def testEndPoints(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = vgg.vgg_16(inputs, num_classes) expected_names = ['vgg_16/conv1/conv1_1', 'vgg_16/conv1/conv1_2', 'vgg_16/pool1', 'vgg_16/conv2/conv2_1', 'vgg_16/conv2/conv2_2', 'vgg_16/pool2', 'vgg_16/conv3/conv3_1', 'vgg_16/conv3/conv3_2', 'vgg_16/conv3/conv3_3', 'vgg_16/pool3', 'vgg_16/conv4/conv4_1', 'vgg_16/conv4/conv4_2', 'vgg_16/conv4/conv4_3', 'vgg_16/pool4', 'vgg_16/conv5/conv5_1', 'vgg_16/conv5/conv5_2', 'vgg_16/conv5/conv5_3', 'vgg_16/pool5', 'vgg_16/fc6', 'vgg_16/fc7', 'vgg_16/fc8' ] self.assertSetEqual(set(end_points.keys()), set(expected_names))
def construct_graph_for_teacher(self): with tf.device(self.device): inputs = tf.placeholder(tf.float32, shape=(None, 224, 224, 3)) _, end_points = slim_vgg.vgg_16(inputs) # heatmap tensors hm1 = end_points['hm1'] hm2 = end_points['hm2'] hm3 = end_points['hm3'] return inputs, hm1, hm2, hm3
def testForward(self): batch_size = 1 height, width = 224, 224 with self.test_session() as sess: inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_16(inputs) sess.run(tf.global_variables_initializer()) output = sess.run(logits) self.assertTrue(output.any())
def testFullyConvolutional(self): batch_size = 1 height, width = 256, 256 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_16(inputs, num_classes, spatial_squeeze=False) self.assertEquals(logits.op.name, 'vgg_16/fc8/BiasAdd') self.assertListEqual(logits.get_shape().as_list(), [batch_size, 2, 2, num_classes])
def testBuild(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_16(inputs, num_classes) self.assertEquals(logits.op.name, 'vgg_16/fc8/squeezed') self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes])
def testModelVariables(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) vgg.vgg_16(inputs, num_classes) expected_names = ['vgg_16/conv1/conv1_1/weights', 'vgg_16/conv1/conv1_1/biases', 'vgg_16/conv1/conv1_2/weights', 'vgg_16/conv1/conv1_2/biases', 'vgg_16/conv2/conv2_1/weights', 'vgg_16/conv2/conv2_1/biases', 'vgg_16/conv2/conv2_2/weights', 'vgg_16/conv2/conv2_2/biases', 'vgg_16/conv3/conv3_1/weights', 'vgg_16/conv3/conv3_1/biases', 'vgg_16/conv3/conv3_2/weights', 'vgg_16/conv3/conv3_2/biases', 'vgg_16/conv3/conv3_3/weights', 'vgg_16/conv3/conv3_3/biases', 'vgg_16/conv4/conv4_1/weights', 'vgg_16/conv4/conv4_1/biases', 'vgg_16/conv4/conv4_2/weights', 'vgg_16/conv4/conv4_2/biases', 'vgg_16/conv4/conv4_3/weights', 'vgg_16/conv4/conv4_3/biases', 'vgg_16/conv5/conv5_1/weights', 'vgg_16/conv5/conv5_1/biases', 'vgg_16/conv5/conv5_2/weights', 'vgg_16/conv5/conv5_2/biases', 'vgg_16/conv5/conv5_3/weights', 'vgg_16/conv5/conv5_3/biases', 'vgg_16/fc6/weights', 'vgg_16/fc6/biases', 'vgg_16/fc7/weights', 'vgg_16/fc7/biases', 'vgg_16/fc8/weights', 'vgg_16/fc8/biases', ] model_variables = [v.op.name for v in slim.get_model_variables()] self.assertSetEqual(set(model_variables), set(expected_names))
def testEvaluation(self): batch_size = 2 height, width = 224, 224 num_classes = 1000 with self.test_session(): eval_inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_16(eval_inputs, is_training=False) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) predictions = tf.argmax(logits, 1) self.assertListEqual(predictions.get_shape().as_list(), [batch_size])
def testTrainEvalWithReuse(self): train_batch_size = 2 eval_batch_size = 1 train_height, train_width = 224, 224 eval_height, eval_width = 256, 256 num_classes = 1000 with self.test_session(): train_inputs = tf.random_uniform( (train_batch_size, train_height, train_width, 3)) logits, _ = vgg.vgg_16(train_inputs) self.assertListEqual(logits.get_shape().as_list(), [train_batch_size, num_classes]) tf.get_variable_scope().reuse_variables() eval_inputs = tf.random_uniform( (eval_batch_size, eval_height, eval_width, 3)) logits, _ = vgg.vgg_16(eval_inputs, is_training=False, spatial_squeeze=False) self.assertListEqual(logits.get_shape().as_list(), [eval_batch_size, 2, 2, num_classes]) logits = tf.reduce_mean(logits, [1, 2]) predictions = tf.argmax(logits, 1) self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size])
import numpy as np import slim_vgg import resize #demo input pic folder = "ImageNet_results/" output_folder = "ImageNet_results/" img = "gray_rsz_n01532829_1503.JPEG" heatmap = 3 sizes = [56, 28, 7] pic = cv2.imread(folder + img) print(pic.shape) # pic = cv2.resize(pic, (224, 224)) inputs = tf.placeholder(tf.float32, shape=(None, 224, 224, 3)) model, end_points = slim_vgg.vgg_16(inputs) hm = end_points['hm' + str(heatmap)] # heatmap tensor saver = tf.train.Saver() #tf global session sess = tf.Session() ### TF resize not running GPU, too slow compared to the CPU Pool version ## imgs_224 = tf.image.resize_images(imgs, (224, 224, 3)) #print(imgs_224) ## Original code res_pic = cv2.resize(pic, (224, 224), interpolation=cv2.INTER_AREA)