def evalOne(parameters):
    all_obs = []
    all_pred = []
    for location in locations:
        trainX, testX, trainY, testY = splitDataForXValidation(location, "location", data, all_features, "target")
        normalizer_X = StandardScaler()
        trainX = normalizer_X.fit_transform(trainX)
        testX = normalizer_X.transform(testX)
        normalizer_Y = StandardScaler()
        trainY = normalizer_Y.fit_transform(trainY)
        testY = normalizer_Y.transform(testY)
        model = BaggingRegressor(base_estimator=SVR(kernel='rbf', C=parameters["C"], cache_size=5000), max_samples=parameters["max_samples"],n_estimators=parameters["n_estimators"], verbose=0, n_jobs=-1)
        model.fit(trainX, trainY)
        prediction = model.predict(testX)
        prediction = normalizer_Y.inverse_transform(prediction)
        testY = normalizer_Y.inverse_transform(testY)
        all_obs.extend(testY)
        all_pred.extend(prediction)
        
    return rmseEval(all_obs, all_pred)[1]
    print(str(location))
    trainX, testX, trainY, testY = splitDataForXValidation(
        location, "location", data, all_features, "target")
    normalizer_X = StandardScaler()
    trainX = normalizer_X.fit_transform(trainX)
    testX = normalizer_X.transform(testX)
    normalizer_Y = StandardScaler()
    trainY = normalizer_Y.fit_transform(trainY)
    testY = normalizer_Y.transform(testY)
    model = BaggingRegressor(base_estimator=SVR(kernel='rbf',
                                                C=40,
                                                cache_size=5000),
                             max_samples=4200,
                             n_estimators=10,
                             verbose=0,
                             n_jobs=-1)
    model.fit(trainX, trainY)
    prediction = model.predict(testX)
    prediction = normalizer_Y.inverse_transform(prediction)
    testY = normalizer_Y.inverse_transform(testY)

    for i in range(0, len(testY)):
        output.write(str(location))
        output.write(",")
        output.write(str(testY[i]))
        output.write(",")
        output.write(str(prediction[i]))
        output.write("\n")

output.close()