def evaluation(root_dir):
    mse_total = 0
    psnr_total = 0
    fmse_total = 0
    count = 0
    for comp_name in os.listdir(root_dir):
        comp = Image.open(comp_name)
        comp = comp.resize(IMAGE_SIZE, Image.BICUBIC)
        comp = np.array(comp, dtype=np.float32)

        real = Image.open(real_name(comp_name))
        real = real.resize(IMAGE_SIZE, Image.BICUBIC)
        real = np.array(real, dtype=np.float32)

        mask = Image.open(mask_name(comp_name))
        mask = mask.convert('1')
        mask = mask.resize(IMAGE_SIZE, Image.BICUBIC)
        mask = np.array(mask, dtype=np.uint8)
        fore_area = np.sum(np.sum(mask, axis=0), axis=0)
        mask = mask[..., np.newaxis]

        mse_total += mse(comp, real)
        psnr_total += psnr(real, comp, data_range=comp.max() - comp.min())
        fmse_total += mse(comp * mask, real * mask) * 256 * 256 / fore_area
        count += 1
    print(
        "%s MSE %0.2f | PSNR %0.2f | fMSE %0.2f" %
        (comp_name, mse_total / count, psnr_total / count, fmse_total / count))
Beispiel #2
0
def run_evaluation_metrics():
    # run_replace()
    # run_eval()
    a_org = cv2.imread('eval_replace_ground.jpg')
    a_rep = cv2.imread('eval_replace_out_aer.jpg')
    a_dic = cv2.imread('eval_dict.jpg')
    a_gan = cv2.imread('eval_gan_out_ground.jpg')

    a_mask = cv2.imread('eval_replace_out_cld.jpg')
    a_mask[a_mask > 1] = 1

    from skimage.measure import compare_psnr as psnr
    from skimage.measure import compare_mse as mse
    from skimage.measure import compare_ssim as ssim

    for a in (a_rep, a_dic, a_gan):  # ssim
        print("| PSNR %e MSE %e SSIM: %e" % (psnr(a_org, a),
                                             mse(a_org, a),
                                             ssim(a_org, a, multichannel=True)))
    # a_mask = cv2.imread('eval_replace_out_cld.jpg')
    # print(np.sum(a_mask // 255), a_mask.shape[0] * a_mask.shape[1])
    # 11205 262144
    """
    | PSNR 1.805008e+01 MSE 1.018760e+03 SSIM: 8.988292e-01
    | PSNR 2.858750e+01 MSE 9.001815e+01 SSIM: 9.069278e-01
    | PSNR 3.486142e+01 MSE 2.122945e+01 SSIM: 9.710586e-01
    """
    # mask_num = np.sum(a_mask)
    # print("| mask num:", mask_num)
    # for a in (a_rep, a_dic, a_gan):  # EER
    #     print("|", np.sum((a_org / 255.0 - a / 255.0) ** 2 / (a_org / 255.0)) / mask_num)
    """
Beispiel #3
0
def get_metrics(images, metric):
    height, width = images.shape[0], images.shape[1]

    width_cutoff = width // 2
    s1 = images[..., :width_cutoff, :]
    s2 = images[..., width_cutoff:, :]

    s1[s1 == np.nan] = 0
    s2[s2 == np.nan] = 0

    sum = 0
    s1 = np.expand_dims(s1, 0)
    s2 = np.expand_dims(s2, 0)

    for left, right in zip(s1, s2):
        if (metric == "ssim"):
            sum += ssim(left,
                        right,
                        data_range=right.max() - right.min(),
                        multichannel=True)
        elif (metric == "psnr"):
            sum += psnr(left, right)
        elif (metric == "mse"):
            sum += mse(left, right)
        else:
            print("Metric not recognized")
            exit()

    return sum
Beispiel #4
0
def run_eval_metrics():
    from skimage.measure import compare_psnr as psnr
    from skimage.measure import compare_mse as mse
    from skimage.measure import compare_ssim as ssim

    grounds = np.load('grounds.npy')

    for dir in ('eval_low_rank', 'eval_dict', 'eval_two_stage1', 'eval_ground'):
        eval_matrics = list()
        for i, ground in enumerate(grounds):
            if i == 3 or 8 <= i <= 10:
                continue
            # ground = cv2.imread('%s/%02d.jpg' % ('eval_ground', i))
            result = cv2.imread('%s/%02d.jpg' % (dir, i))
            # print("| PSNR %e MSE %e SSIM: %e" %
            #       (psnr(ground, result),
            #        mse(ground, result),
            #        ssim(ground, result, multichannel=True)))
            eval_matrics.append((
                ssim(ground, result, multichannel=True),
                psnr(ground, result),
                mse(ground, result),
                np.mean((ground - result) ** 2),
            ))

        eval_matrics = np.array(eval_matrics)
        np.save('%s/eval.npy' % dir, eval_matrics)

    for dir in ('eval_low_rank', 'eval_dict', 'eval_two_stage1', 'eval_ground'):
        print("%16s SSIM PSNR MSE L2:" % dir,
              np.average(np.load('%s/eval.npy' % dir), axis=0))
Beispiel #5
0
def compare_images(imageA, imageB, title):
    height, width = imageA.shape
    imageB = cv2.resize(imageB, (width, height), cv2.INTER_LINEAR)

    # compute the mean squared error and structural similarity
    # index for the images
    m = mse(imageA, imageB)
    s = ssim(imageA, imageB)

    # setup the figure
    fig = plt.figure(title)
    plt.suptitle("MSE: %.2f, SSIM: %.2f" % (m, s))

    # show first image
    ax = fig.add_subplot(1, 2, 1)
    plt.imshow(imageA, cmap=plt.cm.gray)
    plt.axis("off")

    # show the second image
    ax = fig.add_subplot(1, 2, 2)
    plt.imshow(imageB, cmap=plt.cm.gray)
    plt.axis("off")

    # show the images
    plt.show()
Beispiel #6
0
def find_angle(original,
               canvas,
               color,
               where,
               brush_stroke_length_min,
               brush_stroke_length_max,
               brush_stroke_length_step,
               brush_stroke_width,
               min_angle=0,
               max_angle=180,
               step=12):
    x, y = where
    r = brush_stroke_length_max
    o = original.crop((x - r, y - r, x + r, y + r))
    can = canvas.crop((x - r, y - r, x + r, y + r))
    lowest_error = None
    best_angle = None
    best_length = None
    for brush_stroke_length in range(brush_stroke_length_min,
                                     brush_stroke_length_max,
                                     brush_stroke_length_step):
        for a in range(min_angle, max_angle, step):
            c = can.copy()
            d = ImageDraw.Draw(c)
            brushstroke(d, (r, r), a, color, brush_stroke_length,
                        brush_stroke_width)
            del d
            error = mse(o, c)
            del c
            if lowest_error is None or error < lowest_error:
                lowest_error = error
                best_angle = a
                best_length = brush_stroke_length
    return best_angle, best_length
def common_train(model, img_rows, img_cols, BATCH_SIZE):
    val_noise = np.concatenate([
        val_file[:, 0:5],
        np.zeros((val_file.shape[0], 1, img_rows, img_cols, 1))
    ],
                               axis=1)
    image2 = val_file[0, 5, :, :, 0] * 255
    for epoch in range(total_epoch):
        test_gen_img = model.predict(val_noise, verbose=0)
        image1 = test_gen_img[0] * 255
        saveimages(image2, image1[5, :, :, 0], COMPARE_DIR)
        for i in range(7):
            input_img = np.concatenate([
                train_file[:, i:5 + i],
                np.zeros((train_file.shape[0], 1, img_rows, img_cols, 1))
            ],
                                       axis=1)
            loss = model.fit(input_img,
                             train_file[:, i:6 + i],
                             batch_size=BATCH_SIZE,
                             epochs=1,
                             verbose=0)
        image1 = image1 / 255
        image2 = image2 / 255
        mse_s = mse(image2, image1[5, :, :, 0])
        ssim_s = compute_mssim(image2, image1[5, :, :, 0])
        print("[epoch %s][loss : %f] [MSE : %f] [SSIM : %f]" %
              (epoch, loss.history['loss'][0], mse_s, ssim_s))
        model.save_weights(WEIGHTS_DIR + str(epoch) + '.h5')
Beispiel #8
0
def compare_image(url):
    grayA = cv2.imread(
        '/home/korbit-users/phishing_scripts/phishing_tmp2/main.png',
        cv2.IMREAD_GRAYSCALE)
    grayB = cv2.imread(
        '/home/korbit-users/phishing_scripts/phishing_tmp2/tmp.png',
        cv2.IMREAD_GRAYSCALE)
    grayC = cv2.imread(
        '/home/korbit-users/phishing_scripts/phishing_tmp2/login.png',
        cv2.IMREAD_GRAYSCALE)

    score = ssim(grayA, grayB)
    m = mse(grayA, grayB)
    score2 = ssim(grayC, grayB)
    m2 = mse(grayC, grayB)

    url = urllib.parse.unquote(url)
    ttt = 'https://portal.korbit.co.kr'
    tt = 'https://portal.korbit.co.kr/login'

    if (score * 100 >= 95.5 and m <= 300):
        # print(url)
        # print('score:'+str(score*100))
        # print('m:'+str(m))
        message = '*phishing site detected : *' + url + ' (' + str(
            round((score * 100), 2)) + '%)'
        payload = {'text': message}
        requests.post(slack_url, json=payload)
        if (ne(str(url), ttt)):
            shutil.copyfile(
                '/home/korbit-users/phishing_scripts/phishing_tmp2/tmp.png',
                '/home/korbit-users/phishing_scripts/phishing_tmp2/' +
                str(score) + '.png')

    if (score2 * 100 >= 95.5 and m2 <= 300):
        # print(url)
        # print('score2:'+str(score2*100))
        # print('m2:'+str(m2))
        message = '*phishing site detected : *' + url + ' (' + str(
            round((score2 * 100), 2)) + '%)'
        payload = {'text': message}
        requests.post(slack_url, json=payload)
        if (ne(str(url), tt)):
            shutil.copyfile(
                '/home/korbit-users/phishing_scripts/phishing_tmp2/tmp.png',
                '/home/korbit-users/phishing_scripts/phishing_tmp2/' +
                str(score2) + '.png')
Beispiel #9
0
def calc_mse(gt, img):
    """
    Calculate mean squared error
    @param gt: ground truth
    @param: img: input image
    """
    mse_const = mse(gt, img)
    return mse_const
Beispiel #10
0
def compare_images_silent(imageA, imageB):
    imageA = cv2.cvtColor(imageA, cv2.COLOR_RGB2GRAY)
    imageB = cv2.cvtColor(imageB, cv2.COLOR_RGB2GRAY)
    m = mse(imageA, imageB)
    s = ssim(imageA, imageB)
    p = psnr(imageA, imageB)

    print("PSNR: %.2f MSE: %.2f SSIM: %.2f" % (p, m, s))
    return m
Beispiel #11
0
def get_scores(img1, img2, method="ssim"):

    if method == "ssim":
        return ssim(img1, img2)
    elif method == ["mse"]:
        return mse(img1, img2)
    elif method == "nrmse":
        return nrmse(img1, img2)

    return None
Beispiel #12
0
def compute_image_quality_metrics(ground_truth_images, ground_truth_angles, generated_images, generated_angles):
    # order the images according to ascending angle
    ground_truth_images = ground_truth_images[np.argsort(ground_truth_angles[:, 0], 0)]
    generated_images = generated_images[np.argsort(generated_angles[:, 0], 0)]

    loop_mse, loop_nrmse, loop_ssim = [], [], []
    for (im_gt, im_gen) in zip(ground_truth_images, generated_images):
        loop_mse.append(mse(im_gt, im_gen))
        loop_nrmse.append(nrmse(im_gt, im_gen))
        loop_ssim.append(ssim(im_gt.squeeze(), im_gen.squeeze()))
    return np.array(loop_mse).mean(), np.array(loop_nrmse).mean(), np.array(loop_ssim).mean()
Beispiel #13
0
def computeSimilarity(imgA, imgB):
    for item in imgA:
        if item == [255, 255, 255]:
            ind = imgA.index(item)
            print(ind)
            del imgA[ind]
            del imgB[ind]

    imageA = np.array(imgA)
    imageB = np.array(imgB)

    return mse(imageA, imageB)
Beispiel #14
0
def do_all_metrics(comparison_dict):

    pairs_lvl0 = [k for k in comparison_dict.iterkeys()]

    for p in pairs_lvl0:

        data_keys = [j for j in comparison_dict[p].iterkeys()]
        regex = re.compile('2')
        snow = [string for string in data_keys if re.match(regex, string)]

        comparison_dict[p]['MSE'] = round(
            mse(comparison_dict[p][data_keys[0]],
                comparison_dict[p][data_keys[1]]), 3)

        comparison_dict[p]['SSIM'] = round(
            ssim(comparison_dict[p][data_keys[0]],
                 comparison_dict[p][data_keys[1]]), 3)

        comparison_dict[p]['MSE Map'] = (comparison_dict[p][data_keys[0]] -
                                         comparison_dict[p][data_keys[1]])**2

        comparison_dict[p]['SSIM Map'] = ssim(comparison_dict[p][data_keys[0]],
                                              comparison_dict[p][data_keys[1]],
                                              full=True)[1]

        comparison_dict[p]['CW-SSIM'] = cw_ssim(
            comparison_dict[p][data_keys[0]], comparison_dict[p][data_keys[1]],
            40)[0]

        comparison_dict[p]['CW-SSIM Map'] = cw_ssim(
            comparison_dict[p][data_keys[0]], comparison_dict[p][data_keys[1]],
            40)[1]

        comparison_dict[p]['GMS'] = gmsd(comparison_dict[p][snow[0]],
                                         comparison_dict[p][snow[1]])[0]

        comparison_dict[p]['GMS Map'] = gmsd(comparison_dict[p][snow[0]],
                                             comparison_dict[p][snow[1]])[1]

        comparison_dict[p][snow[0] + ' DCT Map'] = discrete_cosine(
            comparison_dict[p][snow[0]], comparison_dict[p][snow[1]])[0]

        comparison_dict[p][snow[1] + ' DCT Map'] = discrete_cosine(
            comparison_dict[p][snow[0]], comparison_dict[p][snow[1]])[1]

        comparison_dict[p][snow[0] + ' DCT Curve'] = discrete_cosine(
            comparison_dict[p][snow[0]], comparison_dict[p][snow[1]])[2]

        comparison_dict[p][snow[1] + ' DCT Curve'] = discrete_cosine(
            comparison_dict[p][snow[0]], comparison_dict[p][snow[1]])[3]

        comparison_dict[p]['FSIM'] = feature_sim(comparison_dict[p][snow[0]],
                                                 comparison_dict[p][snow[1]])
Beispiel #15
0
def do_all_metrics(comparison_dict):
    
    pairs_lvl0 = [k for k in comparison_dict.iterkeys()]
    
    for p in pairs_lvl0:
        
        data_keys = [j for j in comparison_dict[p].iterkeys()]
        regex = re.compile('2')
        snow = [string for string in data_keys if re.match(regex, string)]
        
        comparison_dict[p]['MSE'] = round(mse(comparison_dict[p][data_keys[0]],
                                        comparison_dict[p][data_keys[1]]),3)
                                        
        comparison_dict[p]['SSIM'] = round(ssim(comparison_dict[p][data_keys[0]],
                                        comparison_dict[p][data_keys[1]]),3)
                                        
        comparison_dict[p]['MSE Map'] = (comparison_dict[p][data_keys[0]] - 
                                          comparison_dict[p][data_keys[1]])**2
                                          
        comparison_dict[p]['SSIM Map'] = ssim(comparison_dict[p][data_keys[0]], 
                                          comparison_dict[p][data_keys[1]],
                                            full = True)[1]
    
        comparison_dict[p]['CW-SSIM'] = cw_ssim(comparison_dict[p][data_keys[0]],
                                        comparison_dict[p][data_keys[1]], 40)[0]
                                        
        comparison_dict[p]['CW-SSIM Map'] = cw_ssim(comparison_dict[p][data_keys[0]],
                                        comparison_dict[p][data_keys[1]], 40)[1]
                                        
        comparison_dict[p]['GMS'] = gmsd(comparison_dict[p][snow[0]],
                                        comparison_dict[p][snow[1]])[0]
                                        
        comparison_dict[p]['GMS Map'] = gmsd(comparison_dict[p][snow[0]],
                                        comparison_dict[p][snow[1]])[1]

    
        comparison_dict[p][snow[0]+' DCT Map'] = discrete_cosine(comparison_dict[p][snow[0]],
                                        comparison_dict[p][snow[1]])[0]
                                        
        comparison_dict[p][snow[1]+' DCT Map'] = discrete_cosine(comparison_dict[p][snow[0]],
                                        comparison_dict[p][snow[1]])[1]
                                        
        comparison_dict[p][snow[0]+' DCT Curve'] = discrete_cosine(comparison_dict[p][snow[0]],
                                        comparison_dict[p][snow[1]])[2]
                                        
        comparison_dict[p][snow[1]+' DCT Curve'] = discrete_cosine(comparison_dict[p][snow[0]],
                                        comparison_dict[p][snow[1]])[3]
                                        
                                        
        comparison_dict[p]['FSIM'] = feature_sim(comparison_dict[p][snow[0]],
                                        comparison_dict[p][snow[1]])
def compare(original, restored):
    """
        Side by side comparison of the original image and reconstruction effort with MSE, PSNR, and SSIM labels
    """
    if original.dtype != restored.dtype:
        warnings.warn(
            "The images are different data types. Converting both images to floats within 0-1 range"
        )
        original = normalize(original.astype(float), 0, 1)
        restored = normalize(restored.astype(float), 0, 1)

    fig, axes = plt.subplots(nrows=1,
                             ncols=2,
                             sharex=True,
                             sharey=True,
                             subplot_kw={'adjustable': 'box-forced'})
    ax = axes.ravel()

    mse_original = mse(original, original)
    psnr_original = psnr(original, original)
    ssim_original = ssim(original, original)

    mse_restored = mse(original, restored)
    psnr_restored = psnr(original, restored)
    ssim_restored = ssim(original, restored)

    label = 'MSE: {:.2f}, PSNR: {:.2F}, SSIM: {:.2f}'

    ax[0].imshow(original, cmap='gray', vmin=0, vmax=1)
    ax[0].set_xlabel(label.format(mse_original, psnr_original, ssim_original))
    ax[0].set_title('Original image')

    ax[1].imshow(restored, cmap='gray', vmin=0, vmax=1)
    ax[1].set_xlabel(label.format(mse_restored, psnr_restored, ssim_restored))
    ax[1].set_title('Restored image')

    plt.tight_layout()
    plt.show()
def quant(res, org):
    res = res[:, :, 0]
    org = org[:, :, 0]
    #print(img1)
    '''mse = np.mean( (img1 - img2) ** 2 )
    #print(img1.shape)
    if mse == 0:
        return 0, 100
    PIXEL_MAX = 255.0
    return mse, 20 * math.log10(PIXEL_MAX / math.sqrt(mse)), ss
    '''
    ss = (1 + ssim(res, org, data_range=res.max() - res.min())) / 2
    ms = mse(res, org)
    ps = psnr(res, org)
    return ms, ps, ss
Beispiel #18
0
    def computeSimilarity(self, imgA, imgB):
        instanceImgA = []
        instanceImgB = []
        instanceImgA[:] = imgA
        instanceImgB[:] = imgB
        for item in instanceImgA:
            if item == [255, 255, 255]:
                ind = instanceImgA.index(item)
                del instanceImgA[ind]
                del instanceImgB[ind]

        imageA = np.array(instanceImgA)
        imageB = np.array(instanceImgB)

        return mse(imageA, imageB)
Beispiel #19
0
def run_metrics(images):
    """
    Test the given collection of image pairs with a set of measures and return the results
    """
    mse_results = list()
    ssim_results = list()

    for ((image_a_name, image_a), (image_b_name, image_b)) in images:
        mse_results.append(mse(image_a, image_b))
        ssim_results.append(
            ssim(image_a,
                 image_b,
                 multichannel=True,
                 data_range=image_a.max() - image_b.min()))

    return list(zip(mse_results, ssim_results))
Beispiel #20
0
def show_with_diff(image, reference, title):
    # The image
    textSize = 22
    difference = image - reference
    image_seY = np.sqrt(np.sum(difference**2))
    image_mseY = mse(image, reference)
    image_psnrY = psnr(reference, image)
    image_ssimY = ssim(image, reference)
    plt.figure(figsize=(20, 10))
    plt.subplot(1, 3, 1)
    plt.title('Face Original\n', size=textSize, fontweight="bold")
    plt.imshow(reference,
               vmin=0,
               vmax=1,
               cmap=plt.cm.gray,
               interpolation='nearest')
    plt.xticks(())
    plt.yticks(())
    plt.subplot(1, 3, 2)
    plt.title(
        'Difference \n$\ell_2: {0:.2f}, MSE: {1:.4f}, PSNR: {2:.2f}, SSIM: {3:.2f}$'
        .format(image_seY, image_mseY, image_psnrY, image_ssimY),
        size=textSize,
        fontweight="bold")
    plt.imshow(difference,
               vmin=-0.5,
               vmax=0.5,
               cmap=plt.cm.PuOr,
               interpolation='nearest')
    plt.xticks(())
    plt.yticks(())
    plt.subplot(1, 3, 3)
    if (title == 'Noise filled image'):
        plt.title('Face with Gaussian Noise\n$\sigma^{2}=0.005$',
                  size=textSize,
                  fontweight="bold")
    else:
        plt.title('Face after Cloud K-SVD\n', size=textSize, fontweight="bold")
    plt.imshow(image,
               vmin=0,
               vmax=1,
               cmap=plt.cm.gray,
               interpolation='nearest')
    plt.xticks(())
    plt.yticks(())
    plt.savefig('results\\' + timestr + '\\' + title + '.pdf')
Beispiel #21
0
def main():
    img = cv2.imread(INVENTORY_IMAGE_PATH, cv2.IMREAD_COLOR)
    item_list = build_item_list(DATA_DIR)
    # Canny params
    thresh = 1000
    thresh_2 = thresh/3
    elipse = (9, 9)
    # Sim measure to use
    sim_type = 'mse'

    print("extracting coords")
    for x in range(GRID_COORDS[0][0], GRID_COORDS[1][0], GRID_SQUARE_SIZE_PX):
        for y in range(GRID_COORDS[0][1], GRID_COORDS[2][1], GRID_SQUARE_SIZE_PX):
            item_image = img[y:y + GRID_SQUARE_SIZE_PX, x:x + GRID_SQUARE_SIZE_PX]
            item = extract_item(item_image, thresh, thresh_2, elipse)

            cv2.imshow("extraction", np.hstack([item_image, item]))
            cv2.waitKey(0)

            best_sim = None
            best_sim_name = None
            best_sim_image = None

            for icon_name, icon_image in item_list:

                ssim_sim = ssim(item, icon_image, multichannel=True)
                mse_sim = mse(item, icon_image)

                if sim_type == 'mse':
                    sim = np.round(mse_sim, 2)
                    is_best_sim = not best_sim or sim < best_sim
                else:
                    sim = np.round(ssim_sim, 2)
                    is_best_sim = not best_sim or sim < best_sim

                if is_best_sim:
                    best_sim = sim
                    best_sim_name = icon_name
                    best_sim_image = icon_image

            print(best_sim)
            cv2.imshow(best_sim_name, np.hstack([item_image, best_sim_image]))
            cv2.waitKey(0)
def show_with_diff(image, reference, title):
    # The image
    image_normY = np.sqrt(np.sum((image - reference)**2))
    image_mseY = mse(image, reference)
    image_psnrY = psnr(reference, image)
    image_ssimY = ssim(image, reference)
    """Helper function to display denoising"""
    plt.figure(figsize=(15, 5))
    plt.subplot(1, 3, 1)
    plt.title('Original\n')
    plt.imshow(reference,
               vmin=0,
               vmax=1,
               cmap=plt.cm.gray,
               interpolation='nearest')
    plt.xticks(())
    plt.yticks(())
    plt.subplot(1, 3, 2)
    difference = image - reference
    plt.title(
        'Difference \n$\ell_2$: {0:.2f}, $MSE$: {1:.4f}, $PSNR$: {2:.2f}, $SSIM$: {3:.2f}'
        .format(image_normY, image_mseY, image_psnrY, image_ssimY))
    plt.imshow(difference,
               vmin=-0.5,
               vmax=0.5,
               cmap=plt.cm.PuOr,
               interpolation='nearest')
    plt.xticks(())
    plt.yticks(())
    plt.subplot(1, 3, 3)
    plt.title('Reconstruction\n')
    plt.imshow(image,
               vmin=0,
               vmax=1,
               cmap=plt.cm.gray,
               interpolation='nearest')
    plt.xticks(())
    plt.yticks(())
    plt.suptitle(title, size=16)
    plt.subplots_adjust(0.02, 0.02, 0.98, 0.82, 0.02, 0.1)
    plt.savefig('results\\' + timestr + '\\' + title + '.pdf')
    plt.savefig('results\\' + timestr + '\\' + title + '.png')
def getResults(data, model):
    if HR == False:
        ground_truth = data['p0_true']
        das = data['p0_recons']
    else:
        ground_truth = data['p0_hr']
        das = imresize(data['p0_recons'], [512, 512])
    arti = data['p0_hil']
    arti = arti.reshape([1, 256, 256, 1])
    pred = model.predict(arti, steps=1)
    if HR == True:
        pred = pred.reshape([512, 512])
    else:
        pred = pred.reshape([256, 256])

    temp = ssim(ground_truth, pred, data_range=pred.max() - pred.min())
    temp2 = psnr(ground_truth, pred, data_range=pred.max() - pred.min())
    temp3 = mse(ground_truth, pred)

    return temp, temp2, temp3
Beispiel #24
0
def do_all_metrics():

    pairs = [k for k in compare_years_l1.iterkeys()]

    for p in pairs:

        t = [k for k in combinations(compare_years_l1[p].iterkeys(), 2)]
        yr1 = t[0][0]
        yr2 = t[0][1]

        compare_years_l1[p]['MSE'] = round(
            mse(compare_years_l1[p][yr1], compare_years_l1[p][yr2]), 3)
        compare_years_l1[p]['MSE Map'] = (compare_years_l1[p][yr1] -
                                          compare_years_l1[p][yr2])**2

        ssim_results = ssim(compare_years_l1[p][yr1],
                            compare_years_l1[p][yr2],
                            full=True)
        compare_years_l1[p]['SSIM'] = round(ssim_results[0], 3)
        compare_years_l1[p]['SSIM Map'] = ssim_results[1]

        cw_ssim_results = cw_ssim(compare_years_l1[p][yr1],
                                  compare_years_l1[p][yr2],
                                  20)  #width of filter
        compare_years_l1[p]['CW-SSIM'] = round(cw_ssim_results[0], 3)
        compare_years_l1[p]['CW-SSIM Map'] = cw_ssim_results[1]

        gmsd_results = gmsd(compare_years_l1[p][yr1], compare_years_l1[p][yr2])
        compare_years_l1[p]['GMSD'] = round(gmsd_results[0], 3)
        compare_years_l1[p]['GMSD Map'] = gmsd_results[1]

        tr_res = discostrans(compare_years_l1[p][yr1],
                             compare_years_l1[p][yr2])
        compare_years_l1[p]['DCT Map ' + yr1] = tr_res[0]
        compare_years_l1[p]['DCT Map ' + yr2] = tr_res[1]
        compare_years_l1[p]['DCT Graph ' + yr1] = tr_res[2]
        compare_years_l1[p]['DCT Graph ' + yr2] = tr_res[3]

        compare_years_l1[p]['FSIM'] = ft_sim(compare_years_l1[p][yr1],
                                             compare_years_l1[p][yr2])
Beispiel #25
0
def show_with_diff(image, reference):
    textSize = 22
    difference = image - reference
    image_seY = np.sqrt(np.sum(difference**2))
    image_mseY = mse(image, reference)
    image_psnrY = psnr(reference, image)
    image_ssimY = ssim(image, reference)
    plt.figure(figsize=(20, 10))
    plt.subplot(1, 3, 1)
    plt.title('Noise filled CT Scan\n', size=textSize, fontweight="bold")
    plt.imshow(reference,
               vmin=0,
               vmax=1,
               cmap=plt.cm.bone,
               interpolation='nearest')
    plt.xticks(())
    plt.yticks(())
    plt.subplot(1, 3, 2)
    plt.title(
        'Difference \n$\ell_2: {0:.2f}, MSE: {1:.4f}, PSNR: {2:.2f}, SSIM: {3:.2f}$'
        .format(image_seY, image_mseY, image_psnrY, image_ssimY),
        size=textSize,
        fontweight="bold")
    plt.imshow(difference,
               vmin=-0.5,
               vmax=0.5,
               cmap=plt.cm.PuOr,
               interpolation='nearest')
    plt.xticks(())
    plt.yticks(())
    plt.subplot(1, 3, 3)
    plt.title('CT Scan after Cloud K-SVD\n', size=textSize, fontweight="bold")
    plt.imshow(image,
               vmin=0,
               vmax=1,
               cmap=plt.cm.bone,
               interpolation='nearest')
    plt.xticks(())
    plt.yticks(())
    plt.savefig('results\\' + timestr + '\\Reconstructed image.pdf')
Beispiel #26
0
def compare_images(imageA, imageB, title):
    # compute the mean squared error and structural similarity
    # index for the images
    m = mse(imageA, imageB)
    s = ssim(imageA, imageB, multichannel=True)

    # setup the figure
    fig = plt.figure(title)
    plt.suptitle("MSE: %.2f, SSIM: %.2f" % (m, s))

    # show first image
    ax = fig.add_subplot(1, 2, 1)
    plt.imshow(imageA)
    plt.axis("off")

    # show the second image
    ax = fig.add_subplot(1, 2, 2)
    plt.imshow(imageB)
    plt.axis("off")

    # show the images
    plt.show()
Beispiel #27
0
def compare_images(imageA, imageB, title):
    # compute the mean squared error and structural similarity
    # index for the images
    m = mse(imageA, imageB)
    s = ssim(imageA, imageB)
    p = psnr(imageA, imageB)

    # setup the figure
    fig = plt.figure(title)
    plt.suptitle("PSNR: %.2f MSE: %.2f SSIM: %.2f" % (p, m, s))
    print("PSNR: %.2f MSE: %.2f SSIM: %.2f" % (p, m, s))
    # show first image
    ax = fig.add_subplot(1, 2, 1)
    plt.imshow(imageA, cmap=plt.cm.gray)
    plt.axis("off")

    # show the second image
    ax = fig.add_subplot(1, 2, 2)
    plt.imshow(imageB, cmap=plt.cm.gray)
    plt.axis("off")

    # show the images
    plt.show()
Beispiel #28
0
def reg_mse(data):
    for d in data:
        mse_vals.append((mse(data[0], d)).round(2))
        mse_maps.append((data[0] - d)**2)
    if opt.eval:
        model.eval()
    for i, data in enumerate(dataset):
        if i >= opt.num_test:  # only apply our model to opt.num_test images.
            break
        model.set_input(data)  # unpack data from data loader
        model.test()           # run inference
        visuals = model.get_current_visuals()  # get image results
        img_path = str(data['img_path'])
        raw_name = img_path.replace(('[\''),'')
        raw_name = raw_name.replace(('.jpg\']'),'.jpg')
        raw_name = raw_name.split('/')[-1]
        image_name = '%s' % raw_name
        save_path = os.path.join(web_dir,'images/',image_name)
        for label, im_data in visuals.items():
            if label=='output':
                output = util.tensor2im(im_data)
                util.save_image(output, save_path, aspect_ratio=opt.aspect_ratio)
                output =np.array(output, dtype=np.float32)
            if label=='real':
                real=util.tensor2im(im_data)
                real=np.array(real, dtype=np.float32)
            if label=='comp':
                comp=util.tensor2im(im_data)
                comp=np.array(comp, dtype=np.float32)
        mse_score_op = mse(output,real)
        psnr_score_op = psnr(real,output,data_range=output.max() - output.min())
        print('%s | mse %0.2f | psnr %0.2f' % (image_name,mse_score_op,psnr_score_op))

    webpage.save()  # save the HTML
def reg_mse(data):
    for d in data:
        mse_vals.append(( mse ( data[0], d )).round(2))
        mse_maps.append((data[0] - d) ** 2)
    # print(up_left, down_right)
    cv2.rectangle(frame, up_left1, down_right1, (0, 255, 0), 3)


ret, temp = cap.read()
tm = 0
while cap.isOpened():
    key = cv2.waitKey(1)
    if key == ord("q"):
        break
    if key == ord('s'):
        cv2.imwrite(id_generator() + '.jpg', frame2)

    # Capture frame-by-frame
    ret, frame = cap.read()
    m = mse(cv2.cvtColor(temp, cv2.COLOR_BGR2GRAY), cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY))
    print('mse', m, '----\n')
    if abs(m - tm) < 2:  # 静止画面,不用重复计算
        continue
    else:
        temp = frame.copy()
        tm = m
    #
    # print(margin,frame.shape[0] - margin, margin,frame.shape[1] - margin)#40 680 40 1240
    frame2 = frame[margin:frame.shape[0] - margin, margin:frame.shape[1] - margin]  # .copy()
    # cv2.imshow('frame2', frame2)

    gray = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY)
    # edges = cv2.Canny(gray, 50, 150, apertureSize=3)

    # HoughCircles(image, method, dp, minDist, circles=None, param1=None, param2=None, minRadius=None, maxRadius=None)
Beispiel #32
0
def compute_score_train(data, model, batch_size, FRAME, img_rows, img_cols):
    preimage = predictImage(data, FRAME, model, batch_size, img_rows,
                            img_cols) / 255
    mse_s = mse(data[:, 5:, :, :, 0], preimage[:, 5:])
    ssim_s = compute_mssim(data[:, 5:, :, :, 0], preimage[:, 5:])
    return mse_s, ssim_s, preimage[0, 5]
Beispiel #33
0
def mean_square_error(window_orig, window_warped, weights=1):
    #    MSE = np.mean(weights*(window_orig - window_warped) ** 2)
    MSE = mse(window_orig, window_warped)
    return MSE
title='camera compare'
plt.ion()

# cap.read()
# cap.read()
# cap.read()
# cap.read()
ret, frame = cap.read()
temp = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#TODO 前10帧
while cap.isOpened():
    ret, frame = cap.read()
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    #
    m = mse(temp, gray)
    s = ssim(temp, gray)
    print("MSE: %.2f, SSIM: %.2f" % (m, s))
    #
    temp = gray.copy()
    continue

    # # setup the figure
    # fig = plt.figure(title)
    # plt.suptitle("MSE: %.2f, SSIM: %.2f" % (m, s))
    #
    # # show first image
    # ax = fig.add_subplot(1, 2, 1)
    # plt.imshow(temp, cmap=plt.cm.gray)
    # plt.axis("off")
    #