Beispiel #1
0
def test_column_transformer_invalid_columns(remainder):
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T

    # general invalid
    for col in [1.5, ['string', 1], slice(1, 's'), np.array([1.])]:
        ct = ColumnTransformer([('trans', Trans(), col)], remainder=remainder)
        assert_raise_message(ValueError, "No valid specification", ct.fit,
                             X_array)

    # invalid for arrays
    for col in ['string', ['string', 'other'], slice('a', 'b')]:
        ct = ColumnTransformer([('trans', Trans(), col)], remainder=remainder)
        assert_raise_message(ValueError, "Specifying the columns", ct.fit,
                             X_array)

    # transformed n_features does not match fitted n_features
    col = [0, 1]
    ct = ColumnTransformer([('trans', Trans(), col)], remainder=remainder)
    ct.fit(X_array)
    X_array_more = np.array([[0, 1, 2], [2, 4, 6], [3, 6, 9]]).T
    msg = ("Given feature/column names or counts do not match the ones for "
           "the data given during fit.")
    with pytest.warns(FutureWarning, match=msg):
        ct.transform(X_array_more)  # Should accept added columns, for now
    X_array_fewer = np.array([
        [0, 1, 2],
    ]).T
    err_msg = 'Number of features'
    with pytest.raises(ValueError, match=err_msg):
        ct.transform(X_array_fewer)
Beispiel #2
0
def test_column_transformer_callable_specifier():
    # assert that function gets the full array / dataframe
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_res_first = np.array([[0, 1, 2]]).T

    def func(X):
        assert_array_equal(X, X_array)
        return [0]

    ct = ColumnTransformer([('trans', Trans(), func)], remainder='drop')
    assert_array_equal(ct.fit_transform(X_array), X_res_first)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_first)
    assert callable(ct.transformers[0][2])
    assert ct.transformers_[0][2] == [0]

    pd = pytest.importorskip('pandas')
    X_df = pd.DataFrame(X_array, columns=['first', 'second'])

    def func(X):
        assert_array_equal(X.columns, X_df.columns)
        assert_array_equal(X.values, X_df.values)
        return ['first']

    ct = ColumnTransformer([('trans', Trans(), func)], remainder='drop')
    assert_array_equal(ct.fit_transform(X_df), X_res_first)
    assert_array_equal(ct.fit(X_df).transform(X_df), X_res_first)
    assert callable(ct.transformers[0][2])
    assert ct.transformers_[0][2] == ['first']
Beispiel #3
0
def test_column_transformer():
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T

    X_res_first1D = np.array([0, 1, 2])
    X_res_second1D = np.array([2, 4, 6])
    X_res_first = X_res_first1D.reshape(-1, 1)
    X_res_both = X_array

    cases = [
        # single column 1D / 2D
        (0, X_res_first),
        ([0], X_res_first),
        # list-like
        ([0, 1], X_res_both),
        (np.array([0, 1]), X_res_both),
        # slice
        (slice(0, 1), X_res_first),
        (slice(0, 2), X_res_both),
        # boolean mask
        (np.array([True, False]), X_res_first),
    ]

    for selection, res in cases:
        ct = ColumnTransformer([('trans', Trans(), selection)],
                               remainder='drop')
        assert_array_equal(ct.fit_transform(X_array), res)
        assert_array_equal(ct.fit(X_array).transform(X_array), res)

        # callable that returns any of the allowed specifiers
        ct = ColumnTransformer([('trans', Trans(), lambda x: selection)],
                               remainder='drop')
        assert_array_equal(ct.fit_transform(X_array), res)
        assert_array_equal(ct.fit(X_array).transform(X_array), res)

    ct = ColumnTransformer([('trans1', Trans(), [0]),
                            ('trans2', Trans(), [1])])
    assert_array_equal(ct.fit_transform(X_array), X_res_both)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
    assert len(ct.transformers_) == 2

    # test with transformer_weights
    transformer_weights = {'trans1': .1, 'trans2': 10}
    both = ColumnTransformer([('trans1', Trans(), [0]),
                              ('trans2', Trans(), [1])],
                             transformer_weights=transformer_weights)
    res = np.vstack([
        transformer_weights['trans1'] * X_res_first1D,
        transformer_weights['trans2'] * X_res_second1D
    ]).T
    assert_array_equal(both.fit_transform(X_array), res)
    assert_array_equal(both.fit(X_array).transform(X_array), res)
    assert len(both.transformers_) == 2

    both = ColumnTransformer([('trans', Trans(), [0, 1])],
                             transformer_weights={'trans': .1})
    assert_array_equal(both.fit_transform(X_array), 0.1 * X_res_both)
    assert_array_equal(both.fit(X_array).transform(X_array), 0.1 * X_res_both)
    assert len(both.transformers_) == 1
Beispiel #4
0
def test_column_transformer_remainder():
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T

    X_res_first = np.array([0, 1, 2]).reshape(-1, 1)
    X_res_second = np.array([2, 4, 6]).reshape(-1, 1)
    X_res_both = X_array

    # default drop
    ct = ColumnTransformer([('trans1', Trans(), [0])])
    assert_array_equal(ct.fit_transform(X_array), X_res_first)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_first)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][1] == 'drop'
    assert_array_equal(ct.transformers_[-1][2], [1])

    # specify passthrough
    ct = ColumnTransformer([('trans', Trans(), [0])], remainder='passthrough')
    assert_array_equal(ct.fit_transform(X_array), X_res_both)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][1] == 'passthrough'
    assert_array_equal(ct.transformers_[-1][2], [1])

    # column order is not preserved (passed through added to end)
    ct = ColumnTransformer([('trans1', Trans(), [1])], remainder='passthrough')
    assert_array_equal(ct.fit_transform(X_array), X_res_both[:, ::-1])
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both[:, ::-1])
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][1] == 'passthrough'
    assert_array_equal(ct.transformers_[-1][2], [0])

    # passthrough when all actual transformers are skipped
    ct = ColumnTransformer([('trans1', 'drop', [0])], remainder='passthrough')
    assert_array_equal(ct.fit_transform(X_array), X_res_second)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_second)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][1] == 'passthrough'
    assert_array_equal(ct.transformers_[-1][2], [1])

    # error on invalid arg
    ct = ColumnTransformer([('trans1', Trans(), [0])], remainder=1)
    assert_raise_message(
        ValueError,
        "remainder keyword needs to be one of \'drop\', \'passthrough\', "
        "or estimator.", ct.fit, X_array)
    assert_raise_message(
        ValueError,
        "remainder keyword needs to be one of \'drop\', \'passthrough\', "
        "or estimator.", ct.fit_transform, X_array)

    # check default for make_column_transformer
    ct = make_column_transformer((Trans(), [0]))
    assert ct.remainder == 'drop'
Beispiel #5
0
def test_column_transformer_cloning():
    X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T

    ct = ColumnTransformer([('trans', StandardScaler(), [0])])
    ct.fit(X_array)
    assert not hasattr(ct.transformers[0][1], 'mean_')
    assert hasattr(ct.transformers_[0][1], 'mean_')

    ct = ColumnTransformer([('trans', StandardScaler(), [0])])
    ct.fit_transform(X_array)
    assert not hasattr(ct.transformers[0][1], 'mean_')
    assert hasattr(ct.transformers_[0][1], 'mean_')
Beispiel #6
0
def test_column_transformer_named_estimators():
    X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T
    ct = ColumnTransformer([('trans1', StandardScaler(), [0]),
                            ('trans2', StandardScaler(with_std=False), [1])])
    assert not hasattr(ct, 'transformers_')
    ct.fit(X_array)
    assert hasattr(ct, 'transformers_')
    assert isinstance(ct.named_transformers_['trans1'], StandardScaler)
    assert isinstance(ct.named_transformers_.trans1, StandardScaler)
    assert isinstance(ct.named_transformers_['trans2'], StandardScaler)
    assert isinstance(ct.named_transformers_.trans2, StandardScaler)
    assert not ct.named_transformers_.trans2.with_std
    # check it are fitted transformers
    assert ct.named_transformers_.trans1.mean_ == 1.
Beispiel #7
0
def test_column_transformer_get_feature_names():
    X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T
    ct = ColumnTransformer([('trans', Trans(), [0, 1])])
    # raise correct error when not fitted
    with pytest.raises(NotFittedError):
        ct.get_feature_names()
    # raise correct error when no feature names are available
    ct.fit(X_array)
    assert_raise_message(
        AttributeError, "Transformer trans (type Trans) does not provide "
        "get_feature_names", ct.get_feature_names)

    # working example
    X = np.array([[{
        'a': 1,
        'b': 2
    }, {
        'a': 3,
        'b': 4
    }], [{
        'c': 5
    }, {
        'c': 6
    }]],
                 dtype=object).T
    ct = ColumnTransformer([('col' + str(i), DictVectorizer(), i)
                            for i in range(2)])
    ct.fit(X)
    assert ct.get_feature_names() == ['col0__a', 'col0__b', 'col1__c']

    # passthrough transformers not supported
    ct = ColumnTransformer([('trans', 'passthrough', [0, 1])])
    ct.fit(X)
    assert_raise_message(NotImplementedError,
                         'get_feature_names is not yet supported',
                         ct.get_feature_names)

    ct = ColumnTransformer([('trans', DictVectorizer(), 0)],
                           remainder='passthrough')
    ct.fit(X)
    assert_raise_message(NotImplementedError,
                         'get_feature_names is not yet supported',
                         ct.get_feature_names)

    # drop transformer
    ct = ColumnTransformer([('col0', DictVectorizer(), 0),
                            ('col1', 'drop', 1)])
    ct.fit(X)
    assert ct.get_feature_names() == ['col0__a', 'col0__b']
Beispiel #8
0
def test_feature_name_validation():
    """Tests if the proper warning/error is raised if the columns do not match
    during fit and transform."""
    pd = pytest.importorskip("pandas")

    X = np.ones(shape=(3, 2))
    X_extra = np.ones(shape=(3, 3))
    df = pd.DataFrame(X, columns=['a', 'b'])
    df_extra = pd.DataFrame(X_extra, columns=['a', 'b', 'c'])

    tf = ColumnTransformer([('bycol', Trans(), ['a', 'b'])])
    tf.fit(df)

    msg = ("Given feature/column names or counts do not match the ones for "
           "the data given during fit.")
    with pytest.warns(FutureWarning, match=msg):
        tf.transform(df_extra)

    tf = ColumnTransformer([('bycol', Trans(), [0])])
    tf.fit(df)

    with pytest.warns(FutureWarning, match=msg):
        tf.transform(X_extra)

    with warnings.catch_warnings(record=True) as warns:
        tf.transform(X)
    assert not warns

    tf = ColumnTransformer([('bycol', Trans(), ['a'])], remainder=Trans())
    tf.fit(df)
    with pytest.warns(FutureWarning, match=msg):
        tf.transform(df_extra)

    tf = ColumnTransformer([('bycol', Trans(), [0, -1])])
    tf.fit(df)
    msg = "At least one negative column was used to"
    with pytest.raises(RuntimeError, match=msg):
        tf.transform(df_extra)

    tf = ColumnTransformer([('bycol', Trans(), slice(-1, -3, -1))])
    tf.fit(df)
    with pytest.raises(RuntimeError, match=msg):
        tf.transform(df_extra)

    with warnings.catch_warnings(record=True) as warns:
        tf.transform(df)
    assert not warns
Beispiel #9
0
def test_column_transformer_no_remaining_remainder_transformer():
    X_array = np.array([[0, 1, 2], [2, 4, 6], [8, 6, 4]]).T

    ct = ColumnTransformer([('trans1', Trans(), [0, 1, 2])],
                           remainder=DoubleTrans())

    assert_array_equal(ct.fit_transform(X_array), X_array)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_array)
    assert len(ct.transformers_) == 1
    assert ct.transformers_[-1][0] != 'remainder'
Beispiel #10
0
def test_column_transformer_remainder_numpy(key):
    # test different ways that columns are specified with passthrough
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_res_both = X_array

    ct = ColumnTransformer([('trans1', Trans(), key)], remainder='passthrough')
    assert_array_equal(ct.fit_transform(X_array), X_res_both)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][1] == 'passthrough'
    assert_array_equal(ct.transformers_[-1][2], [1])
Beispiel #11
0
def test_column_transformer_sparse_stacking():
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    col_trans = ColumnTransformer([('trans1', Trans(), [0]),
                                   ('trans2', SparseMatrixTrans(), 1)],
                                  sparse_threshold=0.8)
    col_trans.fit(X_array)
    X_trans = col_trans.transform(X_array)
    assert sparse.issparse(X_trans)
    assert X_trans.shape == (X_trans.shape[0], X_trans.shape[0] + 1)
    assert_array_equal(X_trans.toarray()[:, 1:], np.eye(X_trans.shape[0]))
    assert len(col_trans.transformers_) == 2
    assert col_trans.transformers_[-1][0] != 'remainder'

    col_trans = ColumnTransformer([('trans1', Trans(), [0]),
                                   ('trans2', SparseMatrixTrans(), 1)],
                                  sparse_threshold=0.1)
    col_trans.fit(X_array)
    X_trans = col_trans.transform(X_array)
    assert not sparse.issparse(X_trans)
    assert X_trans.shape == (X_trans.shape[0], X_trans.shape[0] + 1)
    assert_array_equal(X_trans[:, 1:], np.eye(X_trans.shape[0]))
Beispiel #12
0
def test_column_transformer_empty_columns(pandas, column):
    # test case that ensures that the column transformer does also work when
    # a given transformer doesn't have any columns to work on
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_res_both = X_array

    if pandas:
        pd = pytest.importorskip('pandas')
        X = pd.DataFrame(X_array, columns=['first', 'second'])
    else:
        X = X_array

    ct = ColumnTransformer([('trans1', Trans(), [0, 1]),
                            ('trans2', Trans(), column)])
    assert_array_equal(ct.fit_transform(X), X_res_both)
    assert_array_equal(ct.fit(X).transform(X), X_res_both)
    assert len(ct.transformers_) == 2
    assert isinstance(ct.transformers_[1][1], Trans)

    ct = ColumnTransformer([('trans1', Trans(), column),
                            ('trans2', Trans(), [0, 1])])
    assert_array_equal(ct.fit_transform(X), X_res_both)
    assert_array_equal(ct.fit(X).transform(X), X_res_both)
    assert len(ct.transformers_) == 2
    assert isinstance(ct.transformers_[0][1], Trans)

    ct = ColumnTransformer([('trans', Trans(), column)],
                           remainder='passthrough')
    assert_array_equal(ct.fit_transform(X), X_res_both)
    assert_array_equal(ct.fit(X).transform(X), X_res_both)
    assert len(ct.transformers_) == 2  # including remainder
    assert isinstance(ct.transformers_[0][1], Trans)

    fixture = np.array([[], [], []])
    ct = ColumnTransformer([('trans', Trans(), column)], remainder='drop')
    assert_array_equal(ct.fit_transform(X), fixture)
    assert_array_equal(ct.fit(X).transform(X), fixture)
    assert len(ct.transformers_) == 2  # including remainder
    assert isinstance(ct.transformers_[0][1], Trans)
Beispiel #13
0
def test_column_transformer_drops_all_remainder_transformer():
    X_array = np.array([[0, 1, 2], [2, 4, 6], [8, 6, 4]]).T

    # columns are doubled when remainder = DoubleTrans
    X_res_both = 2 * X_array.copy()[:, 1:3]

    ct = ColumnTransformer([('trans1', 'drop', [0])], remainder=DoubleTrans())

    assert_array_equal(ct.fit_transform(X_array), X_res_both)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert isinstance(ct.transformers_[-1][1], DoubleTrans)
    assert_array_equal(ct.transformers_[-1][2], [1, 2])
Beispiel #14
0
def test_column_transformer_list():
    X_list = [[1, float('nan'), 'a'], [0, 0, 'b']]
    expected_result = np.array([
        [1, float('nan'), 1, 0],
        [-1, 0, 0, 1],
    ])

    ct = ColumnTransformer([
        ('numerical', StandardScaler(), [0, 1]),
        ('categorical', OneHotEncoder(), [2]),
    ])

    assert_array_equal(ct.fit_transform(X_list), expected_result)
    assert_array_equal(ct.fit(X_list).transform(X_list), expected_result)
Beispiel #15
0
def test_column_transformer_reordered_column_names_remainder(explicit_colname):
    """Regression test for issue #14223: 'Named col indexing fails with
       ColumnTransformer remainder on changing DataFrame column ordering'

       Should raise error on changed order combined with remainder.
       Should allow for added columns in `transform` input DataFrame
       as long as all preceding columns match.
    """
    pd = pytest.importorskip('pandas')

    X_fit_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_fit_df = pd.DataFrame(X_fit_array, columns=['first', 'second'])

    X_trans_array = np.array([[2, 4, 6], [0, 1, 2]]).T
    X_trans_df = pd.DataFrame(X_trans_array, columns=['second', 'first'])

    tf = ColumnTransformer([('bycol', Trans(), explicit_colname)],
                           remainder=Trans())

    tf.fit(X_fit_df)
    err_msg = 'Column ordering must be equal'
    warn_msg = ("Given feature/column names or counts do not match the ones "
                "for the data given during fit.")
    with pytest.raises(ValueError, match=err_msg):
        tf.transform(X_trans_df)

    # No error for added columns if ordering is identical
    X_extended_df = X_fit_df.copy()
    X_extended_df['third'] = [3, 6, 9]
    with pytest.warns(FutureWarning, match=warn_msg):
        tf.transform(X_extended_df)  # No error should be raised, for now

    # No 'columns' AttributeError when transform input is a numpy array
    X_array = X_fit_array.copy()
    err_msg = 'Specifying the columns'
    with pytest.raises(ValueError, match=err_msg):
        tf.transform(X_array)
Beispiel #16
0
def test_column_transformer_remainder_transformer(key):
    X_array = np.array([[0, 1, 2], [2, 4, 6], [8, 6, 4]]).T
    X_res_both = X_array.copy()

    # second and third columns are doubled when remainder = DoubleTrans
    X_res_both[:, 1:3] *= 2

    ct = ColumnTransformer([('trans1', Trans(), key)], remainder=DoubleTrans())

    assert_array_equal(ct.fit_transform(X_array), X_res_both)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert isinstance(ct.transformers_[-1][1], DoubleTrans)
    assert_array_equal(ct.transformers_[-1][2], [1, 2])
Beispiel #17
0
def test_column_transformer_special_strings():

    # one 'drop' -> ignore
    X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T
    ct = ColumnTransformer([('trans1', Trans(), [0]), ('trans2', 'drop', [1])])
    exp = np.array([[0.], [1.], [2.]])
    assert_array_equal(ct.fit_transform(X_array), exp)
    assert_array_equal(ct.fit(X_array).transform(X_array), exp)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] != 'remainder'

    # all 'drop' -> return shape 0 array
    ct = ColumnTransformer([('trans1', 'drop', [0]), ('trans2', 'drop', [1])])
    assert_array_equal(ct.fit(X_array).transform(X_array).shape, (3, 0))
    assert_array_equal(ct.fit_transform(X_array).shape, (3, 0))
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] != 'remainder'

    # 'passthrough'
    X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T
    ct = ColumnTransformer([('trans1', Trans(), [0]),
                            ('trans2', 'passthrough', [1])])
    exp = X_array
    assert_array_equal(ct.fit_transform(X_array), exp)
    assert_array_equal(ct.fit(X_array).transform(X_array), exp)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] != 'remainder'

    # None itself / other string is not valid
    for val in [None, 'other']:
        ct = ColumnTransformer([('trans1', Trans(), [0]),
                                ('trans2', None, [1])])
        assert_raise_message(TypeError, "All estimators should implement",
                             ct.fit_transform, X_array)
        assert_raise_message(TypeError, "All estimators should implement",
                             ct.fit, X_array)
Beispiel #18
0
def test_column_transformer_sparse_array():
    X_sparse = sparse.eye(3, 2).tocsr()

    # no distinction between 1D and 2D
    X_res_first = X_sparse[:, 0]
    X_res_both = X_sparse

    for col in [0, [0], slice(0, 1)]:
        for remainder, res in [('drop', X_res_first),
                               ('passthrough', X_res_both)]:
            ct = ColumnTransformer([('trans', Trans(), col)],
                                   remainder=remainder,
                                   sparse_threshold=0.8)
            assert sparse.issparse(ct.fit_transform(X_sparse))
            assert_allclose_dense_sparse(ct.fit_transform(X_sparse), res)
            assert_allclose_dense_sparse(
                ct.fit(X_sparse).transform(X_sparse), res)

    for col in [[0, 1], slice(0, 2)]:
        ct = ColumnTransformer([('trans', Trans(), col)], sparse_threshold=0.8)
        assert sparse.issparse(ct.fit_transform(X_sparse))
        assert_allclose_dense_sparse(ct.fit_transform(X_sparse), X_res_both)
        assert_allclose_dense_sparse(
            ct.fit(X_sparse).transform(X_sparse), X_res_both)
Beispiel #19
0
def test_column_transformer_remainder_pandas(key):
    # test different ways that columns are specified with passthrough
    pd = pytest.importorskip('pandas')
    if isinstance(key, str) and key == 'pd-index':
        key = pd.Index(['first'])

    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_df = pd.DataFrame(X_array, columns=['first', 'second'])
    X_res_both = X_array

    ct = ColumnTransformer([('trans1', Trans(), key)], remainder='passthrough')
    assert_array_equal(ct.fit_transform(X_df), X_res_both)
    assert_array_equal(ct.fit(X_df).transform(X_df), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][1] == 'passthrough'
    assert_array_equal(ct.transformers_[-1][2], [1])
Beispiel #20
0
def test_column_transformer_dataframe():
    pd = pytest.importorskip('pandas')

    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_df = pd.DataFrame(X_array, columns=['first', 'second'])

    X_res_first = np.array([0, 1, 2]).reshape(-1, 1)
    X_res_both = X_array

    cases = [
        # String keys: label based

        # scalar
        ('first', X_res_first),
        # list
        (['first'], X_res_first),
        (['first', 'second'], X_res_both),
        # slice
        (slice('first', 'second'), X_res_both),

        # int keys: positional

        # scalar
        (0, X_res_first),
        # list
        ([0], X_res_first),
        ([0, 1], X_res_both),
        (np.array([0, 1]), X_res_both),
        # slice
        (slice(0, 1), X_res_first),
        (slice(0, 2), X_res_both),

        # boolean mask
        (np.array([True, False]), X_res_first),
        (pd.Series([True, False], index=['first', 'second']), X_res_first),
    ]

    for selection, res in cases:
        ct = ColumnTransformer([('trans', Trans(), selection)],
                               remainder='drop')
        assert_array_equal(ct.fit_transform(X_df), res)
        assert_array_equal(ct.fit(X_df).transform(X_df), res)

        # callable that returns any of the allowed specifiers
        ct = ColumnTransformer([('trans', Trans(), lambda X: selection)],
                               remainder='drop')
        assert_array_equal(ct.fit_transform(X_df), res)
        assert_array_equal(ct.fit(X_df).transform(X_df), res)

    ct = ColumnTransformer([('trans1', Trans(), ['first']),
                            ('trans2', Trans(), ['second'])])
    assert_array_equal(ct.fit_transform(X_df), X_res_both)
    assert_array_equal(ct.fit(X_df).transform(X_df), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] != 'remainder'

    ct = ColumnTransformer([('trans1', Trans(), [0]),
                            ('trans2', Trans(), [1])])
    assert_array_equal(ct.fit_transform(X_df), X_res_both)
    assert_array_equal(ct.fit(X_df).transform(X_df), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] != 'remainder'

    # test with transformer_weights
    transformer_weights = {'trans1': .1, 'trans2': 10}
    both = ColumnTransformer([('trans1', Trans(), ['first']),
                              ('trans2', Trans(), ['second'])],
                             transformer_weights=transformer_weights)
    res = np.vstack([
        transformer_weights['trans1'] * X_df['first'],
        transformer_weights['trans2'] * X_df['second']
    ]).T
    assert_array_equal(both.fit_transform(X_df), res)
    assert_array_equal(both.fit(X_df).transform(X_df), res)
    assert len(both.transformers_) == 2
    assert ct.transformers_[-1][0] != 'remainder'

    # test multiple columns
    both = ColumnTransformer([('trans', Trans(), ['first', 'second'])],
                             transformer_weights={'trans': .1})
    assert_array_equal(both.fit_transform(X_df), 0.1 * X_res_both)
    assert_array_equal(both.fit(X_df).transform(X_df), 0.1 * X_res_both)
    assert len(both.transformers_) == 1
    assert ct.transformers_[-1][0] != 'remainder'

    both = ColumnTransformer([('trans', Trans(), [0, 1])],
                             transformer_weights={'trans': .1})
    assert_array_equal(both.fit_transform(X_df), 0.1 * X_res_both)
    assert_array_equal(both.fit(X_df).transform(X_df), 0.1 * X_res_both)
    assert len(both.transformers_) == 1
    assert ct.transformers_[-1][0] != 'remainder'

    # ensure pandas object is passes through

    class TransAssert(BaseEstimator):
        def fit(self, X, y=None):
            return self

        def transform(self, X, y=None):
            assert isinstance(X, (pd.DataFrame, pd.Series))
            if isinstance(X, pd.Series):
                X = X.to_frame()
            return X

    ct = ColumnTransformer([('trans', TransAssert(), 'first')],
                           remainder='drop')
    ct.fit_transform(X_df)
    ct = ColumnTransformer([('trans', TransAssert(), ['first', 'second'])])
    ct.fit_transform(X_df)

    # integer column spec + integer column names -> still use positional
    X_df2 = X_df.copy()
    X_df2.columns = [1, 0]
    ct = ColumnTransformer([('trans', Trans(), 0)], remainder='drop')
    assert_array_equal(ct.fit_transform(X_df2), X_res_first)
    assert_array_equal(ct.fit(X_df2).transform(X_df2), X_res_first)

    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][1] == 'drop'
    assert_array_equal(ct.transformers_[-1][2], [1])