def rescale(root_new, root_old, img_path, ann_path, out_shape): try: img = io.imread(root_old + "/" + img_path) except Exception as E: print E h, w, _ = img.shape f_h, f_w = float(out_shape) / h, float(out_shape) / w trans_img = transform.rescale(img, (f_h, f_w)) num_objs = 0 with open(root_old + "/" + ann_path, 'r') as f: ann = f.readline() ann = ann.rstrip() ann = ann.split(' ') ann = [float(i) for i in ann] num_objs = len(ann) / 5 for idx in xrange(num_objs): ann[idx * 5 + 0] = int(f_w * ann[idx * 5 + 0]) ann[idx * 5 + 1] = int(f_h * ann[idx * 5 + 1]) ann[idx * 5 + 2] = int(f_w * ann[idx * 5 + 2]) ann[idx * 5 + 3] = int(f_h * ann[idx * 5 + 3]) # Write the new annotations to file with open(root_new + "/" + ann_path, 'w') as f_new: for val in ann: f_new.write(str(val) + ' ') # Save the new image io.imwrite(root_new + "/" + img_path, trans_img)
def rescale(root_new, root_old, img_path, ann_path, out_shape): try: img = io.imread(root_old+"/"+img_path) except Exception as E: print E h, w, _ = img.shape f_h, f_w = float(out_shape)/h, float(out_shape)/w trans_img = transform.rescale(img, (f_h, f_w)) num_objs = 0 with open(root_old+"/"+ann_path, 'r') as f: ann = f.readline() ann = ann.rstrip() ann = ann.split(' ') ann = [float(i) for i in ann] num_objs = len(ann) / 5 for idx in xrange(num_objs): ann[idx * 5 + 0] = int(f_w * ann[idx * 5 + 0]) ann[idx * 5 + 1] = int(f_h * ann[idx * 5 + 1]) ann[idx * 5 + 2] = int(f_w * ann[idx * 5 + 2]) ann[idx * 5 + 3] = int(f_h * ann[idx * 5 + 3]) # Write the new annotations to file with open(root_new+"/"+ann_path, 'w') as f_new: for val in ann: f_new.write(str(val)+' ') # Save the new image io.imwrite(root_new+"/"+img_path, trans_img)
def imwrite(path, im): try: import cv2 return cv2.imwrite(path, im) except ImportError: pass from skimage import io return io.imwrite(path, im)
recon[:] = obj.tv_loop(recon, dPOCS, ng) dg = np.linalg.norm(recon - temp_recon) if (dg > dp * r_max and dd_vec[i] > eps): dPOCS *= alpha_red tv_vec[i] = tv(recon) rmse_vec[i] = np.sqrt(((recon - img0)**2).mean()) if ((i + 1) % 300 == 0): if save: #save image recon[recon < 0] = 0 io.imwrite('eps_' + str(round(eps, 2)) + '_' + file_name, np.uint16(recon)) # add new epsilon parameters eps_vec[eps_ind, :] = (eps, i) eps_ind += 1 eps -= 5 beta = 0.3 recalc_l2 = True if save: file_name = file_name.replace('.tif', '') np.save('Results/dyn_eps.npy', eps_vec) np.save('Results/dyn_tv.npy', tv_vec) np.save('Results/dyn_dd.npy', dd_vec) np.save('Results/dyn_rmse.npy', rmse_vec)
# In[14]: kernel = load_kernel_from_file(ctx, '../datas/cl/rgb2gray.cl') # In[ ]: imageFormat = cl.ImageFormat(cl.channel_order.RGBA, cl.channel_type.UNSIGNED_INT8) img_in_dev = copy_image_to_device_readonly(ctx, src, imageFormat) # In[10]: img_out_dev = create_device_write_only_image(ctx, imageFormat, (src.shape[0], src.shape[1])) # In[14]: local_work_size = (8, 8) global_work_size = (cal_work_size(local_work_size[0], src.shape[0]), cal_work_size(local_work_size[1], src.shape[1])) print(local_work_size, global_work_size) kernel.gray_avg_filter(queue, global_work_size, local_work_size, img_in_dev, img_out_dev) # In[16]: output = copy_image_to_host(queue, img_out_dev, (src.shape[0], src.shape[1]), np.uint8) skio.imwrite('../temp/cl_output.jpg')
import os import sys from skimage import io from modules.histogramNormalizing import matchHistograms reference = sys.argv[1] target = sys.argv[2] prefix = os.path.splitext(reference)[0] matched = matchHistograms(reference, target) io.imwrite(f"{prefix}_matched.tif", matched)
def write_image(datapath, timestamp, imraw): filename = os.path.join(datapath, timestamp.strftime('D%Y%m%dT%H%M%S.%f.bmp')) imwrite(filename, np.uint8(imraw)) logger.info('Image written')