Beispiel #1
0
    def test_wiener(self):
        F = self.f(self.img)
        g = wiener(F, predefined_filter=self.f)
        assert_equal(g.shape, self.img.shape)

        g1 = wiener(F[::-1, ::-1], predefined_filter=self.f)
        assert_((g - g1[::-1, ::-1]).sum() < 1)

        g1 = wiener(F[::-1, ::-1], self.filt_func)
        assert_((g - g1[::-1, ::-1]).sum() < 1)
Beispiel #2
0
    def test_wiener(self):
        F = self.f(self.img)
        g = wiener(F, predefined_filter=self.f)
        assert_equal(g.shape, self.img.shape)

        g1 = wiener(F[::-1, ::-1], predefined_filter=self.f)
        assert_((g - g1[::-1, ::-1]).sum() < 1)

        g1 = wiener(F[::-1, ::-1], self.filt_func)
        assert_((g - g1[::-1, ::-1]).sum() < 1)
Beispiel #3
0
    def test_wiener(self):
        with expected_warnings([SCIPY_ND_INDEXING_WARNING]):
            F = self.f(self.img)
            g = wiener(F, predefined_filter=self.f)
            assert_equal(g.shape, self.img.shape)

            g1 = wiener(F[::-1, ::-1], predefined_filter=self.f)
            assert_((g - g1[::-1, ::-1]).sum() < 1)

            g1 = wiener(F[::-1, ::-1], self.filt_func)
            assert_((g - g1[::-1, ::-1]).sum() < 1)
Beispiel #4
0
lap = laplace(gray0, ksize=100)
plt.imshow(lap)

pre = prewitt(gray0, mask=None)
plt.imshow(pre)

pre_v = prewitt_v(gray0, mask=None)
plt.imshow(pre_v)

from skimage import filters
edges2 = filters.roberts(gray0)
plt.imshow(edges2)

plt.imshow(scharr(gray0))
plt.imshow(threshold_mean(gray0))
plt.imshow(wiener(gray0))

#######################################
plt.imshow(img)
plt.imshow(gray0)
plt.imshow(image)
### TREES
plt.imshow(segmentation)
### CONTOURS
plt.imshow(img_back, cmap='gray')
### STREET
plt.imshow(gy)
plt.imshow(angle)
plt.imshow(binary_adaptive)
plt.imshow(binary_global)
#### STREET CALÇADA TREES BEST
Beispiel #5
0
lap=laplace(gray0,ksize=100)
plt.imshow(lap)

pre=prewitt(gray0, mask=None)
plt.imshow(pre)

pre_v=prewitt_v(gray0, mask=None)
plt.imshow(pre_v)

from skimage import filters
edges2 = filters.roberts(gray0)
plt.imshow(edges2)

plt.imshow(scharr(gray0))
plt.imshow(threshold_mean(gray0))
plt.imshow(wiener(gray0))

#######################################
plt.imshow(img)
plt.imshow(gray0)
plt.imshow(image)
### TREES
plt.imshow(segmentation)
### CONTOURS
plt.imshow(img_back, cmap = 'gray')
### STREET
plt.imshow(gy)
plt.imshow(angle)
plt.imshow(binary_adaptive)
plt.imshow(binary_global)
#### STREET CALÇADA TREES BEST
Beispiel #6
0
def wiener_deblur(frame):
    return wiener(frame,filt_func)