def test_bicgstab(self):
        diffusion = Diffusion(n_iter=-1)
        adjacency = test_digraph()

        scores1 = diffusion.fit_transform(adjacency, {0: 1})
        scores2 = self.diffusion.fit_transform(adjacency, {0: 1})
        self.assertAlmostEqual(0, np.linalg.norm(scores1 - scores2))
 def __init__(self,
              n_iter: int = 10,
              damping_factor: Optional[float] = None,
              n_jobs: Optional[int] = None):
     algorithm = Diffusion(n_iter, damping_factor)
     super(DiffusionClassifier, self).__init__(algorithm, n_jobs)
     self._process_scores = process_scores
Beispiel #3
0
    def fit(self, adjacency: Union[sparse.csr_matrix, np.ndarray],
            seeds: Union[np.ndarray, dict]) -> 'MultiDiff':
        """Compute multiple diffusions in a 1-vs-all mode. One class is the hot seeds
        while all the others are cold seeds.

        Parameters
        ----------
        adjacency:
            Adjacency matrix of the graph.
        seeds: Dict or ndarray,
            If dict, ``(key, val)`` indicates that node ``key`` has label ``val``.
            If ndarray, ``seeds[i] = val`` indicates that node ``i`` has label ``val``.
            Negative values are treated has no label.

        Returns
        -------
        self: :class:`MultiDiff`

        """

        if isinstance(self, BiMultiDiff):
            diffusion = BiDiffusion(self.verbose, self.n_iter)
        else:
            diffusion = Diffusion(self.verbose, self.n_iter)

        seeds_labels = check_seeds(seeds, adjacency)
        classes, n_classes = check_labels(seeds_labels)

        n: int = adjacency.shape[0]
        personalizations = []
        for label in classes:
            personalization = -np.ones(n)
            personalization[seeds_labels == label] = 1
            ix = np.logical_and(seeds_labels != label, seeds_labels >= 0)
            personalization[ix] = 0
            personalizations.append(personalization)

        if self.n_jobs != 1:
            local_function = partial(diffusion.fit_transform, adjacency)
            with Pool(self.n_jobs) as pool:
                membership = np.array(
                    pool.map(local_function, personalizations))
            membership = membership.T
        else:
            membership = np.zeros((n, n_classes))
            for i in range(n_classes):
                membership[:, i] = diffusion.fit_transform(
                    adjacency, personalization=personalizations[i])[:n]

        membership -= np.mean(membership, axis=0)
        membership = np.exp(membership)

        norms = membership.sum(axis=1)
        ix = np.argwhere(norms == 0).ravel()
        if len(ix) > 0:
            self.log.print('Nodes ', ix, ' have a null membership.')
        membership[~ix] /= norms[~ix, np.newaxis]

        self.membership_ = membership
        return self
Beispiel #4
0
 def __init__(self,
              n_iter: int = 10,
              n_jobs: Optional[int] = None,
              verbose: bool = False):
     algorithm = Diffusion(n_iter, verbose)
     super(DiffusionClassifier, self).__init__(algorithm, n_jobs, verbose)
     self._process_seeds = process_seeds
     self._process_scores = process_scores
Beispiel #5
0
 def test_damping_factor(self):
     for adjacency in [test_graph(), test_digraph()]:
         for algo in [
                 Diffusion(damping_factor=0.5),
                 Dirichlet(damping_factor=0.5)
         ]:
             scores = algo.fit_transform(adjacency, {0: 0, 1: 1, 2: 0.5})
             self.assertTrue(np.all(scores <= 1) and np.all(scores >= 0))
Beispiel #6
0
    def test_range(self):
        for adjacency in [test_graph(), test_digraph()]:
            for algo in self.algos:
                scores = algo.fit_transform(adjacency, {0: 0, 1: 1, 2: 0.5})
                self.assertTrue(np.all(scores <= 1) and np.all(scores >= 0))

        biadjacency = test_bigraph()
        for algo in [Diffusion(), Dirichlet()]:
            scores = algo.fit_transform(biadjacency, seeds_row={0: 1})
            self.assertTrue(np.all(scores <= 1) and np.all(scores >= 0))
            scores = algo.fit_transform(biadjacency,
                                        seeds_row={0: 0.1},
                                        seeds_col={1: 2},
                                        init=0.3)
            self.assertTrue(np.all(scores <= 2) and np.all(scores >= 0.1))
Beispiel #7
0
 def __init__(self,
              algo=None,
              damping_factor=0.85,
              solver='naive',
              n_iter=10,
              tol=0,
              undirected=False,
              method='exact'):
     if algo == 'diffusion':
         self.scorer = Diffusion(n_iter=n_iter)
     elif algo == 'closeness':
         self.scorer = Closeness(method=method, tol=tol)
     elif algo == 'harmonic':
         self.scorer = Harmonic()
     else:
         self.scorer = PageRank(damping_factor=damping_factor,
                                solver=solver,
                                n_iter=n_iter,
                                tol=tol)
     self.undirected = undirected
class TestDiffusion(unittest.TestCase):
    def setUp(self):
        """Basic diffusion."""
        self.diffusion = Diffusion()

    def test_unknown_types(self):
        with self.assertRaises(TypeError):
            # noinspection PyTypeChecker
            self.diffusion.fit(sparse.identity(2, format='csr'), seeds='test')

    def test_single_node_graph(self):
        self.diffusion.fit(sparse.identity(1, format='csr'), {0: 1})
        self.assertEqual(self.diffusion.scores_, [1])

    def test_range(self):
        for adjacency in [test_graph(), test_digraph()]:
            score = self.diffusion.fit_transform(adjacency, {
                0: 0,
                1: 1,
                2: 0.5
            })
            self.assertTrue(np.all(score <= 1) and np.all(score >= 0))

        bidiffusion = BiDiffusion()
        biadjacency = test_bigraph()

        score = bidiffusion.fit_transform(biadjacency, {0: 1})
        self.assertTrue(np.all(score <= 1) and np.all(score >= 0))

    def test_bicgstab(self):
        diffusion = Diffusion(n_iter=-1)
        adjacency = test_digraph()

        scores1 = diffusion.fit_transform(adjacency, {0: 1})
        scores2 = self.diffusion.fit_transform(adjacency, {0: 1})
        self.assertAlmostEqual(0, np.linalg.norm(scores1 - scores2))
 def setUp(self):
     """Basic diffusion."""
     self.diffusion = Diffusion()
 def test_n_iter(self):
     with self.assertRaises(ValueError):
         Diffusion(n_iter=-1)
 def setUp(self):
     self.algos = [Diffusion(), Dirichlet()]