Beispiel #1
0
src_ra = np.radians(src_ra)
## NOTE: ADD WEIGHTS HERE FOR THE INJECTED EVENTS!! (Naturally only for flux, redshift. (tried with theo_weight, haven't tested it yet)
inj = PointSourceInjector(Gamma,
                          sinDec_bandwidth=.05,
                          src_dec=src_dec,
                          theo_weight=flux,
                          seed=0)

results = PointSourceLLH.weighted_sensitivity(llh_flux,
                                              src_ra=src_ra,
                                              src_dec=src_dec,
                                              alpha=2.867e-7,
                                              beta=.5,
                                              inj=inj,
                                              trials={
                                                  'n_inj': [],
                                                  'TS': [],
                                                  'nsources': [],
                                                  'gamma': []
                                              },
                                              bckg_trials=bckg_trials,
                                              eps=0.01,
                                              n_iter=250)
print results

#choose an output dir, and make sure it exists
this_dir = os.path.dirname(os.path.abspath(__file__))
out_dir = misc.ensure_dir(
    '/data/user/brelethford/Output/stacking_sensitivity/SwiftBAT70m/flux/disc/'
)
##I need to have this 
src_dec=[np.radians(dec_deg)]
src_ra=[0.0]
## NOTE: ADD WEIGHTS HERE FOR THE INJECTED EVENTS!! (Naturally only for flux, redshift.

##For now the weighted sensitivity function only works if there are at least two sources. to push it through for a single source, I'll copy the source location.##

### Mike - This is the step that allows the function weighted_sensitivity to process! ###

#src_dec=[src_dec[0],src_dec[0]]
#src_ra=[src_ra[0],src_ra[0]]

inj = PointSourceInjector(Gamma, sinDec_bandwidth=.05, src_dec= src_dec,seed=0) 

results = PointSourceLLH.weighted_sensitivity(llh_single,src_ra=src_ra,src_dec=src_dec,alpha=.5,beta=.9,inj=inj,trials={'n_inj':[],'TS':[],'nsources':[],'gamma':[]},bckg_trials=bckg_trials,eps=0.01,n_iter=250, miniter=2500)# maxtrial=1000)
#Currently have n_iter down from 1000 to reduce estimation time. Also lowering maxtrial from 1000 to 500.
print results

#choose an output dir, and make sure it exists
this_dir = os.path.dirname(os.path.abspath (__file__))
out_dir = misc.ensure_dir (outfolder+'sensitivity/')

# save the output
outfile = out_dir + 'dec{0:+010.5}.array'.format(dec_deg)
print 'Saving', outfile, '...'
cache.save(results, outfile)



Beispiel #3
0
    llhmodel = data_multi.init79(energy=True, mode='box')
elif year == '86':
    llhmodel = data_multi.init86I(energy=True, mode='box')
elif year == '59':
    llhmodel = data_multi.init59(energy=True, mode='box')

#If I change the injection range I'll redefine the _e_range variable in ps_injector_stack.py.

sensitivity = PointSourceLLH.weighted_sensitivity(llhmodel,
                                                  src_ra=src_ra,
                                                  src_dec=src_dec,
                                                  alpha=.5,
                                                  beta=.9,
                                                  inj=inj,
                                                  trials={
                                                      'n_inj': [],
                                                      'TS': [],
                                                      'nsources': [],
                                                      'gamma': []
                                                  },
                                                  bckg_trials=bckg_trials,
                                                  eps=0.02,
                                                  n_iter=250)
print sensitivity

#discovery = PointSourceLLH.weighted_sensitivity(llhmodel,src_ra=src_ra,src_dec=src_dec,alpha=2.867e-7,beta=.5,inj=inj,trials={'n_inj':[],'TS':[],'nsources':[],'gamma':[]},bckg_trials=bckg_trials,eps=0.01,n_iter=250)
#print discovery

#choose an output dir, and make sure it exists
this_dir = os.path.dirname(os.path.abspath(__file__))