Beispiel #1
0
def readlibsvm(fname, X, Y, direction="rows", min_d=0, max_n=-1):

    cdirection = None
    if direction == 0 or direction == "columns":
      cdirection = 1
    if direction == 1 or direction == "rows":
      cdirection = 2
    if cdirection is None:
      raise ValueError("Direction must be either columns/rows or 0/1")
  
    X = lib.adapt(X)
    Y = lib.adapt(Y)

    Xobj = X.ptr()
    Yobj = Y.ptr()

    if (Xobj == -1 or Yobj == -1):
        raise errors.InvalidObjectError("Invalid/unsupported object passed as X, Y")

    lib.callsl("sl_readlibsvm", fname, \
               X.ctype(), Xobj, \
               Y.ctype(), Yobj, \
               cdirection, min_d, max_n)

    X.ptrcleaner()
    Y.ptrcleaner()
 
    return (X.getobj(), Y.getobj())
Beispiel #2
0
    def gram(self, X, K, dirX="rows", dirY="rows", Y=None):
        """
    Returns the dense Gram matrix evaluated over the datapoints.
  
    :param X: n-by-d data matrix
    :param Y: another data matrix. If Y is None, then X is used.
    :param K: placeholder for output Gram matrix.
    """

        if Y is None:
            Y = X
            dirY = dirX

        cdirX = self.__get_direction(dirX)
        cdirY = self.__get_direction(dirY)

        X = lib.adapt(X)
        Y = lib.adapt(Y)
        K = lib.adapt(K)

        lib.callsl("sl_kernel_gram", cdirX, cdirY, self._kernel_obj, \
                    X.ctype(), X.ptr(), \
                    Y.ctype(), Y.ptr(), \
                    K.ctype(), K.ptr())

        X.ptrcleaner()
        Y.ptrcleaner()
        K.ptrcleaner()

        return K.getobj()
Beispiel #3
0
def readlibsvm(fname, X, Y, direction="rows", min_d=0, max_n=-1):

    cdirection = None
    if direction == 0 or direction == "columns":
        cdirection = 1
    if direction == 1 or direction == "rows":
        cdirection = 2
    if cdirection is None:
        raise ValueError("Direction must be either columns/rows or 0/1")

    X = lib.adapt(X)
    Y = lib.adapt(Y)

    Xobj = X.ptr()
    Yobj = Y.ptr()

    if (Xobj == -1 or Yobj == -1):
        raise errors.InvalidObjectError(
            "Invalid/unsupported object passed as X, Y")

    lib.callsl("sl_readlibsvm", fname, \
               X.ctype(), Xobj, \
               Y.ctype(), Yobj, \
               cdirection, min_d, max_n)

    X.ptrcleaner()
    Y.ptrcleaner()

    return (X.getobj(), Y.getobj())
Beispiel #4
0
 def __init__(self, d, nu, l):
     self._d = d
     self._nu = nu
     self._l = l
     self._kernel_obj = c_void_p()
     lib.callsl("sl_create_kernel", "matern", d, byref(self._kernel_obj), \
               c_double(self_nu), c_double(self._l))
Beispiel #5
0
    def __init__(self, d, q=3, c=0, gamma=1):
        if c < 0:
            raise ValueError("kernel paramter must be >= 0")
        if type(q) is not int:
            raise errors.InvalidParamterError("exponent must be integer")

        self._d = d
        self._q = q
        self._c = c
        self._gamma = gamma

        self._kernel_obj = c_void_p()
        lib.callsl("sl_create_kernel", "polynomial", self._d, byref(self._kernel_obj), \
                    c_int(self._q), c_double(self._gamma), c_double(self._c))
Beispiel #6
0
def approximate_svd(A, U, S, V, k=10, params=None):
    """
    Compute the SVD of **A** such that **SVD(A) = U S V^T**.

    :param A: Input matrix.
    :param U: Output U (left singular vectors).
    :param S: Output S (singular values).
    :param V: Output V (right singular vectors).
    :param k: Dimension to apply along.
    :param params: Parmaters for the SVD.
    :returns: (U, S, V)
    """

    A = lib.adapt(A)
    U = lib.adapt(U)
    S = lib.adapt(S)
    V = lib.adapt(V)

    Aobj = A.ptr()
    Uobj = U.ptr()
    Sobj = S.ptr()
    Vobj = V.ptr()

    if (Aobj == -1 or Uobj == -1 or Sobj == -1 or Vobj == -1):
        raise errors.InvalidObjectError(
            "Invalid/unsupported object passed as A, U, S or V ")

    # use default params in case none are provided
    if params == None:
        params = SVDParams()
    params_json = params.str() + '\0'

    lib.callsl("sl_approximate_svd", \
            A.ctype(), Aobj, \
            U.ctype(), Uobj, \
            S.ctype(), Sobj, \
            V.ctype(), Vobj, \
            k, params_json, lib.ctxt_obj)

    A.ptrcleaner()
    U.ptrcleaner()
    S.ptrcleaner()
    V.ptrcleaner()

    return (U.getobj(), S.getobj(), V.getobj())
Beispiel #7
0
def faster_least_squares(A, B, X, orientation=El.NORMAL, params=None):
    """
    Compute a solution to the least squares problem:

    If orientation == El.NORMAL: argmin_X ||A * X - B||_F
    If orientation == El.ADJOINT: argmin_X ||A^H * X - B||_F

    * ADJOINT not yet supported! *

    :param A: Input matrix.
    :param B: Right hand side.
    :param X: Solution
    :param params: Parmaters.
    :returns: X
    """

    A = lib.adapt(A)
    B = lib.adapt(B)
    X = lib.adapt(X)

    Aobj = A.ptr()
    Bobj = B.ptr()
    Xobj = X.ptr()

    if (Aobj == -1 or Bobj == -1 or Xobj == -1):
        raise errors.InvalidObjectError(
            "Invalid/unsupported object passed as A, B, X ")

    # use default params in case none are provided
    if params == None:
        params = FasterLeastSquaresParams()
    params_json = params.str() + '\0'

    lib.callsl("sl_faster_least_squares", \
               orientation, \
               A.ctype(), Aobj, \
               B.ctype(), Bobj, \
               X.ctype(), Xobj, \
               params_json, lib.ctxt_obj)

    A.ptrcleaner()
    B.ptrcleaner()
    X.ptrcleaner()

    return X.getobj()
Beispiel #8
0
def approximate_svd(A, U, S, V, k=10, params=None):
    """
    Compute the SVD of **A** such that **SVD(A) = U S V^T**.

    :param A: Input matrix.
    :param U: Output U (left singular vectors).
    :param S: Output S (singular values).
    :param V: Output V (right singular vectors).
    :param k: Dimension to apply along.
    :param params: Parmaters for the SVD.
    :returns: (U, S, V)
    """

    
    A = lib.adapt(A)
    U = lib.adapt(U)
    S = lib.adapt(S)
    V = lib.adapt(V)

    Aobj = A.ptr()
    Uobj = U.ptr()
    Sobj = S.ptr()
    Vobj = V.ptr()

    if (Aobj == -1 or Uobj == -1 or Sobj == -1 or Vobj == -1):
        raise errors.InvalidObjectError("Invalid/unsupported object passed as A, U, S or V ")

    # use default params in case none are provided
    if params == None:
        params = SVDParams()
    params_json = params.str() + '\0'

    lib.callsl("sl_approximate_svd", \
            A.ctype(), Aobj, \
            U.ctype(), Uobj, \
            S.ctype(), Sobj, \
            V.ctype(), Vobj, \
            k, params_json, lib.ctxt_obj)

    A.ptrcleaner()
    U.ptrcleaner()
    S.ptrcleaner()
    V.ptrcleaner()

    return (U.getobj(), S.getobj(), V.getobj())
Beispiel #9
0
def faster_least_squares(A, B, X, orientation=El.NORMAL, params=None):
    """
    Compute a solution to the least squares problem:

    If orientation == El.NORMAL: argmin_X ||A * X - B||_F
    If orientation == El.ADJOINT: argmin_X ||A^H * X - B||_F

    * ADJOINT not yet supported! *

    :param A: Input matrix.
    :param B: Right hand side.
    :param X: Solution
    :param params: Parmaters.
    :returns: X
    """
    
    A = lib.adapt(A)
    B = lib.adapt(B)
    X = lib.adapt(X)

    Aobj = A.ptr()
    Bobj = B.ptr()
    Xobj = X.ptr()

    if (Aobj == -1 or Bobj == -1 or Xobj == -1):
        raise errors.InvalidObjectError("Invalid/unsupported object passed as A, B, X ")

    # use default params in case none are provided
    if params == None:
        params = FasterLeastSquaresParams()
    params_json = params.str() + '\0'

    lib.callsl("sl_faster_least_squares", \
               orientation, \
               A.ctype(), Aobj, \
               B.ctype(), Bobj, \
               X.ctype(), Xobj, \
               params_json, lib.ctxt_obj)

    A.ptrcleaner()
    B.ptrcleaner()
    X.ptrcleaner()
  
    return X.getobj()
Beispiel #10
0
 def __init__(self, d):
     self._d = d
     self._kernel_obj = c_void_p()
     lib.callsl("sl_create_kernel", "linear", d, byref(self._kernel_obj))
Beispiel #11
0
 def __init__(self, d, beta):
     self._d = d
     self._beta = beta
     self._kernel_obj = c_void_p()
     lib.callsl("sl_create_kernel", "expsemigroup", d,
                byref(self._kernel_obj))
Beispiel #12
0
 def __init__(self, d, sigma):
     self._d = d
     self._sigma = sigma
     self._kernel_obj = c_void_p()
     lib.callsl("sl_create_kernel", "laplacian", d, byref(self._kernel_obj),
                c_double(sigma))