Beispiel #1
0
    test_df = as_category(test_df)

    test_X = test_df.drop(['CONTACT_DATE', 'SNAP_DATE'], axis=1)

    if clf_name != 'FeaturePredictor':
        cols = list(set(test_X.columns).difference(test_X.select_dtypes(include='category').columns))
        test_X.loc[:, cols] = test_X.loc[:, cols].fillna(0).replace([np.inf, -np.inf], 0)
        for c in test_X.select_dtypes(include='category').columns:
            test_X.loc[:, c] = test_X.loc[:, c].cat.codes

    adv_auc = 0
    adv_train_x, adv_train_y, adv_test_x, adv_test_y = adversial_train_test_split(train_X.loc[:, features], train_y,
                                                                                  test_X.loc[:, features],
                                                                                  topK=1000)
    bayes_cv_tuner._fit_best_model(adv_train_x, adv_train_y)
    adv_pred_y = bayes_cv_tuner.predict_proba(adv_test_x)[:, 1]
    adv_auc = roc_auc_score(adv_test_y, adv_pred_y)
    print(f'Adversial AUC = {adv_auc} by {len(adv_test_y)} samples')

    bayes_cv_tuner._fit_best_model(train_X, train_y)
    test_y = bayes_cv_tuner.predict_proba(test_X)
    df = pd.DataFrame(test_y[:, 1])
    df.to_csv(f"submits/"
              f"{best_estimator.__class__.__name__}"
              f"_{datetime.now().strftime('%d_%H_%M')}"
              f"_{bayes_cv_tuner.best_score_:0.4f}"
              f"_{adv_auc:0.4f}.csv",
              header=None,
              index=None)
Beispiel #2
0
cv_folds = [train_test_split(range(len(X)), train_size=0.666)]

model = BayesSearchCV(estimator=pipe,
                      search_spaces={
                          'model__latent_dim': (2, 20),
                          'model__intermediate_dim': (8, 128),
                          'model__epochs': (8, 128),
                          'model__D': (1e-3, 1e+3, 'log-uniform'),
                          'model__lr': (1e-4, 1e-2, 'log-uniform'),
                      },
                      n_iter=32,
                      cv=cv_folds,
                      refit=False,
                      error_score=-1.0)

model.on_step = lambda x: print(
    (x, model.total_iterations(), model.best_score_))
model.fit(X, Y)
model.refit = True
model._fit_best_model(X, Y)
print(model.best_params_)
print(model.score(X, Y))
"""

model = pipe
model.set_params(**{'model__D': 5.1964624423233898, 'model__lr': 0.00010138257365940301,
                    'model__epochs': 26, 'model__intermediate_dim': 125, 'model__latent_dim': 2})
model.fit(X, Y)

print(model.predict(X, Y))
"""