Beispiel #1
0
plt.plot([0.0, 10.0], [0.0, 10.0])
plt.show()

diags2 = [D]

SW = tda.SlicedWassersteinKernel(num_directions=10, bandwidth=1.0)
X = SW.fit(diags)
Y = SW.transform(diags2)
print("SW  kernel is " + str(Y[0][0]))

PWG = tda.PersistenceWeightedGaussianKernel(bandwidth=1.0,
                                            weight=arctan(1.0, 1.0))
X = PWG.fit(diags)
Y = PWG.transform(diags2)
print("PWG kernel is " + str(Y[0][0]))

PSS = tda.PersistenceScaleSpaceKernel(bandwidth=1.0)
X = PSS.fit(diags)
Y = PSS.transform(diags2)
print("PSS kernel is " + str(Y[0][0]))

W = tda.WassersteinDistance(wasserstein=1, delta=0.001)
X = W.fit(diags)
Y = W.transform(diags2)
print("Wasserstein-1 distance is " + str(Y[0][0]))

sW = tda.SlicedWassersteinDistance(num_directions=10)
X = sW.fit(diags)
Y = sW.transform(diags2)
print("sliced Wasserstein distance is " + str(Y[0][0]))
Beispiel #2
0
def sklearn_tda():
    def arctan(C, p):
        return lambda x: C * np.arctan(np.power(x[1], p))

    D = np.array([[0.0, 4.0], [1.0, 2.0], [3.0, 8.0], [6.0, 8.0]])
    plt.scatter(D[:, 0], D[:, 1])
    plt.plot([0.0, 10.0], [0.0, 10.0])
    plt.show()

    diags = [D]

    LS = tda.Landscape(resolution=1000)
    L = LS.fit_transform(diags)
    plt.plot(L[0][:1000])
    plt.plot(L[0][1000:2000])
    plt.plot(L[0][2000:3000])
    plt.show()

    SH = tda.Silhouette(resolution=1000, weight=lambda x: np.power(x[1] - x[0], 5))
    S = SH.fit_transform(diags)
    plt.plot(S[0])
    plt.show()

    BC = tda.BettiCurve(resolution=1000)
    B = BC.fit_transform(diags)
    plt.plot(B[0])
    plt.show()

    diagsT = tda.DiagramPreprocessor(use=True, scaler=tda.BirthPersistenceTransform()).fit_transform(diags)
    PI = tda.PersistenceImage(bandwidth=1.0, weight=arctan(1.0, 1.0), im_range=[0, 10, 0, 10], resolution=[100, 100])
    I = PI.fit_transform(diagsT)
    plt.imshow(np.flip(np.reshape(I[0], [100, 100]), 0))
    plt.show()

    plt.scatter(D[:, 0], D[:, 1])
    D = np.array([[1.0, 5.0], [3.0, 6.0], [2.0, 7.0]])
    plt.scatter(D[:, 0], D[:, 1])
    plt.plot([0.0, 10.0], [0.0, 10.0])
    plt.show()

    diags2 = [D]

    SW = tda.SlicedWassersteinKernel(num_directions=10, bandwidth=1.0)
    X = SW.fit(diags)
    Y = SW.transform(diags2)
    print(("SW  kernel is " + str(Y[0][0])))

    PWG = tda.PersistenceWeightedGaussianKernel(bandwidth=1.0, weight=arctan(1.0, 1.0))
    X = PWG.fit(diags)
    Y = PWG.transform(diags2)
    print(("PWG kernel is " + str(Y[0][0])))

    PSS = tda.PersistenceScaleSpaceKernel(bandwidth=1.0)
    X = PSS.fit(diags)
    Y = PSS.transform(diags2)
    print(("PSS kernel is " + str(Y[0][0])))

    W = tda.WassersteinDistance(wasserstein=1, delta=0.001)
    X = W.fit(diags)
    Y = W.transform(diags2)
    print(("Wasserstein-1 distance is " + str(Y[0][0])))

    sW = tda.SlicedWassersteinDistance(num_directions=10)
    X = sW.fit(diags)
    Y = sW.transform(diags2)
    print(("sliced Wasserstein distance is " + str(Y[0][0])))