def whas500_without_ties():
    # naive survival SVM does resolve ties in survival time differently,
    # therefore use data without ties
    data = loadarff(WHAS500_NOTIES_FILE)
    x, y = get_x_y(data, ['fstat', 'lenfol'], '1')
    x = encode_categorical(x)
    return x, y
Beispiel #2
0
    def test_dataframe(self):
        contents = "".join(EXPECTED_1)
        with StringIO(contents) as fp:
            actual_df = loadarff(fp)

        expected_df = pandas.DataFrame.from_items(
            [("attr_nominal",
              pandas.Series(["water", "wine", "beer", None, "wine", "water"]).astype("category")),
             ("attr_nominal_spaces",
              pandas.Series(['"red wine"', '"hard liquor"', None, "mate", '"hard liquor"', "mate"]).astype("category"))
             ]
        )

        tm.assert_frame_equal(expected_df, actual_df, check_exact=True)
Beispiel #3
0
def test_loadarff_dataframe():
    contents = "".join(EXPECTED_1)
    with StringIO(contents) as fp:
        actual_df = loadarff(fp)

    expected_df = pandas.DataFrame.from_dict(OrderedDict(
        [("attr_nominal",
          pandas.Series(pandas.Categorical.from_codes(
              [1, 2, 0, -1, 2, 1],
              ["beer", "water", "wine"]))),
         ("attr_nominal_spaces",
          pandas.Series(pandas.Categorical.from_codes(
              [2, 0, -1, 1, 0, 1],
              ['"hard liquor"', 'mate', '"red wine"'])))
         ]
    ))

    tm.assert_frame_equal(expected_df, actual_df, check_exact=True)
 def setUp(self):
     # naive survival SVM does resolve ties in survival time differently,
     # therefore use data without ties
     data = loadarff(WHAS500_NOTIES_FILE)
     x, self.y = get_x_y(data, ['fstat', 'lenfol'], '1')
     self.x = encode_categorical(x)