Beispiel #1
0
def test_y_proba_on_gunpoint():
    X, y = load_gunpoint(return_X_y=True)
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.1, random_state=42
    )
    estimator = TimeSeriesForestClassifier(random_state=42, n_estimators=20)
    estimator.fit(X_train, y_train)
    actual = estimator.predict_proba(X_test)
    np.testing.assert_array_equal(actual, expected)
Beispiel #2
0
def test_tsf_on_unit_test_data():
    """Test of TimeSeriesForestClassifier on unit test data."""
    # load unit test data
    X_train, y_train = load_unit_test(split="train")
    X_test, y_test = load_unit_test(split="test")
    indices = np.random.RandomState(0).choice(len(y_train), 10, replace=False)

    # train TSF
    tsf = TimeSeriesForestClassifier(n_estimators=10, random_state=0)
    tsf.fit(X_train, y_train)
    # assert probabilities are the same
    probas = tsf.predict_proba(X_test.iloc[indices])
    testing.assert_array_equal(probas, tsf_unit_test_probas)
    def StartTrain(self): 
        train_files = glob.glob(self.lineEdit.text() + "\\*.csv")
        test_files = glob.glob(self.lineEdit_2.text() + "\\*.csv")
        train_li = []
        for filename in train_files:                
            df = pd.read_csv(filename, index_col=None, header=None,usecols=[2])
            train_li.append(df)
        X_df = pd.concat(train_li, axis=1, ignore_index=True)
        X_df = X_df.T  

        test_li = []        
        for filename in test_files:
            df = pd.read_csv(filename, index_col=None, header=None,usecols=[2])
            test_li.append(df)
        X_df_ng = pd.concat(test_li, axis=1, ignore_index=True)
        X_df_ng = X_df_ng.T

        X_df = X_df.append(X_df_ng)           
        X_df_tab = from_2d_array_to_nested(X_df)

        Y_df_ok = np.zeros(len(test_li), dtype="int32")
        Y_df_ng = np.ones(len(train_li), dtype="int32")
        Y_df = np.concatenate([Y_df_ok, Y_df_ng], 0)
        
        X_train, X_test, y_train, y_test = train_test_split(X_df_tab, Y_df, test_size= (100 - self.horizontalSlider.value()) / 100)
        self.tableWidget.setRowCount(0)
        selectedModel = self.comboBox.currentText()
        if(selectedModel == "RandomForestClassifier"):
            classifier = make_pipeline(Tabularizer(), RandomForestClassifier())
            classifier.fit(X_train, y_train)
            self.lineEdit_5.setText(str(classifier.score(X_train, y_train)))  
            self.lineEdit_6.setText(str(classifier.score(X_test, y_test)))          
            for i in range(len(X_test)): 
                row = self.tableWidget.rowCount()
                self.tableWidget.setRowCount(row)                
                classifier_preds = classifier.predict(X_test.iloc[i].to_frame())                
                self.addTableRow(self.tableWidget, [str(i),str(y_test[i]), str(classifier_preds)])   
            
        elif(selectedModel == "RocketClassifier"):
            rocket = RocketClassifier()
            rocket.fit(X_train, y_train)
            self.lineEdit_5.setText(str(rocket.score(X_train, y_train)))  
            self.lineEdit_6.setText(str(rocket.score(X_test, y_test))) 
            for i in range(len(X_test)): 
                row = self.tableWidget.rowCount()
                self.tableWidget.setRowCount(row)                
                rocket_preds = rocket.predict(X_test.iloc[i].to_frame())                
                self.addTableRow(self.tableWidget, [str(i),str(y_test[i]), str(rocket_preds)]) 
        
        elif(selectedModel == "TimeSeriesForestClassifier"):
            tsf = TimeSeriesForestClassifier(n_estimators=50, random_state=47)
            tsf.fit(X_train, y_train)
            self.lineEdit_5.setText(str(tsf.score(X_train, y_train)))  
            self.lineEdit_6.setText(str(tsf.score(X_test, y_test))) 
            for i in range(len(X_test)): 
                row = self.tableWidget.rowCount()
                self.tableWidget.setRowCount(row)                
                tsf_preds = tsf.predict(X_test.iloc[i].to_frame())                
                self.addTableRow(self.tableWidget, [str(i),str(y_test[i]), str(tsf_preds)]) 

        elif(selectedModel == "RandomIntervalSpectralEnsemble"):
            rise = RandomIntervalSpectralEnsemble(n_estimators=50, random_state=47)
            rise.fit(X_train, y_train)
            self.lineEdit_5.setText(str(rise.score(X_train, y_train)))  
            self.lineEdit_6.setText(str(rise.score(X_test, y_test))) 
            for i in range(len(X_test)): 
                row = self.tableWidget.rowCount()
                self.tableWidget.setRowCount(row)                
                rise_preds = rise.predict(X_test.iloc[i].to_frame())                
                self.addTableRow(self.tableWidget, [str(i),str(y_test[i]), str(rise_preds)]) 

        elif(selectedModel == "SupervisedTimeSeriesForest"):
            stsf = SupervisedTimeSeriesForest(n_estimators=50, random_state=47)
            stsf.fit(X_train, y_train)
            self.lineEdit_5.setText(str(stsf.score(X_train, y_train)))  
            self.lineEdit_6.setText(str(stsf.score(X_test, y_test))) 
            for i in range(len(X_test)): 
                row = self.tableWidget.rowCount()
                self.tableWidget.setRowCount(row)                
                stsf_preds = rise.predict(X_test.iloc[i].to_frame())                
                self.addTableRow(self.tableWidget, [str(i),str(y_test[i]), str(stsf_preds)]) 
        else:
            print("None")
Beispiel #4
0
class HIVECOTEV1(BaseClassifier):
    """Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-COTE) V1.

    An ensemble of the STC, TSF, RISE and cBOSS classifiers from different feature
    representations using the CAWPE structure as described in [1].

    Parameters
    ----------
    verbose                 : int, level of output printed to
    the console (for information only) (default = 0)
    n_jobs                  : int, optional (default=1)
    The number of jobs to run in parallel for both `fit` and `predict`.
    ``-1`` means using all processors.
    random_state            : int or None, seed for random, integer,
    optional (default to no seed)

    Attributes
    ----------
    n_classes               : extracted from the data

    Notes
    -----
    ..[1] Anthony Bagnall, Michael Flynn, James Large, Jason Lines and
    Matthew Middlehurst.
        "On the usage and performance of the Hierarchical Vote Collective of
            Transformation-based Ensembles version 1.0 (hive-cote v1. 0)"
        International Workshop on Advanced Analytics and Learning on Temporal
            Data 2020

    Java version
    https://github.com/uea-machine-learning/tsml/blob/master/src/main/java/
    tsml/classifiers/hybrids/HIVE_COTE.java

    """

    # Capability tags
    capabilities = {
        "multivariate": False,
        "unequal_length": False,
        "missing_values": False,
        "train_estimate": False,
        "contractable": False,
    }

    def __init__(
        self,
        stc_params=None,
        tsf_params=None,
        rise_params=None,
        cboss_params=None,
        verbose=0,
        n_jobs=1,
        random_state=None,
    ):
        if stc_params is None:
            stc_params = {"n_estimators": 500}
        if tsf_params is None:
            tsf_params = {"n_estimators": 500}
        if rise_params is None:
            rise_params = {"n_estimators": 500}
        if cboss_params is None:
            cboss_params = {}

        self.stc_params = stc_params
        self.tsf_params = tsf_params
        self.rise_params = rise_params
        self.cboss_params = cboss_params

        self.verbose = verbose
        self.n_jobs = n_jobs
        self.random_state = random_state

        self.stc = None
        self.tsf = None
        self.rise = None
        self.cboss = None

        self.stc_weight = 0
        self.tsf_weight = 0
        self.rise_weight = 0
        self.cboss_weight = 0

        self.n_classes = 0
        self.classes_ = []

        super(HIVECOTEV1, self).__init__()

    def fit(self, X, y):
        """Fit a HIVE-COTEv1.0 classifier.

        Parameters
        ----------
        X : nested pandas DataFrame of shape [n_instances, 1]
            Nested dataframe with univariate time-series in cells.
        y : array-like, shape = [n_instances] The class labels.

        Returns
        -------
        self : object
        """
        X, y = check_X_y(X, y, enforce_univariate=True)

        self.n_classes = np.unique(y).shape[0]
        self.classes_ = class_distribution(np.asarray(y).reshape(-1, 1))[0][0]

        cv_size = 10
        _, counts = np.unique(y, return_counts=True)
        min_class = np.min(counts)
        if min_class < cv_size:
            cv_size = min_class

        self.stc = ShapeletTransformClassifier(
            **self.stc_params,
            random_state=self.random_state,
        )
        self.stc.fit(X, y)

        if self.verbose > 0:
            print("STC ", datetime.now().strftime("%H:%M:%S %d/%m/%Y"))  # noqa

        train_preds = cross_val_predict(
            ShapeletTransformClassifier(
                **self.stc_params,
                random_state=self.random_state,
            ),
            X=X,
            y=y,
            cv=cv_size,
            n_jobs=self.n_jobs,
        )
        self.stc_weight = accuracy_score(y, train_preds)**4

        if self.verbose > 0:
            print(  # noqa
                "STC train estimate ",
                datetime.now().strftime("%H:%M:%S %d/%m/%Y"),
            )
            print("STC weight = " + str(self.stc_weight))  # noqa

        self.tsf = TimeSeriesForestClassifier(
            **self.tsf_params,
            random_state=self.random_state,
            n_jobs=self.n_jobs,
        )
        self.tsf.fit(X, y)

        if self.verbose > 0:
            print("TSF ", datetime.now().strftime("%H:%M:%S %d/%m/%Y"))  # noqa

        train_preds = cross_val_predict(
            TimeSeriesForestClassifier(**self.tsf_params,
                                       random_state=self.random_state),
            X=X,
            y=y,
            cv=cv_size,
            n_jobs=self.n_jobs,
        )
        self.tsf_weight = accuracy_score(y, train_preds)**4

        if self.verbose > 0:
            print(  # noqa
                "TSF train estimate ",
                datetime.now().strftime("%H:%M:%S %d/%m/%Y"),
            )
            print("TSF weight = " + str(self.tsf_weight))  # noqa

        self.rise = RandomIntervalSpectralForest(
            **self.rise_params,
            random_state=self.random_state,
            n_jobs=self.n_jobs,
        )
        self.rise.fit(X, y)

        if self.verbose > 0:
            print("RISE ",
                  datetime.now().strftime("%H:%M:%S %d/%m/%Y"))  # noqa

        train_preds = cross_val_predict(
            RandomIntervalSpectralForest(
                **self.rise_params,
                random_state=self.random_state,
            ),
            X=X,
            y=y,
            cv=cv_size,
            n_jobs=self.n_jobs,
        )
        self.rise_weight = accuracy_score(y, train_preds)**4

        if self.verbose > 0:
            print(  # noqa
                "RISE train estimate ",
                datetime.now().strftime("%H:%M:%S %d/%m/%Y"),
            )
            print("RISE weight = " + str(self.rise_weight))  # noqa

        self.cboss = ContractableBOSS(**self.cboss_params,
                                      random_state=self.random_state,
                                      n_jobs=self.n_jobs)
        self.cboss.fit(X, y)
        train_probs = self.cboss._get_train_probs(X)
        train_preds = self.cboss.classes_[np.argmax(train_probs, axis=1)]
        self.cboss_weight = accuracy_score(y, train_preds)**4

        if self.verbose > 0:
            print(  # noqa
                "cBOSS (estimate included) ",
                datetime.now().strftime("%H:%M:%S %d/%m/%Y"),
            )
            print("cBOSS weight = " + str(self.cboss_weight))  # noqa

        self._is_fitted = True
        return self

    def predict(self, X):
        """Make predictions for all cases in X.

        Parameters
        ----------
        X : The testing input samples of shape [n_instances,1].

        Returns
        -------
        output : numpy array of shape = [n_instances]
        """
        rng = check_random_state(self.random_state)
        return np.array([
            self.classes_[int(rng.choice(np.flatnonzero(prob == prob.max())))]
            for prob in self.predict_proba(X)
        ])

    def predict_proba(self, X):
        """Make class probability estimates on each case in X.

        Parameters
        ----------
        X - pandas dataframe of testing data of shape [n_instances,1].

        Returns
        -------
        output : numpy array of shape =
                [n_instances, num_classes] of probabilities
        """
        self.check_is_fitted()
        X = check_X(X, enforce_univariate=True)

        dists = np.zeros((X.shape[0], self.n_classes))

        dists = np.add(
            dists,
            self.stc.predict_proba(X) *
            (np.ones(self.n_classes) * self.stc_weight),
        )
        dists = np.add(
            dists,
            self.tsf.predict_proba(X) *
            (np.ones(self.n_classes) * self.tsf_weight),
        )
        dists = np.add(
            dists,
            self.rise.predict_proba(X) *
            (np.ones(self.n_classes) * self.rise_weight),
        )
        dists = np.add(
            dists,
            self.cboss.predict_proba(X) *
            (np.ones(self.n_classes) * self.cboss_weight),
        )

        return dists / dists.sum(axis=1, keepdims=True)
Beispiel #5
0
#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
# time series forest classifier
from sktime.classification.interval_based import TimeSeriesForestClassifier

TimeSeriesForestClassifier(n_estimators=200, min_interval=3, n_jobs=1, random_state=None|0)
	# cannot handle multivariate series
	.fit(X, y, **kwargs)
	.predict(X, **kwargs)
	.predict_proba(X, **kwargs)

# example:
time_series = [1,2,3,4,5,6,7,8,9]
x_train = [ [1,2,3], [2,3,4], [3,4,5], [4,5,6] ]
y_train = [  1,       1,       0,       0,    ]
model = TimeSeriesForestClassifier(n_estimators=5, min_interval=2)
model.fit(np.array(x_train), np.array(y_train))
y_pred = model.predict(np.array(x_train))
print(y_pred) # [1,1,0,0]

# examine input output structure:
from sktime.datasets import load_unit_test
X_train, y_train = load_unit_test(split='train', return_X_y=True)
X_test, y_test = load_unit_test(split='test', return_X_y=True)
x = [ [list(j) for j in i] for i in X_train.to_numpy()]
y = list(y_train)

# multivariate workaround (chain 3rd dim into flat 2nd)
time_series = [ [1,9], [2,8], [3,7], [4,6], [5,5], [6,4], [7,3], [8,2], [9,1] ]
x_train_2d = [ [1,9,2,8,3,7], [2,8,3,7,4,6], [3,7,4,6,5,5], [4,6,5,5,6,4] ]
# instead of:
x_train_3d = [ [[1,9],[2,8],[3,7]], [[2,8],[3,7],[4,6]], [[3,7],[4,6],[5,5]], ... ]
Beispiel #6
0
class HIVECOTEV1(BaseClassifier):
    """Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-COTE) V1.

    An ensemble of the STC, TSF, RISE and cBOSS classifiers from different feature
    representations using the CAWPE structure as described in [1]_.

    Parameters
    ----------
    stc_params : dict or None, default=None
        Parameters for the ShapeletTransformClassifier module. If None, uses the
        default parameters with a 2 hour transform contract.
    tsf_params : dict or None, default=None
        Parameters for the TimeSeriesForestClassifier module. If None, uses the default
        parameters with n_estimators set to 500.
    rise_params : dict or None, default=None
        Parameters for the RandomIntervalSpectralForest module. If None, uses the
        default parameters with n_estimators set to 500.
    cboss_params : dict or None, default=None
        Parameters for the ContractableBOSS module. If None, uses the default
        parameters.
    verbose : int, default=0
        Level of output printed to the console (for information only).
    n_jobs : int, default=1
        The number of jobs to run in parallel for both `fit` and `predict`.
        ``-1`` means using all processors.
    random_state : int or None, default=None
        Seed for random number generation.

    Attributes
    ----------
    n_classes_ : int
        The number of classes.
    classes_ : list
        The unique class labels.
    stc_weight_ : float
        The weight for STC probabilities.
    tsf_weight_ : float
        The weight for TSF probabilities.
    rise_weight_ : float
        The weight for RISE probabilities.
    cboss_weight_ : float
        The weight for cBOSS probabilities.

    See Also
    --------
    HIVECOTEV2, ShapeletTransformClassifier, TimeSeriesForestClassifier,
    RandomIntervalSpectralForest, ContractableBOSS

    Notes
    -----
    For the Java version, see
    `https://github.com/uea-machine-learning/tsml/blob/master/src/main/java/
    tsml/classifiers/hybrids/HIVE_COTE.java`_.

    References
    ----------
    .. [1] Anthony Bagnall, Michael Flynn, James Large, Jason Lines and
       Matthew Middlehurst. "On the usage and performance of the Hierarchical Vote
       Collective of Transformation-based Ensembles version 1.0 (hive-cote v1.0)"
       International Workshop on Advanced Analytics and Learning on Temporal Data 2020

    Examples
    --------
    >>> from sktime.classification.hybrid import HIVECOTEV1
    >>> from sktime.contrib.vector_classifiers._rotation_forest import RotationForest
    >>> from sktime.datasets import load_unit_test
    >>> X_train, y_train = load_unit_test(split="train", return_X_y=True)
    >>> X_test, y_test = load_unit_test(split="test", return_X_y=True)
    >>> clf = HIVECOTEV1(
    ...     stc_params={
    ...         "estimator": RotationForest(n_estimators=3),
    ...         "n_shapelet_samples": 500,
    ...         "max_shapelets": 20,
    ...         "batch_size": 100,
    ...     },
    ...     tsf_params={"n_estimators": 10},
    ...     rise_params={"n_estimators": 10},
    ...     cboss_params={"n_parameter_samples": 25, "max_ensemble_size": 5},
    ... )
    >>> clf.fit(X_train, y_train)
    HIVECOTEV1(...)
    >>> y_pred = clf.predict(X_test)
    """

    _tags = {
        "capability:multithreading": True,
    }

    def __init__(
        self,
        stc_params=None,
        tsf_params=None,
        rise_params=None,
        cboss_params=None,
        verbose=0,
        n_jobs=1,
        random_state=None,
    ):
        self.stc_params = stc_params
        self.tsf_params = tsf_params
        self.rise_params = rise_params
        self.cboss_params = cboss_params

        self.verbose = verbose
        self.n_jobs = n_jobs
        self.random_state = random_state

        self.stc_weight_ = 0
        self.tsf_weight_ = 0
        self.rise_weight_ = 0
        self.cboss_weight_ = 0

        self._stc_params = stc_params
        self._tsf_params = tsf_params
        self._rise_params = rise_params
        self._cboss_params = cboss_params
        self._stc = None
        self._tsf = None
        self._rise = None
        self._cboss = None

        super(HIVECOTEV1, self).__init__()

    def _fit(self, X, y):
        """Fit HIVE-COTE 1.0 to training data.

        Parameters
        ----------
        X : 3D np.array of shape = [n_instances, n_dimensions, series_length]
            The training data.
        y : array-like, shape = [n_instances]
            The class labels.

        Returns
        -------
        self :
            Reference to self.

        Notes
        -----
        Changes state by creating a fitted model that updates attributes
        ending in "_" and sets is_fitted flag to True.
        """
        # Default values from HC1 paper
        if self.stc_params is None:
            self._stc_params = {"transform_limit_in_minutes": 120}
        if self.tsf_params is None:
            self._tsf_params = {"n_estimators": 500}
        if self.rise_params is None:
            self._rise_params = {"n_estimators": 500}
        if self.cboss_params is None:
            self._cboss_params = {}

        # Cross-validation size for TSF and RISE
        cv_size = 10
        _, counts = np.unique(y, return_counts=True)
        min_class = np.min(counts)
        if min_class < cv_size:
            cv_size = min_class

        # Build STC
        self._stc = ShapeletTransformClassifier(
            **self._stc_params,
            save_transformed_data=True,
            random_state=self.random_state,
            n_jobs=self._threads_to_use,
        )
        self._stc.fit(X, y)

        if self.verbose > 0:
            print("STC ", datetime.now().strftime("%H:%M:%S %d/%m/%Y"))  # noqa

        # Find STC weight using train set estimate
        train_probs = self._stc._get_train_probs(X, y)
        train_preds = self._stc.classes_[np.argmax(train_probs, axis=1)]
        self.stc_weight_ = accuracy_score(y, train_preds)**4

        if self.verbose > 0:
            print(  # noqa
                "STC train estimate ",
                datetime.now().strftime("%H:%M:%S %d/%m/%Y"),
            )
            print("STC weight = " + str(self.stc_weight_))  # noqa

        # Build TSF
        self._tsf = TimeSeriesForestClassifier(
            **self._tsf_params,
            random_state=self.random_state,
            n_jobs=self._threads_to_use,
        )
        self._tsf.fit(X, y)

        if self.verbose > 0:
            print("TSF ", datetime.now().strftime("%H:%M:%S %d/%m/%Y"))  # noqa

        # Find TSF weight using train set estimate found through CV
        train_preds = cross_val_predict(
            TimeSeriesForestClassifier(**self._tsf_params,
                                       random_state=self.random_state),
            X=X,
            y=y,
            cv=cv_size,
            n_jobs=self._threads_to_use,
        )
        self.tsf_weight_ = accuracy_score(y, train_preds)**4

        if self.verbose > 0:
            print(  # noqa
                "TSF train estimate ",
                datetime.now().strftime("%H:%M:%S %d/%m/%Y"),
            )
            print("TSF weight = " + str(self.tsf_weight_))  # noqa

        # Build RISE
        self._rise = RandomIntervalSpectralEnsemble(
            **self._rise_params,
            random_state=self.random_state,
            n_jobs=self._threads_to_use,
        )
        self._rise.fit(X, y)

        if self.verbose > 0:
            print("RISE ",
                  datetime.now().strftime("%H:%M:%S %d/%m/%Y"))  # noqa

        # Find RISE weight using train set estimate found through CV
        train_preds = cross_val_predict(
            RandomIntervalSpectralEnsemble(
                **self._rise_params,
                random_state=self.random_state,
            ),
            X=X,
            y=y,
            cv=cv_size,
            n_jobs=self._threads_to_use,
        )
        self.rise_weight_ = accuracy_score(y, train_preds)**4

        if self.verbose > 0:
            print(  # noqa
                "RISE train estimate ",
                datetime.now().strftime("%H:%M:%S %d/%m/%Y"),
            )
            print("RISE weight = " + str(self.rise_weight_))  # noqa

        # Build cBOSS
        self._cboss = ContractableBOSS(
            **self._cboss_params,
            random_state=self.random_state,
            n_jobs=self._threads_to_use,
        )
        self._cboss.fit(X, y)

        # Find cBOSS weight using train set estimate
        train_probs = self._cboss._get_train_probs(X, y)
        train_preds = self._cboss.classes_[np.argmax(train_probs, axis=1)]
        self.cboss_weight_ = accuracy_score(y, train_preds)**4

        if self.verbose > 0:
            print(  # noqa
                "cBOSS (estimate included)",
                datetime.now().strftime("%H:%M:%S %d/%m/%Y"),
            )
            print("cBOSS weight = " + str(self.cboss_weight_))  # noqa

        return self

    def _predict(self, X):
        """Predicts labels for sequences in X.

        Parameters
        ----------
        X : 3D np.array of shape = [n_instances, n_dimensions, series_length]
            The data to make predictions for.

        Returns
        -------
        y : array-like, shape = [n_instances]
            Predicted class labels.
        """
        rng = check_random_state(self.random_state)
        return np.array([
            self.classes_[int(rng.choice(np.flatnonzero(prob == prob.max())))]
            for prob in self.predict_proba(X)
        ])

    def _predict_proba(self, X):
        """Predicts labels probabilities for sequences in X.

        Parameters
        ----------
        X : 3D np.array of shape = [n_instances, n_dimensions, series_length]
            The data to make predict probabilities for.

        Returns
        -------
        y : array-like, shape = [n_instances, n_classes_]
            Predicted probabilities using the ordering in classes_.
        """
        dists = np.zeros((X.shape[0], self.n_classes_))

        # Call predict proba on each classifier, multiply the probabilities by the
        # classifiers weight then add them to the current HC1 probabilities
        dists = np.add(
            dists,
            self._stc.predict_proba(X) *
            (np.ones(self.n_classes_) * self.stc_weight_),
        )
        dists = np.add(
            dists,
            self._tsf.predict_proba(X) *
            (np.ones(self.n_classes_) * self.tsf_weight_),
        )
        dists = np.add(
            dists,
            self._rise.predict_proba(X) *
            (np.ones(self.n_classes_) * self.rise_weight_),
        )
        dists = np.add(
            dists,
            self._cboss.predict_proba(X) *
            (np.ones(self.n_classes_) * self.cboss_weight_),
        )

        # Make each instances probability array sum to 1 and return
        return dists / dists.sum(axis=1, keepdims=True)