and then do the L1/L2-norm regularized projection
            V = S - G / gamma
            C = SC - GC / gamma
            W = euclidean_projection(V, n_features, n_classes, z, gamma)

            # the difference between the new approximate solution W and the search point S
            V = W - S
            # compute XW = X*W
            XW = np.dot(X, W)
            aa = -np.multiply(Y, XW + np.tile(C, (n_samples, 1)))
            # fun_W is the logistic loss at the new approximate solution
            bb = np.maximum(aa, 0)
            fun_W = np.sum(np.log(np.exp(-bb) + np.exp(aa - bb)) +
                           bb) / (n_samples * n_classes)

            r_sum = (LA.norm(V, 'fro')**2 + LA.norm(C - SC, 2)**2) / 2
            l_sum = fun_W - fun_S - np.sum(np.multiply(V, G)) - np.inner(
                (C - SC), GC)

            # determine weather the gradient step makes little improvement
            if r_sum <= 1e-20:
                flag = True
                break

            # the condition is fun_W <= fun_S + <V, G> + <C ,GC> + gamma/2 * (<V,V> + <C-SC,C-SC> )
            if l_sum < r_sum * gamma:
                break
            else:
                gamma = max(2 * gamma, l_sum / r_sum)
        value_gamma[iter_step] = gamma

        # step3: update alpha and alphap, and check weather converge
        alphap = alpha
        alpha = (1 + math.sqrt(4 * alpha * alpha + 1)) / 2

        WWp = W - Wp
        CCp = C - Cp

        # calculate obj
        obj[iter_step] = fun_W
        obj[iter_step] += z * calculate_l21_norm(W)

        if verbose:
            print('obj at iter {0}: {1}'.format(iter_step + 1, obj[iter_step]))

        if flag is True:
            break

        # determine weather converge
        if iter_step >= 1 and math.fabs(obj[iter_step] -
                                        obj[iter_step - 1]) < 1e-3:
            break
    if mode == "raw":
        return W, obj, value_gamma
    elif mode == "rank":
        # feature vector is to sort in ascending order according to the Weight
        idx = feature_ranking(W).tolist()
        return reverse_argsort(idx, size=X.shape[1])
    else:
        print("Invalid mode {} selected, should be one of \"raw\" or \"rank\"".
              format(mode))
Beispiel #17
0
def udfs_score(X, y, gamma=.1, **kwargs):
    Weight = UDFS.udfs(X, gamma=gamma, n_clusters=len(np.unique(y)))
    idx = feature_ranking(Weight)
    return idx
Beispiel #18
0
def ndfs(X, y=None, mode="rank", **kwargs):
    """
    This function implement unsupervised feature selection using nonnegative spectral analysis, i.e.,
    min_{F,W} Tr(F^T L F) + alpha*(||XW-F||_F^2 + beta*||W||_{2,1}) + gamma/2 * ||F^T F - I||_F^2
    s.t. F >= 0
    
    Input
    -----
    X: {numpy array}, shape (n_samples, n_features)
        input data
    kwargs: {dictionary}
        W: {sparse matrix}, shape {n_samples, n_samples}
            affinity matrix
        alpha: {float}
            Parameter alpha in objective function
        beta: {float}
            Parameter beta in objective function
        gamma: {float}
            a very large number used to force F^T F = I
        F0: {numpy array}, shape (n_samples, n_clusters)
            initialization of the pseudo label matirx F, if not provided
        n_clusters: {int}
            number of clusters
        verbose: {boolean}
            True if user want to print out the objective function value in each iteration, false if not

    Output
    ------
    W: {numpy array}, shape(n_features, n_clusters)
        feature weight matrix
        
    Reference: 
        Li, Zechao, et al. "Unsupervised Feature Selection Using Nonnegative Spectral Analysis." AAAI. 2012.
    """
    def kmeans_initialization(X, n_clusters):
        """
        This function uses kmeans to initialize the pseudo label

        Input
        -----
        X: {numpy array}, shape (n_samples, n_features)
            input data
        n_clusters: {int}
            number of clusters

        Output
        ------
        Y: {numpy array}, shape (n_samples, n_clusters)
            pseudo label matrix
        """

        n_samples, n_features = X.shape
        kmeans = sklearn.cluster.KMeans(n_clusters=n_clusters,
                                        init='k-means++',
                                        n_init=10,
                                        max_iter=300,
                                        tol=0.0001,
                                        precompute_distances=True,
                                        verbose=0,
                                        random_state=None,
                                        copy_x=True,
                                        n_jobs=1)
        kmeans.fit(X)
        labels = kmeans.labels_
        Y = np.zeros((n_samples, n_clusters))
        for row in range(0, n_samples):
            Y[row, labels[row]] = 1
        T = np.dot(Y.transpose(), Y)
        F = np.dot(Y, np.sqrt(np.linalg.inv(T)))
        F = F + 0.02 * np.ones((n_samples, n_clusters))
        return F

    def calculate_obj(X, W, F, L, alpha, beta):
        """
        This function calculates the objective function of NDFS
        """
        # Tr(F^T L F)
        T1 = np.trace(np.dot(np.dot(F.transpose(), L), F))
        T2 = np.linalg.norm(np.dot(X, W) - F, 'fro')
        T3 = (np.sqrt((W * W).sum(1))).sum()
        obj = T1 + alpha * (T2 + beta * T3)
        return obj

    # default gamma is 10e8
    if 'gamma' not in kwargs:
        gamma = 10e8
    else:
        gamma = kwargs['gamma']
    # use the default affinity matrix
    if 'W' not in kwargs:
        W = construct_W(X)
    else:
        W = kwargs['W']
    if 'alpha' not in kwargs:
        alpha = 1
    else:
        alpha = kwargs['alpha']
    if 'beta' not in kwargs:
        beta = 1
    else:
        beta = kwargs['beta']
    if 'F0' not in kwargs:
        if 'n_clusters' not in kwargs:
            raise Exception("either F0 or n_clusters should be provided")
        else:
            # initialize F
            n_clusters = kwargs['n_clusters']
            F = kmeans_initialization(X, n_clusters)
    else:
        F = kwargs['F0']
    if 'verbose' not in kwargs:
        verbose = False
    else:
        verbose = kwargs['verbose']

    n_samples, n_features = X.shape

    # initialize D as identity matrix
    D = np.identity(n_features)
    I = np.identity(n_samples)

    # build laplacian matrix
    L = np.array(W.sum(1))[:, 0] - W

    max_iter = 1000
    obj = np.zeros(max_iter)
    for iter_step in range(max_iter):
        # update W
        T = np.linalg.inv(
            np.dot(X.transpose(), X) + beta * D + 1e-6 * np.eye(n_features))
        W = np.dot(np.dot(T, X.transpose()), F)
        # update D
        temp = np.sqrt((W * W).sum(1))
        temp[temp < 1e-16] = 1e-16
        temp = 0.5 / temp
        D = np.diag(temp)
        # update M
        M = L + alpha * (I - np.dot(np.dot(X, T), X.transpose()))
        M = (M + M.transpose()) / 2
        # update F
        denominator = np.dot(M,
                             F) + gamma * np.dot(np.dot(F, F.transpose()), F)
        temp = np.divide(gamma * F, denominator)
        F = F * np.array(temp)
        temp = np.diag(np.sqrt(np.diag(1 /
                                       (np.dot(F.transpose(), F) + 1e-16))))
        F = np.dot(F, temp)

        # calculate objective function
        obj[iter_step] = np.trace(np.dot(np.dot(
            F.transpose(), M), F)) + gamma / 4 * np.linalg.norm(
                np.dot(F.transpose(), F) - np.identity(n_clusters), 'fro')
        if verbose:
            print('obj at iter {0}: {1}'.format(iter_step + 1, obj[iter_step]))
        if iter_step >= 1 and math.fabs(obj[iter_step] -
                                        obj[iter_step - 1]) < 1e-3:
            break
    F = feature_ranking(W)

    if mode == "index":
        return np.array(F, dtype=int)
    elif mode == "raw":
        return W
    else:
        # make sure that F is the same size??
        return reverse_argsort(F, size=X.shape[1])
Beispiel #19
0
    def fit(self, X, y):

        if self.name == 'LASSO':

            # print self.params['alpha']

            LASSO = Lasso(alpha=self.params['alpha'], positive=True)

            y_pred_lasso = LASSO.fit(X, y)

            if y_pred_lasso.coef_.ndim == 1:
                coeff = y_pred_lasso.coef_
            else:
                coeff = np.asarray(y_pred_lasso.coef_[0, :])

            idx = np.argsort(-coeff)

        if self.name == 'EN':  # elastic net L1

            # alpha = self.params['alpha']

            # alpha = .9 - ((self.params['alpha'] - 1.0) * (1 - 0.1)) / ((50 - 1) + 0.1)
            # print alpha

            enet = ElasticNet(alpha=self.params['alpha'],
                              l1_ratio=1,
                              positive=True)

            y_pred_enet = enet.fit(X, y)
            # if y_pred_enet.coef_
            if y_pred_enet.coef_.ndim == 1:
                coeff = y_pred_enet.coef_
            else:
                coeff = np.asarray(y_pred_enet.coef_[0, :])

            idx = np.argsort(-coeff)

        if self.name == 'RFS':

            W = RFS.rfs(X,
                        construct_label_matrix(y),
                        gamma=self.params['gamma'])
            idx = feature_ranking(W)

        if self.name == 'll_l21':
            # obtain the feature weight matrix
            W, _, _ = ll_l21.proximal_gradient_descent(
                X,
                construct_label_matrix(y),
                z=self.params['z'],
                verbose=False)
            # sort the feature scores in an ascending order according to the feature scores
            idx = feature_ranking(W)

        if self.name == 'ls_l21':
            # obtain the feature weight matrix
            W, _, _ = ls_l21.proximal_gradient_descent(
                X,
                construct_label_matrix(y),
                z=self.params['z'],
                verbose=False)

            # sort the feature scores in an ascending order according to the feature scores
            idx = feature_ranking(W)

        if self.tp == 'ITB':

            if self.name == 'MRMR':
                idx = MRMR.mrmr(X,
                                y,
                                n_selected_features=self.params['num_feats'])

        if self.name == 'Relief':

            score = reliefF.reliefF(X, y, k=self.params['k'])
            idx = reliefF.feature_ranking(score)

        if self.name == 'MI':
            idx = np.argsort(
                mutual_info_classif(
                    X, y, n_neighbors=self.params['n_neighbors']))[::-1]

        return idx
Beispiel #20
0
def rfs(X, Y_flat, mode='rank', **kwargs):
    """
    This function implementS efficient and robust feature selection via joint l21-norms minimization
    min_W||X^T W - Y||_2,1 + gamma||W||_2,1

    Input
    -----
    X: {numpy array}, shape (n_samples, n_features)
        input data
    Y: {numpy array}, shape (n_samples, n_classes)
        input class label matrix, each row is a one-hot-coding class label
    kwargs: {dictionary}
        gamma: {float}
            parameter in RFS
        verbose: boolean
            True if want to display the objective function value, false if not

    Output
    ------
    W: {numpy array}, shape(n_samples, n_features)
        feature weight matrix

    Reference
    ---------
    Nie, Feiping et al. "Efficient and Robust Feature Selection via Joint l2,1-Norms Minimization" NIPS 2010.
    """
    def calculate_obj(X, Y, W, gamma):
        """
        This function calculates the objective function of rfs
        """
        temp = np.dot(X, W) - Y
        return calculate_l21_norm(temp) + gamma*calculate_l21_norm(W)
    
    # convert Y_flat to one hot encoded
    Y = construct_label_matrix_pan(Y_flat)
    # default gamma is 1
    if 'gamma' not in kwargs:
        gamma = 1
    else:
        gamma = kwargs['gamma']
    if 'verbose' not in kwargs:
        verbose = False
    else:
        verbose = kwargs['verbose']

    n_samples, n_features = X.shape
    A = np.zeros((n_samples, n_samples + n_features))
    A[:, 0:n_features] = X
    A[:, n_features:n_features+n_samples] = gamma*np.eye(n_samples)
    D = np.eye(n_features+n_samples)

    max_iter = 1000
    obj = np.zeros(max_iter)
    for iter_step in range(max_iter):
        # update U as U = D^{-1} A^T (A D^-1 A^T)^-1 Y
        D_inv = LA.inv(D)
        temp = LA.inv(np.dot(np.dot(A, D_inv), A.T) + 1e-6*np.eye(n_samples))  # (A D^-1 A^T)^-1
        U = np.dot(np.dot(np.dot(D_inv, A.T), temp), Y)
        # update D as D_ii = 1 / 2 / ||U(i,:)||
        D = generate_diagonal_matrix(U)

        obj[iter_step] = calculate_obj(X, Y, U[0:n_features, :], gamma)

        if verbose:
            print('obj at iter {0}: {1}'.format(iter_step+1, obj[iter_step]))
        if iter_step >= 1 and math.fabs(obj[iter_step] - obj[iter_step-1]) < 1e-3:
            break
    
    # the first d rows of U are the feature weights
    W = U[0:n_features, :]
    if mode=="raw":
        return W
    elif mode =="index":
        return feature_ranking(W)
    elif mode == "rank":
        return reverse_argsort(feature_ranking(W))
Beispiel #21
0
def udfs(X, y=None, mode='rank', **kwargs):
    """
    This function implements l2,1-norm regularized discriminative feature
    selection for unsupervised learning, i.e., min_W Tr(W^T M W) + gamma ||W||_{2,1}, s.t. W^T W = I

    Input
    -----
    X: {numpy array}, shape (n_samples, n_features)
        input data
    kwargs: {dictionary}
        gamma: {float}
            parameter in the objective function of UDFS (default is 1)
        n_clusters: {int}
            Number of clusters
        k: {int}
            number of nearest neighbor
        verbose: {boolean}
            True if want to display the objective function value, false if not

    Output
    ------
    W: {numpy array}, shape(n_features, n_clusters)
        feature weight matrix

    Reference
    Yang, Yi et al. "l2,1-Norm Regularized Discriminative Feature Selection for Unsupervised Learning." AAAI 2012.
    """
    def construct_M(X, k, gamma):
        """
        This function constructs the M matrix described in the paper
        """
        n_sample, n_feature = X.shape
        Xt = X.T
        D = pairwise_distances(X)
        # sort the distance matrix D in ascending order
        idx = np.argsort(D, axis=1)
        # choose the k-nearest neighbors for each instance
        idx_new = idx[:, 0:k + 1]
        H = np.eye(k + 1) - 1 / (k + 1) * np.ones((k + 1, k + 1))
        I = np.eye(k + 1)
        Mi = np.zeros((n_sample, n_sample))
        for i in range(n_sample):
            Xi = Xt[:, idx_new[i, :]]
            Xi_tilde = np.dot(Xi, H)
            Bi = np.linalg.inv(np.dot(Xi_tilde.T, Xi_tilde) + gamma * I)
            Si = np.zeros((n_sample, k + 1))
            for q in range(k + 1):
                Si[idx_new[q], q] = 1
            Mi = Mi + np.dot(np.dot(Si, np.dot(np.dot(H, Bi), H)), Si.T)
        M = np.dot(np.dot(X.T, Mi), X)
        return M

    def calculate_obj(X, W, M, gamma):
        """
        This function calculates the objective function of ls_l21 described in the paper
        """
        return np.trace(np.dot(np.dot(W.T, M),
                               W)) + gamma * calculate_l21_norm(W)

    # default gamma is 0.1
    if 'gamma' not in kwargs:
        gamma = 0.1
    else:
        gamma = kwargs['gamma']
    # default k is set to be 5
    if 'k' not in kwargs:
        k = 5
    else:
        k = kwargs['k']
    if 'n_clusters' not in kwargs:
        n_clusters = 5
    else:
        n_clusters = kwargs['n_clusters']
    if 'verbose' not in kwargs:
        verbose = False
    else:
        verbose = kwargs['verbose']

    # construct M
    n_sample, n_feature = X.shape
    M = construct_M(X, k, gamma)

    D = np.eye(n_feature)
    max_iter = 1000
    obj = np.zeros(max_iter)
    for iter_step in range(max_iter):
        # update W as the eigenvectors of P corresponding to the first n_clusters
        # smallest eigenvalues
        P = M + gamma * D
        eigen_value, eigen_vector = scipy.linalg.eigh(a=P)
        W = eigen_vector[:, 0:n_clusters]
        # update D as D_ii = 1 / 2 / ||W(i,:)||
        D = generate_diagonal_matrix(W)

        obj[iter_step] = calculate_obj(X, W, M, gamma)
        if verbose:
            print('obj at iter {0}: {1}'.format(iter_step + 1, obj[iter_step]))

        if iter_step >= 1 and math.fabs(obj[iter_step] -
                                        obj[iter_step - 1]) < 1e-3:
            break
    if mode == 'raw':
        return W
    elif mode == 'index':
        return feature_ranking(W)
    elif mode == 'rank':
        return reverse_argsort(feature_ranking(W))
def SKF_udfs(X, y):
    num_cluster = len(
        set(y)
    )  # specify the number of clusters, it is usually set as the number of classes in the ground truth
    Weight = UDFS.udfs(X, gamma=0.1, n_clusters=num_cluster)
    return sparse_learning.feature_ranking(Weight)
Beispiel #23
0
    def fit(self, X, y):

        idx = []

        if self.tp == 'ITB':

            if self.name == 'MRMR':
                idx = MRMR.mrmr(X,
                                y,
                                n_selected_features=self.params['num_feats'])

        elif self.tp == 'filter':

            if self.name == 'Relief':
                score = reliefF.reliefF(X, y, k=self.params['k'])
                idx = reliefF.feature_ranking(score)

            if self.name == 'Fisher':
                # obtain the score of each feature on the training set
                score = fisher_score.fisher_score(X, y)

                # rank features in descending order according to score
                idx = fisher_score.feature_ranking(score)

            if self.name == 'MI':
                idx = np.argsort(
                    mutual_info_classif(
                        X, y, n_neighbors=self.params['n_neighbors']))[::-1]

        elif self.tp == 'wrapper':

            model_fit = self.model.fit(X, y)
            model = SelectFromModel(model_fit, prefit=True)
            idx = model.get_support(indices=True)
        elif self.tp == 'SLB':

            # one-hot-encode on target
            y = construct_label_matrix(y)

            if self.name == 'SMBA':
                scba = fs.SCBA(data=X,
                               alpha=self.params['alpha'],
                               norm_type=self.params['norm_type'],
                               verbose=self.params['verbose'],
                               thr=self.params['thr'],
                               max_iter=self.params['max_iter'],
                               affine=self.params['affine'],
                               normalize=self.params['normalize'],
                               step=self.params['step'],
                               PCA=self.params['PCA'],
                               GPU=self.params['GPU'],
                               device=self.params['device'])

                nrmInd, sInd, repInd, _ = scba.admm()
                if self.params['type_indices'] == 'nrmInd':
                    idx = nrmInd
                elif self.params['type_indices'] == 'repInd':
                    idx = repInd
                else:
                    idx = sInd

            if self.name == 'RFS':
                W = RFS.rfs(X, y, gamma=self.params['gamma'])
                idx = feature_ranking(W)

            if self.name == 'll_l21':
                # obtain the feature weight matrix
                W, _, _ = ll_l21.proximal_gradient_descent(X,
                                                           y,
                                                           z=self.params['z'],
                                                           verbose=False)
                # sort the feature scores in an ascending order according to the feature scores
                idx = feature_ranking(W)
            if self.name == 'ls_l21':
                # obtain the feature weight matrix
                W, _, _ = ls_l21.proximal_gradient_descent(X,
                                                           y,
                                                           z=self.params['z'],
                                                           verbose=False)

                # sort the feature scores in an ascending order according to the feature scores
                idx = feature_ranking(W)

            if self.name == 'LASSO':

                LASSO = Lasso(alpha=self.params['alpha'], positive=True)

                y_pred_lasso = LASSO.fit(X, y)

                if y_pred_lasso.coef_.ndim == 1:
                    coeff = y_pred_lasso.coef_
                else:
                    coeff = np.asarray(y_pred_lasso.coef_[0, :])

                idx = np.argsort(-coeff)

            if self.name == 'EN':  # elastic net L1

                enet = ElasticNet(alpha=self.params['alpha'],
                                  l1_ratio=1,
                                  positive=True)
                y_pred_enet = enet.fit(X, y)

                if y_pred_enet.coef_.ndim == 1:
                    coeff = y_pred_enet.coef_
                else:
                    coeff = np.asarray(y_pred_enet.coef_[0, :])

                idx = np.argsort(-coeff)

        return idx
Beispiel #24
0
        clf.fit(selected_fea_train, y_train)
        acc.append(accuracy_score(y_test, clf.predict(selected_fea_test)))

        # lasso
        lasso = Lasso(alpha=0.01, random_state=random_state)
        lasso.fit(X_train, y_train)
        weights = lasso.coef_.T
        idx = chi_square.feature_ranking(abs(weights))
        selected_fea_train = X_train[:, idx[0:num_features]]
        selected_fea_test = X_test[:, idx[0:num_features]]
        clf.fit(selected_fea_train, y_train)
        acc.append(accuracy_score(y_test, clf.predict(selected_fea_test)))

        # rfs
        weights = RFS.rfs(X_train, construct_label_matrix(y_train), gamma=0.01)
        idx = sparse_learning.feature_ranking(weights)
        selected_fea_train = X_train[:, idx[0:num_features]]
        selected_fea_test = X_test[:, idx[0:num_features]]
        clf.fit(selected_fea_train, y_train)
        acc.append(accuracy_score(y_test, clf.predict(selected_fea_test)))

        # sgl
        idx_group = np.array([[1, 16, np.sqrt(16)], [17, 28,
                                                     np.sqrt(12)],
                              [29, 60, np.sqrt(32)], [61, 160,
                                                      np.sqrt(100)]]).T
        idx_group = idx_group.astype(int)
        weights, _, _ = group_fs.group_fs(X_train,
                                          y_train,
                                          0.01,
                                          0.01,
def selectFeatureNDFS(filename, num_feature, num_cluster):

    # Recupero del pickle salvato su disco con i sample e TUTTE le feature estratte da TSFresh. SU QUESTO LAVOREREMO NOI
    all_features_train = pd.read_pickle(
        "./pickle/feature_complete/TRAIN/{0}_TRAIN_FeatureComplete.pkl".format(
            filename))
    all_features_test = pd.read_pickle(
        "./pickle/feature_complete/TEST/{0}_TEST_FeatureComplete.pkl".format(
            filename))

    # Elimino colonne con valori NaN
    all_features_train = all_features_train.dropna(axis=1)
    all_features_test = all_features_test.dropna(axis=1)

    # Costruisco matrice W da dare a NDFS
    kwargs = {
        "metric": "euclidean",
        "neighborMode": "knn",
        "weightMode": "heatKernel",
        "k": 5,
        't': 1
    }
    W = construct_W.construct_W(all_features_train.values, **kwargs)

    # Eseguo più volte NDFS in modo da ottenere davvero le feature migliori
    dizionarioOccorrenzeFeature = {}

    for i in range(0, 10):

        # Esecuzione dell'algoritmo NDFS. Otteniamo il peso delle feature per cluster.
        featurePesate = NDFS.ndfs(all_features_train, n_clusters=20, W=W)

        # ordinamento delle feature in ordine discendente
        idx = feature_ranking(featurePesate)

        # prendo il numero di feature scelte
        idxSelected = idx[0:num_feature]

        # aggiorno il numero di occorrenze di quella feature nel dizionario
        for feature in idxSelected:
            if feature in dizionarioOccorrenzeFeature:
                dizionarioOccorrenzeFeature[
                    feature] = dizionarioOccorrenzeFeature[feature] + 1
            else:
                dizionarioOccorrenzeFeature[feature] = 1

    # Ordino il dizionario in maniera discendente in modo da avere la feature che compare più volte all'inizio.
    # Qui abbiamo un dizionario contenente tupla (nomeFeature, numeroOccorrenze)
    dizionarioOccorrenzeFeature_sorted = sorted(
        dizionarioOccorrenzeFeature.items(), key=lambda kv: -kv[1])

    # Metto tutti in nomi delle feature presenti in nel dizionario in un array
    featureFrequenti = []
    for key, value in dizionarioOccorrenzeFeature_sorted:
        featureFrequenti.append(key)

    # seleziono il numero di feature che voglio
    idxSelected = featureFrequenti[0:num_feature]

    # Estraggo i nomi delle feature che ho scelto
    nomiFeatureSelezionate = []

    for i in idxSelected:
        nomiFeatureSelezionate.append(all_features_train.columns[i])

    # Creo il dataframe con solo le feature che ho selezionato
    dataframeFeatureSelezionate = all_features_train.loc[:,
                                                         nomiFeatureSelezionate]

    # Aggiusto anche il dataset di test con solo le feature scelte
    all_features_test = all_features_test.loc[:, nomiFeatureSelezionate]

    # Estraggo le classi conosciute
    labelConosciute = estrattoreClassiConosciute.estraiLabelConosciute(
        "./UCRArchive_2018/{0}/{0}_TEST.tsv".format(filename))

    # K-means su feature selezionate
    print("\nRisultati con feature selezionate da noi con NDFS")
    print("Numero feature: {0}".format(all_features_test.shape[1]))
    testFeatureSelection(X_selected=dataframeFeatureSelezionate.values,
                         X_test=all_features_test.values,
                         num_clusters=num_cluster,
                         y=labelConosciute)