def _pairwise_gradients(self, pxs, nxs): # indices of positive examples sp, pp, op = unzip_triples(pxs) # indices of negative examples sn, pn, on = unzip_triples(nxs) pscores = self.af.f(self._scores(sp, pp, op)) nscores = self.af.f(self._scores(sn, pn, on)) #print("avg = %f/%f, min = %f/%f, max = %f/%f" % (pscores.mean(), nscores.mean(), pscores.min(), nscores.min(), pscores.max(), nscores.max())) # find examples that violate margin ind = np.where(nscores + self.margin > pscores)[0] self.nviolations = len(ind) if len(ind) == 0: return # aux vars sp, sn = list(sp[ind]), list(sn[ind]) op, on = list(op[ind]), list(on[ind]) pp, pn = list(pp[ind]), list(pn[ind]) # Increase dimension of scores by one and store it as column (np.newaxis) gpscores = -self.af.g_given_f(pscores[ind])[:, np.newaxis] gnscores = self.af.g_given_f(nscores[ind])[:, np.newaxis] # object role gradients ridx, Sm, n = grad_sum_matrix(pp + pn) start_ccorr = timeit.default_timer() ccorr(self.E[sp], self.E[op]) elapsed_ccorr = timeit.default_timer() - start_ccorr #print("time to compute ccorr = %f us" % (elapsed_ccorr * 1000 * 1000)) #print ("shapes : ", self.E[sp].shape) grp = gpscores * ccorr(self.E[sp], self.E[op]) grn = gnscores * ccorr(self.E[sn], self.E[on]) #gr = (Sm.dot(np.vstack((grp, grn))) + self.rparam * self.R[ridx]) / n # Because of dot product the gradient is calculated sum of n terms that were non-zero # Therefore, for the correct value, we should divide by n gr = Sm.dot(np.vstack((grp, grn))) / n gr += self.rparam * self.R[ridx] # filler gradients eidx, Sm, n = grad_sum_matrix(sp + sn + op + on) start_ccorr = timeit.default_timer() cconv(self.E[sp], self.R[pp]) elapsed_ccorr = timeit.default_timer() - start_ccorr #print("time to compute cconv = %f us" % (elapsed_ccorr * 1000 * 1000)) geip = gpscores * ccorr(self.R[pp], self.E[op]) gein = gnscores * ccorr(self.R[pn], self.E[on]) gejp = gpscores * cconv(self.E[sp], self.R[pp]) gejn = gnscores * cconv(self.E[sn], self.R[pn]) ge = Sm.dot(np.vstack((geip, gein, gejp, gejn))) / n #ge += self.rparam * self.E[eidx] return {'E': (ge, eidx), 'R': (gr, ridx)}
def _pairwise_gradients(self, pxs, nxs): # indices of positive examples sp, pp, op = unzip_triples(pxs) # indices of negative examples sn, pn, on = unzip_triples(nxs) pscores = self.af.f(self._scores(sp, pp, op)) nscores = self.af.f(self._scores(sn, pn, on)) #print("avg = %f/%f, min = %f/%f, max = %f/%f" % (pscores.mean(), nscores.mean(), pscores.min(), nscores.min(), pscores.max(), nscores.max())) # find examples that violate margin ind = np.where(nscores + self.margin > pscores)[0] self.nviolations = len(ind) if len(ind) == 0: return # aux vars sp, sn = list(sp[ind]), list(sn[ind]) op, on = list(op[ind]), list(on[ind]) pp, pn = list(pp[ind]), list(pn[ind]) gpscores = -self.af.g_given_f(pscores[ind])[:, np.newaxis] gnscores = self.af.g_given_f(nscores[ind])[:, np.newaxis] # object role gradients ridx, Sm, n = grad_sum_matrix(pp + pn) grp = gpscores * ccorr(self.E[sp], self.E[op]) grn = gnscores * ccorr(self.E[sn], self.E[on]) #gr = (Sm.dot(np.vstack((grp, grn))) + self.rparam * self.R[ridx]) / n gr = Sm.dot(np.vstack((grp, grn))) / n gr += self.rparam * self.R[ridx] # filler gradients eidx, Sm, n = grad_sum_matrix(sp + sn + op + on) geip = gpscores * ccorr(self.R[pp], self.E[op]) gein = gnscores * ccorr(self.R[pn], self.E[on]) gejp = gpscores * cconv(self.E[sp], self.R[pp]) gejn = gnscores * cconv(self.E[sn], self.R[pn]) ge = Sm.dot(np.vstack((geip, gein, gejp, gejn))) / n #ge += self.rparam * self.E[eidx] if self.updateOffsetE > 0: cond = np.where(eidx >= self.updateOffsetE) if len(cond[0]) > 0: ge = ge[cond[0][0]:] eidx = eidx[cond[0][0]:] else: ge = [] eidx = [] gr = [] ridx = [] return {'E': (ge, eidx), 'R': (gr, ridx)}
def _pairwise_gradients(self, pxs, nxs): # indices of positive examples sp, pp, op = unzip_triples(pxs) # indices of negative examples sn, pn, on = unzip_triples(nxs) pscores = self.af.f(self._scores(sp, pp, op)) nscores = self.af.f(self._scores(sn, pn, on)) #print("avg = %f/%f, min = %f/%f, max = %f/%f" % (pscores.mean(), nscores.mean(), pscores.min(), nscores.min(), pscores.max(), nscores.max())) # find examples that violate margin ind = np.where(nscores + self.margin > pscores)[0] self.nviolations = len(ind) if len(ind) == 0: return # aux vars sp, sn = list(sp[ind]), list(sn[ind]) op, on = list(op[ind]), list(on[ind]) pp, pn = list(pp[ind]), list(pn[ind]) gpscores = -self.af.g_given_f(pscores[ind])[:, np.newaxis] gnscores = self.af.g_given_f(nscores[ind])[:, np.newaxis] # object role gradients ridx, Sm, n = grad_sum_matrix(pp + pn) grp = gpscores * ccorr(self.E[sp], self.E[op]) grn = gnscores * ccorr(self.E[sn], self.E[on]) #gr = (Sm.dot(np.vstack((grp, grn))) + self.rparam * self.R[ridx]) / n gr = Sm.dot(np.vstack((grp, grn))) / n gr += self.rparam * self.R[ridx] # filler gradients eidx, Sm, n = grad_sum_matrix(sp + sn + op + on) geip = gpscores * ccorr(self.R[pp], self.E[op]) gein = gnscores * ccorr(self.R[pn], self.E[on]) gejp = gpscores * cconv(self.E[sp], self.R[pp]) gejn = gnscores * cconv(self.E[sn], self.R[pn]) ge = Sm.dot(np.vstack((geip, gein, gejp, gejn))) / n #ge += self.rparam * self.E[eidx] return {'E': (ge, eidx), 'R':(gr, ridx)}
def _gradients(self, xys): ss, ps, os, ys = unzip_triples(xys, with_ys=True) yscores = ys * self._scores(ss, ps, os) self.loss = np.sum(np.logaddexp(0, -yscores)) # preds = af.Sigmoid.f(yscores) fs = -(ys * af.Sigmoid.f(-yscores))[:, np.newaxis] # self.loss -= np.sum(np.log(preds)) ridx, Sm, n = grad_sum_matrix(ps) gr = Sm.dot(fs * ccorr(self.E[ss], self.E[os])) / n gr += self.rparam * self.R[ridx] eidx, Sm, n = grad_sum_matrix(list(ss) + list(os)) ge = Sm.dot( np.vstack((fs * ccorr(self.R[ps], self.E[os]), fs * cconv(self.E[ss], self.R[ps])))) / n ge += self.rparam * self.E[eidx] return {'E': (ge, eidx), 'R': (gr, ridx)}
def _gradients(self, xys): ss, ps, os, ys = unzip_triples(xys, with_ys=True) yscores = ys * self._scores(ss, ps, os) self.loss = np.sum(np.logaddexp(0, -yscores)) #preds = af.Sigmoid.f(yscores) fs = -(ys * af.Sigmoid.f(-yscores))[:, np.newaxis] #self.loss -= np.sum(np.log(preds)) ridx, Sm, n = grad_sum_matrix(ps) gr = Sm.dot(fs * ccorr(self.E[ss], self.E[os])) / n gr += self.rparam * self.R[ridx] eidx, Sm, n = grad_sum_matrix(list(ss) + list(os)) ge = Sm.dot(np.vstack(( fs * ccorr(self.R[ps], self.E[os]), fs * cconv(self.E[ss], self.R[ps]) ))) / n ge += self.rparam * self.E[eidx] return {'E': (ge, eidx), 'R':(gr, ridx)}