Beispiel #1
0
 def testBuildNonExistingLayerLargeModel(self):
     """Tests that the model is built correctly without unnecessary layers."""
     inputs = tf.random_uniform((5, 331, 331, 3))
     tf.train.create_global_step()
     with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
         pnasnet.build_pnasnet_large(inputs, 1000)
     vars_names = [x.op.name for x in tf.trainable_variables()]
     self.assertIn('cell_stem_0/1x1/weights', vars_names)
     self.assertNotIn('cell_stem_1/comb_iter_0/right/1x1/weights',
                      vars_names)
Beispiel #2
0
 def testBuildPreLogitsLargeModel(self):
     batch_size = 5
     height, width = 331, 331
     num_classes = None
     inputs = tf.random_uniform((batch_size, height, width, 3))
     tf.train.create_global_step()
     with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
         net, end_points = pnasnet.build_pnasnet_large(inputs, num_classes)
     self.assertFalse('AuxLogits' in end_points)
     self.assertFalse('Predictions' in end_points)
     self.assertTrue(net.op.name.startswith('final_layer/Mean'))
     self.assertListEqual(net.get_shape().as_list(), [batch_size, 4320])
Beispiel #3
0
    def _extract_proposal_features(self, preprocessed_inputs, scope):
        """Extracts first stage RPN features.

    Extracts features using the first half of the PNASNet network.
    We construct the network in `align_feature_maps=True` mode, which means
    that all VALID paddings in the network are changed to SAME padding so that
    the feature maps are aligned.

    Args:
      preprocessed_inputs: A [batch, height, width, channels] float32 tensor
        representing a batch of images.
      scope: A scope name.

    Returns:
      rpn_feature_map: A tensor with shape [batch, height, width, depth]
      end_points: A dictionary mapping feature extractor tensor names to tensors

    Raises:
      ValueError: If the created network is missing the required activation.
    """
        del scope

        if len(preprocessed_inputs.get_shape().as_list()) != 4:
            raise ValueError(
                '`preprocessed_inputs` must be 4 dimensional, got a '
                'tensor of shape %s' % preprocessed_inputs.get_shape())

        with slim.arg_scope(
                pnasnet_large_arg_scope_for_detection(
                    is_batch_norm_training=self._train_batch_norm)):
            with arg_scope(
                [slim.conv2d, slim.batch_norm, slim.separable_conv2d],
                    reuse=self._reuse_weights):
                _, end_points = pnasnet.build_pnasnet_large(
                    preprocessed_inputs,
                    num_classes=None,
                    is_training=self._is_training,
                    final_endpoint='Cell_7')

        # Note that both 'Cell_6' and 'Cell_7' have equal depth = 2160.
        # Cell_7 is the last cell before second reduction.
        rpn_feature_map = tf.concat(
            [end_points['Cell_6'], end_points['Cell_7']], 3)

        # pnasnet.py does not maintain the batch size in the first dimension.
        # This work around permits us retaining the batch for below.
        batch = preprocessed_inputs.get_shape().as_list()[0]
        shape_without_batch = rpn_feature_map.get_shape().as_list()[1:]
        rpn_feature_map_shape = [batch] + shape_without_batch
        rpn_feature_map.set_shape(rpn_feature_map_shape)

        return rpn_feature_map, end_points
Beispiel #4
0
 def testOverrideHParamsLargeModel(self):
     batch_size = 5
     height, width = 331, 331
     num_classes = 1000
     inputs = tf.random_uniform((batch_size, height, width, 3))
     tf.train.create_global_step()
     config = pnasnet.large_imagenet_config()
     config.set_hparam('data_format', 'NCHW')
     with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
         _, end_points = pnasnet.build_pnasnet_large(inputs,
                                                     num_classes,
                                                     config=config)
     self.assertListEqual(end_points['Stem'].shape.as_list(),
                          [batch_size, 540, 42, 42])
Beispiel #5
0
 def testNoAuxHeadLargeModel(self):
     batch_size = 5
     height, width = 331, 331
     num_classes = 1000
     for use_aux_head in (True, False):
         tf.reset_default_graph()
         inputs = tf.random_uniform((batch_size, height, width, 3))
         tf.train.create_global_step()
         config = pnasnet.large_imagenet_config()
         config.set_hparam('use_aux_head', int(use_aux_head))
         with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
             _, end_points = pnasnet.build_pnasnet_large(inputs,
                                                         num_classes,
                                                         config=config)
         self.assertEqual('AuxLogits' in end_points, use_aux_head)
Beispiel #6
0
 def testBuildLogitsLargeModel(self):
     batch_size = 5
     height, width = 331, 331
     num_classes = 1000
     inputs = tf.random_uniform((batch_size, height, width, 3))
     tf.train.create_global_step()
     with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
         logits, end_points = pnasnet.build_pnasnet_large(
             inputs, num_classes)
     auxlogits = end_points['AuxLogits']
     predictions = end_points['Predictions']
     self.assertListEqual(auxlogits.get_shape().as_list(),
                          [batch_size, num_classes])
     self.assertListEqual(logits.get_shape().as_list(),
                          [batch_size, num_classes])
     self.assertListEqual(predictions.get_shape().as_list(),
                          [batch_size, num_classes])
Beispiel #7
0
    def extract_features(self, preprocessed_inputs):
        """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]
    """

        feature_map_layout = {
            'from_layer': ['Cell_7', 'Cell_11', '', '', '',
                           ''][:self._num_layers],
            'layer_depth': [-1, -1, 512, 256, 256, 128][:self._num_layers],
            'use_explicit_padding': self._use_explicit_padding,
            'use_depthwise': self._use_depthwise,
        }

        with slim.arg_scope(
                pnasnet_large_arg_scope_for_detection(
                    is_batch_norm_training=self._is_training)):
            with slim.arg_scope(
                [slim.conv2d, slim.batch_norm, slim.separable_conv2d],
                    reuse=self._reuse_weights):
                with (slim.arg_scope(self._conv_hyperparams_fn())
                      if self._override_base_feature_extractor_hyperparams else
                      context_manager.IdentityContextManager()):
                    _, image_features = pnasnet.build_pnasnet_large(
                        ops.pad_to_multiple(preprocessed_inputs,
                                            self._pad_to_multiple),
                        num_classes=None,
                        is_training=self._is_training,
                        final_endpoint='Cell_11')
        with tf.variable_scope('SSD_feature_maps', reuse=self._reuse_weights):
            with slim.arg_scope(self._conv_hyperparams_fn()):
                feature_maps = feature_map_generators.multi_resolution_feature_maps(
                    feature_map_layout=feature_map_layout,
                    depth_multiplier=self._depth_multiplier,
                    min_depth=self._min_depth,
                    insert_1x1_conv=True,
                    image_features=image_features)

        return feature_maps.values()
Beispiel #8
0
    def testAllEndPointsShapesLargeModel(self):
        batch_size = 5
        height, width = 331, 331
        num_classes = 1000
        inputs = tf.random_uniform((batch_size, height, width, 3))
        tf.train.create_global_step()
        with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
            _, end_points = pnasnet.build_pnasnet_large(inputs, num_classes)

        endpoints_shapes = {
            'Stem': [batch_size, 42, 42, 540],
            'Cell_0': [batch_size, 42, 42, 1080],
            'Cell_1': [batch_size, 42, 42, 1080],
            'Cell_2': [batch_size, 42, 42, 1080],
            'Cell_3': [batch_size, 42, 42, 1080],
            'Cell_4': [batch_size, 21, 21, 2160],
            'Cell_5': [batch_size, 21, 21, 2160],
            'Cell_6': [batch_size, 21, 21, 2160],
            'Cell_7': [batch_size, 21, 21, 2160],
            'Cell_8': [batch_size, 11, 11, 4320],
            'Cell_9': [batch_size, 11, 11, 4320],
            'Cell_10': [batch_size, 11, 11, 4320],
            'Cell_11': [batch_size, 11, 11, 4320],
            'global_pool': [batch_size, 4320],
            # Logits and predictions
            'AuxLogits': [batch_size, 1000],
            'Predictions': [batch_size, 1000],
            'Logits': [batch_size, 1000],
        }
        self.assertEqual(len(end_points), 17)
        self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
        for endpoint_name in endpoints_shapes:
            tf.logging.info('Endpoint name: {}'.format(endpoint_name))
            expected_shape = endpoints_shapes[endpoint_name]
            self.assertIn(endpoint_name, end_points)
            self.assertListEqual(
                end_points[endpoint_name].get_shape().as_list(),
                expected_shape)