Beispiel #1
0
 def test_trivial_case(self):
     trivial = np.zeros((25, 25))
     peak_indices = peak.peak_local_max(trivial, min_distance=1, indices=True)
     assert type(peak_indices) is np.ndarray
     assert not peak_indices     # inherent boolean-ness of empty list
     peaks = peak.peak_local_max(trivial, min_distance=1, indices=False)
     assert (peaks.astype(np.bool) == trivial).all()
Beispiel #2
0
 def test_trivial_case(self):
     trivial = np.zeros((25, 25))
     peak_indices = peak.peak_local_max(trivial, min_distance=1, indices=True)
     assert type(peak_indices) is np.ndarray
     assert peak_indices.size == 0
     peaks = peak.peak_local_max(trivial, min_distance=1, indices=False)
     assert (peaks.astype(np.bool) == trivial).all()
Beispiel #3
0
def test_4D():
    image = np.zeros((30, 30, 30, 30))
    image[15, 15, 15, 15] = 1
    image[5, 5, 5, 5] = 1
    assert_equal(peak.peak_local_max(image), [[15, 15, 15, 15]])
    assert_equal(peak.peak_local_max(image, min_distance=6), [[15, 15, 15, 15]])
    assert_equal(peak.peak_local_max(image, exclude_border=False),
                 [[5, 5, 5, 5], [15, 15, 15, 15]])
    assert_equal(peak.peak_local_max(image, min_distance=5),
                 [[5, 5, 5, 5], [15, 15, 15, 15]])
Beispiel #4
0
def test_num_peaks():
    image = np.zeros((3, 7), dtype=np.uint8)
    image[1, 1] = 10
    image[1, 3] = 11
    image[1, 5] = 12
    assert len(peak.peak_local_max(image, min_distance=1)) == 3
    peaks_limited = peak.peak_local_max(image, min_distance=1, num_peaks=2)
    assert len(peaks_limited) == 2
    assert (1, 3) in peaks_limited
    assert (1, 5) in peaks_limited
Beispiel #5
0
    def test_threshold_rel_default(self):
        image = np.ones((5, 5))

        image[2, 2] = 1
        assert len(peak.peak_local_max(image)) == 0

        image[2, 2] = 2
        assert_equal(peak.peak_local_max(image), [[2, 2]])

        image[2, 2] = 0
        assert len(peak.peak_local_max(image, min_distance=0)) == image.size - 1
Beispiel #6
0
    def test_sorted_peaks(self):
        image = np.zeros((5, 5), dtype=np.uint8)
        image[1, 1] = 20
        image[3, 3] = 10
        peaks = peak.peak_local_max(image, min_distance=1)
        assert peaks.tolist() == [[3, 3], [1, 1]]

        image = np.zeros((3, 10))
        image[1, (1, 3, 5, 7)] = (1, 3, 2, 4)
        peaks = peak.peak_local_max(image, min_distance=1)
        assert peaks.tolist() == [[1, 7], [1, 5], [1, 3], [1, 1]]
Beispiel #7
0
def test_disk():
    '''regression test of img-1194, footprint = [1]
    Test peak.peak_local_max when every point is a local maximum
    '''
    image = np.random.uniform(size=(10, 20))
    footprint = np.array([[1]])
    result = peak.peak_local_max(image, labels=np.ones((10, 20)),
                                 footprint=footprint,
                                 min_distance=1, threshold_rel=0,
                                 indices=False, exclude_border=False)
    assert np.all(result)
    result = peak.peak_local_max(image, footprint=footprint)
    assert np.all(result)
Beispiel #8
0
def test_3D():
    image = np.zeros((30, 30, 30))
    image[15, 15, 15] = 1
    image[5, 5, 5] = 1
    assert_equal(peak.peak_local_max(image, min_distance=10, threshold_rel=0),
                 [[15, 15, 15]])
    assert_equal(peak.peak_local_max(image, min_distance=6, threshold_rel=0),
                 [[15, 15, 15]])
    assert_equal(peak.peak_local_max(image, min_distance=10, threshold_rel=0,
                                     exclude_border=False),
                 [[5, 5, 5], [15, 15, 15]])
    assert_equal(peak.peak_local_max(image, min_distance=5, threshold_rel=0),
                 [[5, 5, 5], [15, 15, 15]])
Beispiel #9
0
 def test_num_peaks_and_labels(self):
     image = np.zeros((7, 7), dtype=np.uint8)
     labels = np.zeros((7, 7), dtype=np.uint8) + 20
     image[1, 1] = 10
     image[1, 3] = 11
     image[1, 5] = 12
     image[3, 5] = 8
     image[5, 3] = 7
     peaks_limited = peak.peak_local_max(
         image, min_distance=1, threshold_abs=0, labels=labels)
     assert len(peaks_limited) == 5
     peaks_limited = peak.peak_local_max(
         image, min_distance=1, threshold_abs=0, labels=labels, num_peaks=2)
     assert len(peaks_limited) == 2
Beispiel #10
0
 def test_4D(self):
     image = np.zeros((30, 30, 30, 30))
     image[15, 15, 15, 15] = 1
     image[5, 5, 5, 5] = 1
     assert_equal(peak.peak_local_max(image, min_distance=10, threshold_rel=0),
                  [[15, 15, 15, 15]])
     assert_equal(peak.peak_local_max(image, min_distance=6, threshold_rel=0),
                  [[15, 15, 15, 15]])
     assert sorted(peak.peak_local_max(image, min_distance=10, threshold_rel=0,
                                       exclude_border=False).tolist()) == \
         [[5, 5, 5, 5], [15, 15, 15, 15]]
     assert sorted(peak.peak_local_max(image, min_distance=5,
                                       threshold_rel=0).tolist()) == \
         [[5, 5, 5, 5], [15, 15, 15, 15]]
Beispiel #11
0
    def find_peaks(self, min_distance_mm=5):
        """
        Find peaks in the image data.

        Arguments:
        ----------
        min_distance_mm : float
            Minimum distance between peaks in mm

        Returns:
        --------
        peaks: PointSet
        """

        from skimage.feature.peak import peak_local_max
        from ..commons import affine_scaling

        img = self.fetch()
        dist = int(min_distance_mm / affine_scaling(img.affine) + 0.5)
        voxels = peak_local_max(
            img.get_fdata(),
            exclude_border=False,
            min_distance=dist,
        )
        return (
            PointSet(
                [np.dot(img.affine, [x, y, z, 1])[:3] for x, y, z in voxels],
                space=self.space,
            ),
            img,
        )
Beispiel #12
0
 def test_num_peaks3D(self):
     # Issue 1354: the old code only hold for 2D arrays
     # and this code would die with IndexError
     image = np.zeros((10, 10, 100))
     image[5,5,::5] = np.arange(20)
     peaks_limited = peak.peak_local_max(image, min_distance=1, num_peaks=2)
     assert len(peaks_limited) == 2
Beispiel #13
0
 def test_absolute_threshold(self):
     image = np.zeros((5, 5), dtype=np.uint8)
     image[1, 1] = 10
     image[3, 3] = 20
     peaks = peak.peak_local_max(image, min_distance=1, threshold_abs=10)
     assert len(peaks) == 1
     assert_close(peaks, [(3, 3)])
Beispiel #14
0
 def test_adjacent_and_different(self):
     image = np.zeros((10, 20))
     labels = np.zeros((10, 20), int)
     image[5, 5] = 1
     image[5, 6] = .5
     labels[5, 5:6] = 1
     expected = (image == 1)
     result = peak.peak_local_max(image, labels=labels,
                                  footprint=np.ones((3, 3), bool),
                                  min_distance=1, threshold_rel=0,
                                  indices=False, exclude_border=False)
     assert np.all(result == expected)
     result = peak.peak_local_max(image, labels=labels,
                                  min_distance=1, threshold_rel=0,
                                  indices=False, exclude_border=False)
     assert np.all(result == expected)
Beispiel #15
0
 def test_relative_threshold(self):
     image = np.zeros((5, 5), dtype=np.uint8)
     image[1, 1] = 10
     image[3, 3] = 20
     peaks = peak.peak_local_max(image, min_distance=1, threshold_rel=0.5)
     assert len(peaks) == 1
     assert_array_almost_equal(peaks, [(3, 3)])
Beispiel #16
0
 def test_empty(self):
     image = np.zeros((10, 20))
     labels = np.zeros((10, 20), int)
     result = peak.peak_local_max(image, labels=labels,
                                  footprint=np.ones((3, 3), bool),
                                  min_distance=1, threshold_rel=0,
                                  indices=False, exclude_border=False)
     assert np.all(~ result)
Beispiel #17
0
 def test_ndarray_exclude_border(self):
     nd_image = np.zeros((5, 5, 5))
     nd_image[[1, 0, 0], [0, 1, 0], [0, 0, 1]] = 1
     nd_image[3, 0, 0] = 1
     nd_image[2, 2, 2] = 1
     expected = np.zeros_like(nd_image, dtype=np.bool)
     expected[2, 2, 2] = True
     expectedNoBorder = nd_image > 0
     result = peak.peak_local_max(nd_image, min_distance=2,
         exclude_border=2, indices=False)
     assert_equal(result, expected)
     # Check that bools work as expected
     assert_equal(
         peak.peak_local_max(nd_image, min_distance=2,
             exclude_border=2, indices=False),
         peak.peak_local_max(nd_image, min_distance=2,
             exclude_border=True, indices=False)
         )
     assert_equal(
         peak.peak_local_max(nd_image, min_distance=2,
             exclude_border=0, indices=False),
         peak.peak_local_max(nd_image, min_distance=2,
             exclude_border=False, indices=False)
         )
     # Check both versions with  no border
     assert_equal(
         peak.peak_local_max(nd_image, min_distance=2,
             exclude_border=0, indices=False),
         expectedNoBorder,
         )
     assert_equal(
         peak.peak_local_max(nd_image,
             exclude_border=False, indices=False),
         expectedNoBorder,
         )
Beispiel #18
0
def test_ndarray_exclude_border():
    nd_image = np.zeros((5,5,5))
    nd_image[[1,0,0],[0,1,0],[0,0,1]] = 1
    nd_image[3,0,0] = 1
    nd_image[2,2,2] = 1
    expected = np.zeros_like(nd_image, dtype=np.bool)
    expected[2,2,2] = True
    result = peak.peak_local_max(nd_image, min_distance=2, indices=False)
    assert (result == expected).all()
Beispiel #19
0
 def test_adjacent_and_same(self):
     image = np.zeros((10, 20))
     labels = np.zeros((10, 20), int)
     image[5, 5:6] = 1
     labels[5, 5:6] = 1
     result = peak.peak_local_max(image, labels=labels,
                                  footprint=np.ones((3, 3), bool),
                                  min_distance=1, threshold_rel=0,
                                  indices=False, exclude_border=False)
     assert np.all(result == (labels == 1))
Beispiel #20
0
 def test_input_labels_unmodified(self):
     image = np.zeros((10, 20))
     labels = np.zeros((10, 20), int)
     image[5, 5] = 1
     labels[5, 5] = 1
     labelsin = labels.copy()
     result = peak.peak_local_max(image, labels=labels,
                                  footprint=np.ones((3, 3), bool),
                                  min_distance=1, threshold_rel=0,
                                  indices=False, exclude_border=False)
     assert np.all(labels == labelsin)
Beispiel #21
0
 def test_num_peaks(self):
     image = np.zeros((7, 7), dtype=np.uint8)
     image[1, 1] = 10
     image[1, 3] = 11
     image[1, 5] = 12
     image[3, 5] = 8
     image[5, 3] = 7
     assert len(peak.peak_local_max(image, min_distance=1, threshold_abs=0)) == 5
     peaks_limited = peak.peak_local_max(
         image, min_distance=1, threshold_abs=0, num_peaks=2)
     assert len(peaks_limited) == 2
     assert (1, 3) in peaks_limited
     assert (1, 5) in peaks_limited
     peaks_limited = peak.peak_local_max(
         image, min_distance=1, threshold_abs=0, num_peaks=4)
     assert len(peaks_limited) == 4
     assert (1, 3) in peaks_limited
     assert (1, 5) in peaks_limited
     assert (1, 1) in peaks_limited
     assert (3, 5) in peaks_limited
Beispiel #22
0
 def test_two_objects(self):
     image = np.zeros((10, 20))
     labels = np.zeros((10, 20), int)
     image[5, 5] = 1
     image[5, 15] = .5
     labels[5, 5] = 1
     labels[5, 15] = 2
     expected = (labels > 0)
     result = peak.peak_local_max(image, labels=labels,
                                  footprint=np.ones((3, 3), bool),
                                  min_distance=1, threshold_rel=0,
                                  indices=False, exclude_border=False)
     assert np.all(result == expected)
Beispiel #23
0
    def test_noisy_peaks(self):
        peak_locations = [(7, 7), (7, 13), (13, 7), (13, 13)]

        # image with noise of amplitude 0.8 and peaks of amplitude 1
        image = 0.8 * np.random.rand(20, 20)
        for r, c in peak_locations:
            image[r, c] = 1

        peaks_detected = peak.peak_local_max(image, min_distance=5)

        assert len(peaks_detected) == len(peak_locations)
        for loc in peaks_detected:
            assert tuple(loc) in peak_locations
Beispiel #24
0
 def test_num_peaks_tot_vs_labels_4quadrants(self):
     np.random.seed(21)
     image = np.random.uniform(size=(20, 30))
     i, j = np.mgrid[0:20, 0:30]
     labels = 1 + (i >= 10) + (j >= 15) * 2
     result = peak.peak_local_max(image, labels=labels,
                                  min_distance=1, threshold_rel=0,
                                  indices=True,
                                  num_peaks=np.inf,
                                  num_peaks_per_label=2)
     assert len(result) == 8
     result = peak.peak_local_max(image, labels=labels,
                                  min_distance=1, threshold_rel=0,
                                  indices=True,
                                  num_peaks=np.inf,
                                  num_peaks_per_label=1)
     assert len(result) == 4
     result = peak.peak_local_max(image, labels=labels,
                                  min_distance=1, threshold_rel=0,
                                  indices=True,
                                  num_peaks=2,
                                  num_peaks_per_label=2)
     assert len(result) == 2
Beispiel #25
0
def test_indices_with_labels():
    image = np.random.uniform(size=(40, 60))
    i, j = np.mgrid[0:40, 0:60]
    labels = 1 + (i >= 20) + (j >= 30) * 2
    i, j = np.mgrid[-3:4, -3:4]
    footprint = (i * i + j * j <= 9)
    expected = np.zeros(image.shape, float)
    for imin, imax in ((0, 20), (20, 40)):
        for jmin, jmax in ((0, 30), (30, 60)):
            expected[imin:imax, jmin:jmax] = scipy.ndimage.maximum_filter(
                image[imin:imax, jmin:jmax], footprint=footprint)
    expected = (expected == image)
    result = peak.peak_local_max(image, labels=labels, min_distance=1,
                                 threshold_rel=0, footprint=footprint,
                                 indices=True, exclude_border=False)
    assert (result == np.transpose(expected.nonzero())).all()
Beispiel #26
0
 def test_four_quadrants(self):
     image = np.random.uniform(size=(20, 30))
     i, j = np.mgrid[0:20, 0:30]
     labels = 1 + (i >= 10) + (j >= 15) * 2
     i, j = np.mgrid[-3:4, -3:4]
     footprint = (i * i + j * j <= 9)
     expected = np.zeros(image.shape, float)
     for imin, imax in ((0, 10), (10, 20)):
         for jmin, jmax in ((0, 15), (15, 30)):
             expected[imin:imax, jmin:jmax] = ndi.maximum_filter(
                 image[imin:imax, jmin:jmax], footprint=footprint)
     expected = (expected == image)
     result = peak.peak_local_max(image, labels=labels, footprint=footprint,
                                  min_distance=1, threshold_rel=0,
                                  indices=False, exclude_border=False)
     assert np.all(result == expected)
Beispiel #27
0
def test_reorder_labels():
    np.random.seed(21)
    image = np.random.uniform(size=(40, 60))
    i, j = np.mgrid[0:40, 0:60]
    labels = 1 + (i >= 20) + (j >= 30) * 2
    labels[labels == 4] = 5
    i, j = np.mgrid[-3:4, -3:4]
    footprint = (i * i + j * j <= 9)
    expected = np.zeros(image.shape, float)
    for imin, imax in ((0, 20), (20, 40)):
        for jmin, jmax in ((0, 30), (30, 60)):
            expected[imin:imax, jmin:jmax] = ndi.maximum_filter(
                            image[imin:imax, jmin:jmax], footprint=footprint)
    expected = (expected == image)
    result = peak.peak_local_max(image, labels=labels, min_distance=1,
                                 threshold_rel=0, footprint=footprint,
                                 indices=False, exclude_border=False)
    assert (result == expected).all()
def test_adjacent_different_objects():
    image = np.zeros((10, 20))
    labels = np.zeros((10, 20), int)
    image[5, 5] = 1
    image[5, 6] = 0.5
    labels[5, 5] = 1
    labels[5, 6] = 2
    expected = labels > 0
    result = peak.peak_local_max(
        image,
        labels=labels,
        footprint=np.ones((3, 3), bool),
        min_distance=1,
        threshold_rel=0,
        indices=False,
        exclude_border=False,
    )
    assert np.all(result == expected)
Beispiel #29
0
def blob_log(image, min_sigma=1, max_sigma=50, num_sigma=10, threshold=.2,
             overlap=.5, log_scale=False):
    """Finds blobs in the given grayscale image.

    Blobs are found using the Laplacian of Gaussian (LoG) method [1]_.
    For each blob found, the method returns its coordinates and the standard
    deviation of the Gaussian kernel that detected the blob.

    Parameters
    ----------
    image : 2D or 3D ndarray
        Input grayscale image, blobs are assumed to be light on dark
        background (white on black).
    min_sigma : float, optional
        The minimum standard deviation for Gaussian Kernel. Keep this low to
        detect smaller blobs.
    max_sigma : float, optional
        The maximum standard deviation for Gaussian Kernel. Keep this high to
        detect larger blobs.
    num_sigma : int, optional
        The number of intermediate values of standard deviations to consider
        between `min_sigma` and `max_sigma`.
    threshold : float, optional.
        The absolute lower bound for scale space maxima. Local maxima smaller
        than thresh are ignored. Reduce this to detect blobs with less
        intensities.
    overlap : float, optional
        A value between 0 and 1. If the area of two blobs overlaps by a
        fraction greater than `threshold`, the smaller blob is eliminated.
    log_scale : bool, optional
        If set intermediate values of standard deviations are interpolated
        using a logarithmic scale to the base `10`. If not, linear
        interpolation is used.

    Returns
    -------
    A : (n, image.ndim + 1) ndarray
        A 2d array with each row representing 3 values for a 2D image,
        and 4 values for a 3D image: ``(r, c, sigma)`` or ``(f, r, c, sigma)``
        where ``(r, c)`` or ``(f, r, c)`` are coordinates of the blob and
        ``sigma`` is the standard deviation of the Gaussian kernel which
        detected the blob.

    References
    ----------
    .. [1] http://en.wikipedia.org/wiki/Blob_detection#The_Laplacian_of_Gaussian

    Examples
    --------
    >>> from skimage import data, feature, exposure
    >>> img = data.coins()
    >>> img = exposure.equalize_hist(img)  # improves detection
    >>> feature.blob_log(img, threshold = .3)
    array([[ 113.        ,  323.        ,    1.        ],
           [ 121.        ,  272.        ,   17.33333333],
           [ 124.        ,  336.        ,   11.88888889],
           [ 126.        ,   46.        ,   11.88888889],
           [ 126.        ,  208.        ,   11.88888889],
           [ 127.        ,  102.        ,   11.88888889],
           [ 128.        ,  154.        ,   11.88888889],
           [ 185.        ,  344.        ,   17.33333333],
           [ 194.        ,  213.        ,   17.33333333],
           [ 194.        ,  276.        ,   17.33333333],
           [ 197.        ,   44.        ,   11.88888889],
           [ 198.        ,  103.        ,   11.88888889],
           [ 198.        ,  155.        ,   11.88888889],
           [ 260.        ,  174.        ,   17.33333333],
           [ 263.        ,  244.        ,   17.33333333],
           [ 263.        ,  302.        ,   17.33333333],
           [ 266.        ,  115.        ,   11.88888889]])

    Notes
    -----
    The radius of each blob is approximately :math:`\sqrt{2}sigma` for
    a 2-D image and :math:`\sqrt{3}sigma` for a 3-D image.
    """
    image = img_as_float(image)

    if log_scale:
        start, stop = log(min_sigma, 10), log(max_sigma, 10)
        sigma_list = np.logspace(start, stop, num_sigma)
    else:
        sigma_list = np.linspace(min_sigma, max_sigma, num_sigma)

    # computing gaussian laplace
    # s**2 provides scale invariance
    gl_images = [-gaussian_laplace(image, s) * s ** 2 for s in sigma_list]

    # Replace by image_cube = np.stack(hessian_images, axis=-1)
    # When we upgrade minimal requirements to NumPy 1.10
    sl = (slice(None),) * image.ndim + (np.newaxis,)
    arrays = [np.asanyarray(arr) for arr in gl_images]
    extended_arrays = [arr[sl] for arr in arrays]
    image_cube = np.concatenate(extended_arrays, axis=-1)

    local_maxima = peak_local_max(image_cube, threshold_abs=threshold,
                                  footprint=np.ones((3,) * (image.ndim + 1)),
                                  threshold_rel=0.0,
                                  exclude_border=False)

    # Convert local_maxima to float64
    lm = local_maxima.astype(np.float64)
    # Convert the last index to its corresponding scale value
    lm[:, -1] = sigma_list[local_maxima[:, -1]]
    return _prune_blobs(lm, overlap)
Beispiel #30
0
def blob_dog(image, min_sigma=1, max_sigma=50, sigma_ratio=1.6, threshold=2.0,
             overlap=.5, ):
    """Finds blobs in the given grayscale image.

    Blobs are found using the Difference of Gaussian (DoG) method [1]_.
    For each blob found, the method returns its coordinates and the standard
    deviation of the Gaussian kernel that detected the blob.

    Parameters
    ----------
    image : 2D or 3D ndarray
        Input grayscale image, blobs are assumed to be light on dark
        background (white on black).
    min_sigma : float, optional
        The minimum standard deviation for Gaussian Kernel. Keep this low to
        detect smaller blobs.
    max_sigma : float, optional
        The maximum standard deviation for Gaussian Kernel. Keep this high to
        detect larger blobs.
    sigma_ratio : float, optional
        The ratio between the standard deviation of Gaussian Kernels used for
        computing the Difference of Gaussians
    threshold : float, optional.
        The absolute lower bound for scale space maxima. Local maxima smaller
        than thresh are ignored. Reduce this to detect blobs with less
        intensities.
    overlap : float, optional
        A value between 0 and 1. If the area of two blobs overlaps by a
        fraction greater than `threshold`, the smaller blob is eliminated.

    Returns
    -------
    A : (n, image.ndim + 1) ndarray
        A 2d array with each row representing 3 values for a 2D image,
        and 4 values for a 3D image: ``(r, c, sigma)`` or ``(p, r, c, sigma)``
        where ``(r, c)`` or ``(p, r, c)`` are coordinates of the blob and
        ``sigma`` is the standard deviation of the Gaussian kernel which
        detected the blob.

    References
    ----------
    .. [1] http://en.wikipedia.org/wiki/Blob_detection#The_difference_of_Gaussians_approach

    Examples
    --------
    >>> from skimage import data, feature
    >>> feature.blob_dog(data.coins(), threshold=.5, max_sigma=40)
    array([[  45.      ,  336.      ,   16.777216],
           [  52.      ,  155.      ,   16.777216],
           [  52.      ,  216.      ,   16.777216],
           [  54.      ,   42.      ,   16.777216],
           [  54.      ,  276.      ,   10.48576 ],
           [  58.      ,  100.      ,   10.48576 ],
           [ 120.      ,  272.      ,   16.777216],
           [ 124.      ,  337.      ,   10.48576 ],
           [ 125.      ,   45.      ,   16.777216],
           [ 125.      ,  208.      ,   10.48576 ],
           [ 127.      ,  102.      ,   10.48576 ],
           [ 128.      ,  154.      ,   10.48576 ],
           [ 185.      ,  347.      ,   16.777216],
           [ 193.      ,  213.      ,   16.777216],
           [ 194.      ,  277.      ,   16.777216],
           [ 195.      ,  102.      ,   16.777216],
           [ 196.      ,   43.      ,   10.48576 ],
           [ 198.      ,  155.      ,   10.48576 ],
           [ 260.      ,   46.      ,   16.777216],
           [ 261.      ,  173.      ,   16.777216],
           [ 263.      ,  245.      ,   16.777216],
           [ 263.      ,  302.      ,   16.777216],
           [ 267.      ,  115.      ,   10.48576 ],
           [ 267.      ,  359.      ,   16.777216]])

    Notes
    -----
    The radius of each blob is approximately :math:`\sqrt{2}sigma` for
    a 2-D image and :math:`\sqrt{3}sigma` for a 3-D image.
    """
    image = img_as_float(image)

    # k such that min_sigma*(sigma_ratio**k) > max_sigma
    k = int(log(float(max_sigma) / min_sigma, sigma_ratio)) + 1

    # a geometric progression of standard deviations for gaussian kernels
    sigma_list = np.array([min_sigma * (sigma_ratio ** i)
                           for i in range(k + 1)])

    gaussian_images = [gaussian_filter(image, s) for s in sigma_list]

    # computing difference between two successive Gaussian blurred images
    # multiplying with standard deviation provides scale invariance
    dog_images = [(gaussian_images[i] - gaussian_images[i + 1])
                  * sigma_list[i] for i in range(k)]

    # Replace by image_cube = np.stack(hessian_images, axis=-1)
    # When we upgrade minimal requirements to NumPy 1.10
    sl = (slice(None),) * image.ndim + (np.newaxis,)
    arrays = [np.asanyarray(arr) for arr in dog_images]
    extended_arrays = [arr[sl] for arr in arrays]
    image_cube = np.concatenate(extended_arrays, axis=-1)

    # local_maxima = get_local_maxima(image_cube, threshold)
    local_maxima = peak_local_max(image_cube, threshold_abs=threshold,
                                  footprint=np.ones((3,) * (image.ndim + 1)),
                                  threshold_rel=0.0,
                                  exclude_border=False)
    # Convert local_maxima to float64
    lm = local_maxima.astype(np.float64)
    # Convert the last index to its corresponding scale value
    lm[:, -1] = sigma_list[local_maxima[:, -1]]
    return _prune_blobs(lm, overlap)
Beispiel #31
0
 def test_flat_peak(self):
     image = np.zeros((5, 5), dtype=np.uint8)
     image[1:3, 1:3] = 10
     peaks = peak.peak_local_max(image, min_distance=1)
     assert len(peaks) == 4