def test_python_command_execution(self):
        """Test command line execution."""
        Shell.call('rm -rf tmp')
        Shell.call('mkdir tmp')
        filename = '{}.java'.format(self.tmp_fn)
        cp_src = os.path.join('tmp', filename)
        with open(cp_src, 'w') as f:
            porter = Porter(self.estimator)
            out = porter.export(method_name='predict', class_name=self.tmp_fn)
            f.write(out)
        # $ javac tmp/Tmp.java
        cmd = ' '.join(['javac', cp_src])
        Shell.call(cmd)

        # Rename estimator for comparison:
        filename = '{}_2.java'.format(self.tmp_fn)
        cp_dest = os.path.join('tmp', filename)
        # $ mv tmp/Brain.java tmp/Brain_2.java
        cmd = ' '.join(['mv', cp_src, cp_dest])
        Shell.call(cmd)

        # Dump estimator:
        filename = '{}.pkl'.format(self.tmp_fn)
        pkl_path = os.path.join('tmp', filename)
        joblib.dump(self.estimator, pkl_path)

        # Port estimator:
        cmd = 'python -m sklearn_porter.cli.__main__ {}' \
              ' --class_name Brain'.format(pkl_path)
        Shell.call(cmd)
        # Compare file contents:
        equal = filecmp.cmp(cp_src, cp_dest)

        self.assertEqual(equal, True)
Beispiel #2
0
    def test_python_command_execution(self):
        """Test command line execution."""
        Shell.call('rm -rf tmp')
        Shell.call('mkdir tmp')
        filename = '{}.java'.format(self.tmp_fn)
        cp_src = os.path.join('tmp', filename)
        with open(cp_src, 'w') as f:
            porter = Porter(self.estimator)
            out = porter.export(method_name='predict', class_name=self.tmp_fn)
            f.write(out)
        # $ javac tmp/Tmp.java
        cmd = ' '.join(['javac', cp_src])
        Shell.call(cmd)

        # Rename estimator for comparison:
        filename = '{}_2.java'.format(self.tmp_fn)
        cp_dest = os.path.join('tmp', filename)
        # $ mv tmp/Brain.java tmp/Brain_2.java
        cmd = ' '.join(['mv', cp_src, cp_dest])
        Shell.call(cmd)

        # Dump estimator:
        filename = '{}.pkl'.format(self.tmp_fn)
        pkl_path = os.path.join('tmp', filename)
        joblib.dump(self.estimator, pkl_path)

        # Port estimator:
        cmd = 'python -m sklearn_porter.cli.__main__ -i {}' \
              ' --class_name Brain'.format(pkl_path)
        Shell.call(cmd)
        # Compare file contents:
        equal = filecmp.cmp(cp_src, cp_dest)

        self.assertEqual(equal, True)
Beispiel #3
0
 def _port_estimator(self):
     self.estimator.fit(self.X, self.y)
     Shell.call('rm -rf tmp')
     Shell.call('mkdir tmp')
     filename = self.tmp_fn + '.rb'
     path = os.path.join('tmp', filename)
     with open(path, 'w') as f:
         porter = Porter(self.estimator, language=self.LANGUAGE)
         out = porter.export(class_name='Brain', method_name='foo')
         f.write(out)
 def _port_estimator(self, export_data=False, embed_data=False):
     self.estimator.fit(self.X, self.y)
     Shell.call('rm -rf tmp')
     Shell.call('mkdir tmp')
     with open(self.tmp_fn, 'w') as f:
         porter = Porter(self.estimator, language=self.LANGUAGE)
         if export_data:
             out = porter.export(class_name='Brain',
                                 method_name='foo',
                                 export_data=True,
                                 export_dir='tmp')
         else:
             out = porter.export(class_name='Brain',
                                 method_name='foo',
                                 embed_data=embed_data)
         f.write(out)
Beispiel #5
0
 def pred_in_custom(self, features, cast=True):
     # $ ./<temp_filename> <features>
     cmd = [os.path.join('.', 'tmp', self.tmp_fn)]
     args = [str(f).strip() for f in features]
     cmd += args
     pred = Shell.check_output(cmd)
     return int(pred) if cast else float(pred)
Beispiel #6
0
    def _test_dependencies(self):
        """
        Check all target programming and operating
        system dependencies.
        """
        lang = self.target_language

        if sys.platform in ('cygwin', 'win32', 'win64'):
            error = "The required dependencies aren't available on Windows."
            raise EnvironmentError(error)

        # Dependencies:
        depends = {
            'c': ['gcc'],
            'java': ['java', 'javac'],
            'js': ['node'],
            'go': ['go'],
            'php': ['php'],
            'ruby': ['ruby']
        }
        all_depends = depends.get(lang) + ['mkdir', 'rm']
        all_depends = [str(e) for e in all_depends]

        cmd = 'if hash {} 2/dev/null; then echo 1; else echo 0; fi'
        for exe in all_depends:
            cmd = cmd.format(exe)
            status = Shell.check_output(cmd)
            if sys.version_info >= (3, 3) and isinstance(status, bytes):
                status = status.decode('utf-8')
            status = str(status).strip()
            if status != '1':
                error = "The required application '{0}'" \
                        " isn't available.".format(exe)
                raise SystemError(error)
 def pred_in_custom(self, features, cast=True, export_data=False):
     cmd = ['node', self.tmp_fn]
     if export_data:
         cmd += ['http://0.0.0.0:8713/tmp/data.json']
     args = [str(f).strip() for f in features]
     cmd += args
     pred = Shell.check_output(cmd)
     return int(pred) if cast else float(pred)
Beispiel #8
0
 def pred_in_custom(self, features, cast=True):
     # $ php -f <tmp_filename> <features>
     filename = self.tmp_fn + '.php'
     path = os.path.join('tmp', filename)
     cmd = 'php -f {}'.format(path).split()
     args = [str(f).strip() for f in features]
     cmd += args
     pred = Shell.check_output(cmd)
     return int(pred) if cast else float(pred)
Beispiel #9
0
 def pred_in_custom(self, features, cast=True):
     # $ ruby temp <temp_filename> <features>
     filename = self.tmp_fn + '.rb'
     path = os.path.join('tmp', filename)
     cmd = ['ruby', path]
     args = [str(f).strip() for f in features]
     cmd += args
     pred = Shell.check_output(cmd)
     return int(pred) if cast else float(pred)
Beispiel #10
0
 def pred_in_custom(self, features, cast=True, export_data=False):
     if export_data:
         cmd = 'java -cp ./gson.jar:./tmp {}'.format(self.tmp_fn).split()
         cmd += ['./tmp/data.json']
     else:
         cmd = 'java -classpath tmp {}'.format(self.tmp_fn).split()
     args = [str(f).strip() for f in features]
     cmd += args
     pred = Shell.check_output(cmd)
     return int(pred) if cast else float(pred)
Beispiel #11
0
 def _port_estimator(self):
     self.estimator.fit(self.X, self.y)
     Shell.call('rm -rf tmp')
     Shell.call('mkdir tmp')
     path = os.path.join('.', 'tmp', self.tmp_fn + '.go')
     output = os.path.join('.', 'tmp', self.tmp_fn)
     with open(path, 'w') as f:
         porter = Porter(self.estimator, language=self.LANGUAGE)
         out = porter.export(class_name='Brain', method_name='foo')
         f.write(out)
     cmd = 'go build -o {} {}'.format(output, path)
     Shell.call(cmd)
Beispiel #12
0
 def _port_estimator(self):
     self.estimator.fit(self.X, self.y)
     Shell.call('rm -rf tmp')
     Shell.call('mkdir tmp')
     filename = self.tmp_fn + '.c'
     path = os.path.join('tmp', filename)
     with open(path, 'w') as f:
         porter = Porter(self.estimator, language=self.LANGUAGE)
         out = porter.export(class_name='Brain', method_name='foo')
         f.write(out)
     # $ gcc temp/tmp.c -o temp/tmp
     cmd = 'gcc {} -std=c99 -lm -o tmp/{}'.format(path, self.tmp_fn)
     Shell.call(cmd)
Beispiel #13
0
 def _port_estimator(self, export_data=False, embed_data=False):
     self.estimator.fit(self.X, self.y)
     Shell.call('rm -rf tmp')
     Shell.call('mkdir tmp')
     filename = self.tmp_fn + '.java'
     path = os.path.join('tmp', filename)
     with open(path, 'w') as f:
         porter = Porter(self.estimator, language=self.LANGUAGE)
         if export_data:
             out = porter.export(class_name='Brain',
                                 method_name='foo',
                                 export_data=True,
                                 export_dir='tmp')
         else:
             out = porter.export(class_name='Brain',
                                 method_name='foo',
                                 embed_data=embed_data)
         f.write(out)
     if export_data:
         cmd = 'javac -cp ./gson.jar {}'.format(path)
         Shell.call(cmd)
     else:
         cmd = 'javac ' + path
         Shell.call(cmd)
 def test_check_output_echo_list_xyz(self):
     self.assertEqual(Shell.check_output(['echo', 'xyz'], shell=False), 'xyz')
Beispiel #15
0
 def test_check_output_echo_num_1(self):
     self.assertEqual(Shell.check_output('echo 1'), '1')
Beispiel #16
0
 def test_check_output_echo_list_xyz(self):
     self.assertEqual(Shell.check_output(['echo', 'xyz'], shell=False),
                      'xyz')
Beispiel #17
0
    def predict(self,
                X,
                class_name=None,
                method_name=None,
                tnp_dir='tmp',
                keep_tmp_dir=False,
                num_format=lambda x: str(x)):
        """
        Predict using the transpiled model.

        Parameters
        ----------
        :param X : {array-like}, shape (n_features) or (n_samples, n_features)
            The input data.

        :param class_name : string, default: None
            The name for the ported class.

        :param method_name : string, default: None
            The name for the ported method.

        :param tnp_dir : string, default: 'tmp'
            The path to the temporary directory for
            storing the transpiled (and compiled) model.

        :param keep_tmp_dir : bool, default: False
            Whether to delete the temporary directory
            or not.

        :param num_format : lambda x, default: lambda x: str(x)
            The representation of the floating-point values.

        Returns
        -------
            y : int or array-like, shape (n_samples,)
            The predicted class or classes.
        """

        if class_name is None:
            class_name = self.estimator_name

        if method_name is None:
            method_name = self.target_method

        # Dependencies:
        if not self._tested_dependencies:
            self._test_dependencies()
            self._tested_dependencies = True

        # Support:
        if 'predict' not in set(self.template.SUPPORTED_METHODS):
            error = "Currently the given model method" \
                    " '{}' isn't supported.".format('predict')
            raise AttributeError(error)

        # Cleanup:
        Shell.call('rm -rf {}'.format(tnp_dir))
        Shell.call('mkdir {}'.format(tnp_dir))

        # Transpiled model:
        details = self.export(class_name=class_name,
                              method_name=method_name,
                              num_format=num_format,
                              details=True)
        filename = Porter._get_filename(class_name, self.target_language)
        target_file = os.path.join(tnp_dir, filename)
        with open(target_file, str('w')) as file_:
            file_.write(details.get('estimator'))

        # Compilation command:
        comp_cmd = details.get('cmd').get('compilation')
        if comp_cmd is not None:
            Shell.call(comp_cmd, cwd=tnp_dir)

        # Execution command:
        exec_cmd = details.get('cmd').get('execution')
        exec_cmd = str(exec_cmd).split()

        pred_y = None

        # Single feature set:
        if exec_cmd is not None and len(X.shape) == 1:
            full_exec_cmd = exec_cmd + [str(sample).strip() for sample in X]
            pred_y = Shell.check_output(full_exec_cmd, cwd=tnp_dir)
            pred_y = int(pred_y)

        # Multiple feature sets:
        if exec_cmd is not None and len(X.shape) > 1:
            pred_y = np.empty(X.shape[0], dtype=int)
            for idx, features in enumerate(X):
                full_exec_cmd = exec_cmd + [str(f).strip() for f in features]
                pred = Shell.check_output(full_exec_cmd, cwd=tnp_dir)
                pred_y[idx] = int(pred)

        # Cleanup:
        if not keep_tmp_dir:
            Shell.call('rm -rf {}'.format(tnp_dir))

        return pred_y
 def test_check_output_echo_num_0(self):
     self.assertEqual(Shell.check_output('echo 0'), '0')
 def test_check_output_empty_text(self):
     self.assertRaises(AttributeError, lambda: Shell.check_output(''))
Beispiel #20
0
 def test_check_output_empty_text(self):
     self.assertRaises(AttributeError, lambda: Shell.check_output(''))
Beispiel #21
0
 def test_check_output_echo_num_0(self):
     self.assertEqual(Shell.check_output('echo 0'), '0')
 def test_check_output_echo_num_1(self):
     self.assertEqual(Shell.check_output('echo 1'), '1')
    def predict(self, X, class_name=None, method_name=None, tnp_dir='tmp',
                keep_tmp_dir=False, num_format=lambda x: str(x)):
        """
        Predict using the transpiled model.

        Parameters
        ----------
        :param X : {array-like}, shape (n_features) or (n_samples, n_features)
            The input data.

        :param class_name : string, default: None
            The name for the ported class.

        :param method_name : string, default: None
            The name for the ported method.

        :param tnp_dir : string, default: 'tmp'
            The path to the temporary directory for
            storing the transpiled (and compiled) model.

        :param keep_tmp_dir : bool, default: False
            Whether to delete the temporary directory
            or not.

        :param num_format : lambda x, default: lambda x: str(x)
            The representation of the floating-point values.

        Returns
        -------
            y : int or array-like, shape (n_samples,)
            The predicted class or classes.
        """

        if class_name is None:
            class_name = self.estimator_name

        if method_name is None:
            method_name = self.target_method

        # Dependencies:
        if not self._tested_dependencies:
            self._test_dependencies()
            self._tested_dependencies = True

        # Support:
        if 'predict' not in set(self.template.SUPPORTED_METHODS):
            error = "Currently the given model method" \
                    " '{}' isn't supported.".format('predict')
            raise AttributeError(error)

        # Cleanup:
        Shell.call('rm -rf {}'.format(tnp_dir))
        Shell.call('mkdir {}'.format(tnp_dir))

        # Transpiled model:
        details = self.export(class_name=class_name,
                              method_name=method_name,
                              num_format=num_format,
                              details=True)
        filename = Porter._get_filename(class_name, self.target_language)
        target_file = os.path.join(tnp_dir, filename)
        with open(target_file, str('w')) as file_:
            file_.write(details.get('estimator'))

        # Compilation command:
        comp_cmd = details.get('cmd').get('compilation')
        if comp_cmd is not None:
            Shell.call(comp_cmd, cwd=tnp_dir)

        # Execution command:
        exec_cmd = details.get('cmd').get('execution')
        exec_cmd = str(exec_cmd).split()

        pred_y = None

        # Single feature set:
        if exec_cmd is not None and len(X.shape) == 1:
            full_exec_cmd = exec_cmd + [str(sample).strip() for sample in X]
            pred_y = Shell.check_output(full_exec_cmd, cwd=tnp_dir)
            pred_y = int(pred_y)

        # Multiple feature sets:
        if exec_cmd is not None and len(X.shape) > 1:
            pred_y = np.empty(X.shape[0], dtype=int)
            for idx, features in enumerate(X):
                full_exec_cmd = exec_cmd + [str(f).strip() for f in features]
                pred = Shell.check_output(full_exec_cmd, cwd=tnp_dir)
                pred_y[idx] = int(pred)

        # Cleanup:
        if not keep_tmp_dir:
            Shell.call('rm -rf {}'.format(tnp_dir))

        return pred_y