def test_highLevelsktime(network=CNNClassifier(nb_epochs=SMALL_NB_EPOCHS)):
    """
    truly generalised test with sktime tasks/strategies
        load data, build task
        construct classifier, build strategy
        fit,
        score
    """

    print("start test_highLevelsktime()")

    from sktime.benchmarking.tasks import TSCTask
    from sktime.benchmarking.strategies import TSCStrategy
    from sklearn.metrics import accuracy_score

    train = load_italy_power_demand(split="train")
    test = load_italy_power_demand(split="test")
    task = TSCTask(target="class_val", metadata=train)

    strategy = TSCStrategy(network)
    strategy.fit(task, train.iloc[:10])

    y_pred = strategy.predict(test.iloc[:10])
    y_test = test.iloc[:10][task.target]
    print(accuracy_score(y_test, y_pred))

    print("End test_highLevelsktime()")
Beispiel #2
0
def test_highLevelsktime(network=ShapeletForestClassifier()):
    '''
    truly generalised test with sktime tasks/strategies
        load data, build task
        construct classifier, build strategy
        fit,
        score
    '''

    print("start test_highLevelsktime()")

    from sktime.benchmarking.tasks import TSCTask
    from sktime.benchmarking.strategies import TSCStrategy
    from sklearn.metrics import accuracy_score

    train = load_gunpoint(split='train')
    test = load_gunpoint(split='test')
    task = TSCTask(target='class_val', metadata=train)

    strategy = TSCStrategy(network)
    strategy.fit(task, train.iloc[:10])

    y_pred = strategy.predict(test.iloc[:10]).astype(np.float)
    y_test = test.iloc[:10][task.target].values.astype(np.float)
    print(accuracy_score(y_test, y_pred))

    print("End test_highLevelsktime()")
Beispiel #3
0
def test_TSCStrategy(dataset):
    train = dataset(split="train")
    test = dataset(split="test")
    s = TSCStrategy(classifier)
    task = TSCTask(target="class_val")
    s.fit(task, train)
    y_pred = s.predict(test)
    assert y_pred.shape == test[task.target].shape
Beispiel #4
0
def test_TSCStrategy(dataset):
    """Test strategy."""
    train = dataset(split="train", return_X_y=False)
    test = dataset(split="test", return_X_y=False)
    s = TSCStrategy(classifier)
    task = TSCTask(target="class_val")
    s.fit(task, train)
    y_pred = s.predict(test)
    assert y_pred.shape == test[task.target].shape
Beispiel #5
0
def test_single_dataset_single_strategy_against_sklearn(
        dataset, cv, metric_func, estimator, results_cls, tmpdir):
    """Test against sklearn."""
    # set up orchestration
    task = TSCTask(target="class_val")

    # create strategies
    clf = make_reduction_pipeline(estimator)
    strategy = TSCStrategy(clf)

    # result backend
    if results_cls in [HDDResults]:
        # for hard drive results, create temporary directory using pytest's
        # tmpdir fixture
        tempdir = tmpdir.mkdir("results/")
        path = tempdir.dirpath()
        results = results_cls(path=path)
    elif results_cls in [RAMResults]:
        results = results_cls()
    else:
        raise ValueError()

    orchestrator = Orchestrator(datasets=[dataset],
                                tasks=[task],
                                strategies=[strategy],
                                cv=cv,
                                results=results)
    orchestrator.fit_predict(save_fitted_strategies=False)

    evaluator = Evaluator(results)

    # create metric classes for evaluation and set metric kwargs
    if metric_func in [accuracy_score]:
        kwargs = {}  # empty kwargs for simple pairwise metrics
        metric = PairwiseMetric(func=metric_func, name="metric")
    elif metric_func in [f1_score]:
        kwargs = {"average": "macro"}  # set kwargs for composite metrics
        metric = AggregateMetric(func=metric_func, name="metric", **kwargs)
    else:
        raise ValueError()

    metrics = evaluator.evaluate(metric=metric)
    actual = metrics["metric_mean"].iloc[0]

    # compare against sklearn cross_val_score
    data = dataset.load()  # load data
    X = data.loc[:, task.features]
    y = data.loc[:, task.target]
    expected = cross_val_score(clf,
                               X,
                               y,
                               scoring=make_scorer(metric_func, **kwargs),
                               cv=cv).mean()

    # compare results
    np.testing.assert_array_equal(actual, expected)
Beispiel #6
0
def test_stat():
    """Test sign ranks."""
    data = load_gunpoint(split="train", return_X_y=False)
    dataset = RAMDataset(dataset=data, name="gunpoint")
    task = TSCTask(target="class_val")

    fc = ComposableTimeSeriesForestClassifier(n_estimators=1, random_state=1)
    strategy_fc = TSCStrategy(fc, name="tsf")
    pf = KNeighborsTimeSeriesClassifier()
    strategy_pf = TSCStrategy(pf, name="pf")

    # result backend
    results = RAMResults()
    orchestrator = Orchestrator(
        datasets=[dataset],
        tasks=[task],
        strategies=[strategy_pf, strategy_fc],
        cv=SingleSplit(random_state=1),
        results=results,
    )

    orchestrator.fit_predict(save_fitted_strategies=False)

    analyse = Evaluator(results)
    metric = PairwiseMetric(func=accuracy_score, name="accuracy")
    _ = analyse.evaluate(metric=metric)

    ranks = analyse.rank(ascending=True)
    pf_rank = ranks.loc[ranks.strategy == "pf",
                        "accuracy_mean_rank"].item()  # 1
    fc_rank = ranks.loc[ranks.strategy == "tsf",
                        "accuracy_mean_rank"].item()  # 2
    rank_array = [pf_rank, fc_rank]
    rank_array_test = [1, 2]
    _, sign_test_df = analyse.sign_test()

    sign_array = [
        [sign_test_df["pf"][0], sign_test_df["pf"][1]],
        [sign_test_df["tsf"][0], sign_test_df["tsf"][1]],
    ]
    sign_array_test = [[1, 1], [1, 1]]
    np.testing.assert_equal([rank_array, sign_array],
                            [rank_array_test, sign_array_test])
Beispiel #7
0
def main(args):
    # Load and wrangle data
    raw_data_df = run.input_datasets["rawdata"].to_pandas_dataframe()

    processed_data_df = prepare_dataframe(
        raw_data_df,
        time_series_length=args.timeserieslength,
        threshold=args.threshold)

    # Split data
    train = processed_data_df.sample(frac=args.train_data_split,
                                     random_state=42)
    test = processed_data_df.drop(train.index)

    # Example for logging
    run.log(
        "data_split_fraction",
        args.train_data_split,
        "Fraction of samples used for training",
    )
    run.log("train_samples", train.shape[0],
            "Number of samples used for training")
    run.log("test_samples", test.shape[0],
            "Number of samples used for testing")

    # Train
    task = TSCTask(target="label", metadata=train)
    clf = TimeSeriesForestClassifier(n_estimators=args.n_estimators)
    strategy = TSCStrategy(clf)
    strategy.fit(task, train)
    run.log("n_estimators", args.n_estimators,
            "Number of tree estimators used in the model")

    # Metrics
    y_pred = strategy.predict(test)
    y_test = test[task.target]
    accuracy = accuracy_score(y_test, y_pred)
    run.log("Accuracy", f"{accuracy:1.3f}", "Accuracy of model")

    # Persist model
    os.makedirs("outputs", exist_ok=True)
    model_path = os.path.join("outputs", args.model_filename)
    dump(strategy, model_path)
Beispiel #8
0
def test_automated_orchestration_vs_manual(data_loader):
    """Test orchestration."""
    data = data_loader(return_X_y=False)

    dataset = RAMDataset(dataset=data, name="data")
    task = TSCTask(target="class_val")

    # create strategies
    # clf = TimeSeriesForestClassifier(n_estimators=1, random_state=1)
    clf = make_reduction_pipeline(
        RandomForestClassifier(n_estimators=2, random_state=1))
    strategy = TSCStrategy(clf)

    # result backend
    results = RAMResults()
    orchestrator = Orchestrator(
        datasets=[dataset],
        tasks=[task],
        strategies=[strategy],
        cv=SingleSplit(random_state=1),
        results=results,
    )

    orchestrator.fit_predict(save_fitted_strategies=False)
    result = next(results.load_predictions(cv_fold=0,
                                           train_or_test="test"))  # get
    # only first item of iterator
    actual = result.y_pred

    # expected output
    task = TSCTask(target="class_val")
    cv = SingleSplit(random_state=1)
    train_idx, test_idx = next(cv.split(data))
    train = data.iloc[train_idx, :]
    test = data.iloc[test_idx, :]
    strategy.fit(task, train)
    expected = strategy.predict(test)

    # compare results
    np.testing.assert_array_equal(actual, expected)
Beispiel #9
0
    TSFreshRelevantFeatureExtractor

n_jobs = os.cpu_count()

kwargs = {
    "show_warnings": False,
    "disable_progressbar": True,
    "n_jobs": n_jobs
}

regressor = RandomForestClassifier(n_estimators=200, n_jobs=n_jobs)

transformers = {
    "minimal": TSFreshFeatureExtractor("minimal", **kwargs),
    "efficient": TSFreshFeatureExtractor("efficient", **kwargs),
    "comprehensive": TSFreshFeatureExtractor("comprehensive", **kwargs),
    # "minimal_sig": TSFreshRelevantFeatureExtractor("minimal", **kwargs),
    # "efficient_sig": TSFreshRelevantFeatureExtractor("efficient", **kwargs),
    # "comprehensive_sig": TSFreshRelevantFeatureExtractor("comprehensive",
    #                                                      **kwargs),
}

STRATEGIES = []
ESTIMATORS = []
for name, transformer in transformers.items():
    name = f"tsfresh_rf_{name}"
    estimator = make_pipeline(transformer, regressor)
    ESTIMATORS.append(estimator)
    strategy = TSCStrategy(estimator, name)
    STRATEGIES.append(strategy)