Beispiel #1
0
def inference(cfg):
    # # Set up environment.
    du.init_distributed_training(cfg)
    # Set random seed from configs.
    np.random.seed(cfg.RNG_SEED)
    torch.manual_seed(cfg.RNG_SEED)

    # Build the video model and print model statistics.
    model = build_model(cfg)
    if du.is_master_proc() and cfg.LOG_MODEL_INFO:
        misc.log_model_info(model, cfg, use_train_input=False)

    cu.load_test_checkpoint(cfg, model)

    # Create video loaders.
    video_loader = loader.construct_loader(cfg, "test")

    # Create saver
    saver = Saver(cfg.DATA.PATH_TO_DATA_DIR, video_loader.dataset)

    model.eval()
    for i, (inputs, index) in tqdm(enumerate(video_loader),
                                   total=len(video_loader)):
        for i in range(len(inputs)):
            inputs[i] = inputs[i].cuda(non_blocking=True)
        index = index.cuda()
        feats = model(inputs)

        # Gather all the predictions across all the devices to perform ensemble.
        if cfg.NUM_GPUS > 1:
            feats, index = du.all_gather([feats, index])

        saver.save(feats, index)

    saver.merge()
Beispiel #2
0
def test(cfg):
    """
    Perform multi-view testing on the pretrained video model.
    Args:
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
    """
    # Set up environment.
    du.init_distributed_training(cfg)
    # Set random seed from configs.
    np.random.seed(cfg.RNG_SEED)
    torch.manual_seed(cfg.RNG_SEED)

    # Setup logging format.
    logging.setup_logging(cfg.OUTPUT_DIR)

    # Print config.
    logger.info("Test with config:")
    logger.info(cfg)

    # Build the video model and print model statistics.
    model = build_model(cfg)
    if du.is_master_proc() and cfg.LOG_MODEL_INFO:
        misc.log_model_info(model, cfg, use_train_input=False)

    cu.load_test_checkpoint(cfg, model)

    # Create video testing loaders.
    test_loader = loader.construct_loader(cfg, "test")
    logger.info("Testing model for {} iterations".format(len(test_loader)))

    if cfg.DETECTION.ENABLE:
        assert cfg.NUM_GPUS == cfg.TEST.BATCH_SIZE or cfg.NUM_GPUS == 0
        test_meter = AVAMeter(len(test_loader), cfg, mode="test")
    else:
        assert (
            test_loader.dataset.num_videos %
            (cfg.TEST.NUM_ENSEMBLE_VIEWS * cfg.TEST.NUM_SPATIAL_CROPS) == 0)
        # Create meters for multi-view testing.
        test_meter = TestMeter(
            test_loader.dataset.num_videos //
            (cfg.TEST.NUM_ENSEMBLE_VIEWS * cfg.TEST.NUM_SPATIAL_CROPS),
            cfg.TEST.NUM_ENSEMBLE_VIEWS * cfg.TEST.NUM_SPATIAL_CROPS,
            cfg.MODEL.NUM_CLASSES,
            len(test_loader),
            cfg.DATA.MULTI_LABEL,
            cfg.DATA.ENSEMBLE_METHOD,
        )

    # Set up writer for logging to Tensorboard format.
    if cfg.TENSORBOARD.ENABLE and du.is_master_proc(
            cfg.NUM_GPUS * cfg.NUM_SHARDS):
        writer = tb.TensorboardWriter(cfg)
    else:
        writer = None

    # # Perform multi-view test on the entire dataset.
    test_meter = perform_test(test_loader, model, test_meter, cfg, writer)
    if writer is not None:
        writer.close()
def visualize(cfg):
    """
    Perform layer weights and activations visualization on the model.
    Args:
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
    """
    if cfg.TENSORBOARD.ENABLE and cfg.TENSORBOARD.MODEL_VIS.ENABLE:
        # Set up environment.
        du.init_distributed_training(cfg)
        # Set random seed from configs.
        np.random.seed(cfg.RNG_SEED)
        torch.manual_seed(cfg.RNG_SEED)

        # Setup logging format.
        logging.setup_logging(cfg.OUTPUT_DIR)

        # Print config.
        logger.info("Model Visualization with config:")
        logger.info(cfg)

        # Build the video model and print model statistics.
        model = build_model(cfg)
        if du.is_master_proc() and cfg.LOG_MODEL_INFO:
            misc.log_model_info(model, cfg, is_train=False)

        cu.load_test_checkpoint(cfg, model)

        # Create video testing loaders.
        vis_loader = loader.construct_loader(cfg, "test")
        logger.info(
            "Visualize model for {} data points".format(len(vis_loader))
        )

        if cfg.DETECTION.ENABLE:
            assert cfg.NUM_GPUS == cfg.TEST.BATCH_SIZE

        # Set up writer for logging to Tensorboard format.
        if du.is_master_proc(cfg.NUM_GPUS * cfg.NUM_SHARDS):
            writer = tb.TensorboardWriter(cfg)
        else:
            writer = None

        # Run visualization on the model
        run_visualization(vis_loader, model, cfg, writer)

        if writer is not None:
            writer.close()
Beispiel #4
0
def test(cfg):
    """
    Perform multi-view testing on the pretrained video model.
    Args:
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
    """
    # Set up environment.
    du.init_distributed_training(cfg)
    # Set random seed from configs.
    np.random.seed(cfg.RNG_SEED)
    torch.manual_seed(cfg.RNG_SEED)

    # Setup logging format.
    logging.setup_logging(cfg.OUTPUT_DIR)

    # Print config.
    logger.info("Test with config:")
    logger.info(cfg)

    # Build the video model and print model statistics.
    model = build_model(cfg)

    cu.load_test_checkpoint(cfg, model)

    # Create video testing loaders.
    test_loader = loader.construct_loader(cfg, "test")
    logger.info("Testing model for {} iterations".format(len(test_loader)))

    # Create meters for loss tracking
    test_meter = TrainMeter(test_loader.dataset.num_videos, cfg)

    # Set up writer for logging to Tensorboard format.
    if cfg.TENSORBOARD.ENABLE and du.is_master_proc(
        cfg.NUM_GPUS * cfg.NUM_SHARDS
    ):
        writer = tb.TensorboardWriter(cfg)
    else:
        writer = None

    # # Perform multi-view test on the entire dataset.
    test_meter = perform_test(test_loader, model, test_meter, cfg, writer)
    if writer is not None:
        writer.close()
Beispiel #5
0
def train(cfg):
    """
    Train a video model for many epochs on train set and evaluate it on val set.
    Args:
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
    """
    # Set up environment.
    du.init_distributed_training(cfg)
    # Set random seed from configs.
    np.random.seed(cfg.RNG_SEED)
    torch.manual_seed(cfg.RNG_SEED)

    # Setup logging format.
    logging.setup_logging(cfg.OUTPUT_DIR)

    # Init multigrid.
    multigrid = None
    if cfg.MULTIGRID.LONG_CYCLE or cfg.MULTIGRID.SHORT_CYCLE:
        multigrid = MultigridSchedule()
        cfg = multigrid.init_multigrid(cfg)
        if cfg.MULTIGRID.LONG_CYCLE:
            cfg, _ = multigrid.update_long_cycle(cfg, cur_epoch=0)
    # Print config.
    logger.info("Train with config:")
    logger.info(pprint.pformat(cfg))

    # Build the video model and print model statistics.
    model = build_model(cfg)
    if du.is_master_proc() and cfg.LOG_MODEL_INFO:
        misc.log_model_info(model, cfg, use_train_input=True)

    # Construct the optimizer.
    optimizer = optim.construct_optimizer(model, cfg)

    # Load a checkpoint to resume training if applicable.
    start_epoch = cu.load_train_checkpoint(cfg, model, optimizer)

    # Create the video train and val loaders.
    train_loader = loader.construct_loader(cfg, "train")
    val_loader = loader.construct_loader(cfg, "val")
    precise_bn_loader = (loader.construct_loader(
        cfg, "train", is_precise_bn=True)
                         if cfg.BN.USE_PRECISE_STATS else None)

    # Create meters.
    if cfg.DETECTION.ENABLE:
        train_meter = AVAMeter(len(train_loader), cfg, mode="train")
        val_meter = AVAMeter(len(val_loader), cfg, mode="val")
    else:
        train_meter = TrainMeter(len(train_loader), cfg)
        val_meter = ValMeter(len(val_loader), cfg)

    # set up writer for logging to Tensorboard format.
    if cfg.TENSORBOARD.ENABLE and du.is_master_proc(
            cfg.NUM_GPUS * cfg.NUM_SHARDS):
        writer = tb.TensorboardWriter(cfg)
    else:
        writer = None

    # Perform the training loop.
    logger.info("Start epoch: {}".format(start_epoch + 1))

    for cur_epoch in range(start_epoch, cfg.SOLVER.MAX_EPOCH):
        if cfg.MULTIGRID.LONG_CYCLE:
            cfg, changed = multigrid.update_long_cycle(cfg, cur_epoch)
            if changed:
                (
                    model,
                    optimizer,
                    train_loader,
                    val_loader,
                    precise_bn_loader,
                    train_meter,
                    val_meter,
                ) = build_trainer(cfg)

                # Load checkpoint.
                if cu.has_checkpoint(cfg.OUTPUT_DIR):
                    last_checkpoint = cu.get_last_checkpoint(cfg.OUTPUT_DIR)
                    assert "{:05d}.pyth".format(cur_epoch) in last_checkpoint
                else:
                    last_checkpoint = cfg.TRAIN.CHECKPOINT_FILE_PATH
                logger.info("Load from {}".format(last_checkpoint))
                cu.load_checkpoint(last_checkpoint, model, cfg.NUM_GPUS > 1,
                                   optimizer)

        # Shuffle the dataset.
        loader.shuffle_dataset(train_loader, cur_epoch)

        # Train for one epoch.
        train_epoch(train_loader, model, optimizer, train_meter, cur_epoch,
                    cfg, writer)

        is_checkp_epoch = (cu.is_checkpoint_epoch(
            cfg,
            cur_epoch,
            None if multigrid is None else multigrid.schedule,
        ))
        is_eval_epoch = misc.is_eval_epoch(
            cfg, cur_epoch, None if multigrid is None else multigrid.schedule)

        # Compute precise BN stats.
        if ((is_checkp_epoch or is_eval_epoch) and cfg.BN.USE_PRECISE_STATS
                and len(get_bn_modules(model)) > 0):
            calculate_and_update_precise_bn(
                precise_bn_loader,
                model,
                min(cfg.BN.NUM_BATCHES_PRECISE, len(precise_bn_loader)),
                cfg.NUM_GPUS > 0,
            )
        _ = misc.aggregate_sub_bn_stats(model)

        # Save a checkpoint.
        if is_checkp_epoch:
            cu.save_checkpoint(cfg.OUTPUT_DIR, model, optimizer, cur_epoch,
                               cfg)
        # Evaluate the model on validation set.
        if is_eval_epoch:
            eval_epoch(val_loader, model, val_meter, cur_epoch, cfg, writer)

    if writer is not None:
        writer.close()
Beispiel #6
0
def visualize(cfg):
    """
    Perform layer weights and activations visualization on the model.
    Args:
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
    """
    if cfg.TENSORBOARD.ENABLE and (cfg.TENSORBOARD.MODEL_VIS.ENABLE
                                   or cfg.TENSORBOARD.WRONG_PRED_VIS.ENABLE):
        # Set up environment.
        du.init_distributed_training(cfg)
        # Set random seed from configs.
        np.random.seed(cfg.RNG_SEED)
        torch.manual_seed(cfg.RNG_SEED)

        # Setup logging format.
        logging.setup_logging(cfg.OUTPUT_DIR)

        # Print config.
        logger.info("Model Visualization with config:")
        logger.info(cfg)

        # Build the video model and print model statistics.
        model = build_model(cfg)
        model.eval()
        if du.is_master_proc() and cfg.LOG_MODEL_INFO:
            misc.log_model_info(model, cfg, use_train_input=False)

        cu.load_test_checkpoint(cfg, model)

        # Create video testing loaders.
        vis_loader = loader.construct_loader(cfg, "test")

        if cfg.DETECTION.ENABLE:
            assert cfg.NUM_GPUS == cfg.TEST.BATCH_SIZE or cfg.NUM_GPUS == 0

        # Set up writer for logging to Tensorboard format.
        if du.is_master_proc(cfg.NUM_GPUS * cfg.NUM_SHARDS):
            writer = tb.TensorboardWriter(cfg)
        else:
            writer = None
        if cfg.TENSORBOARD.PREDICTIONS_PATH != "":
            assert not cfg.DETECTION.ENABLE, "Detection is not supported."
            logger.info(
                "Visualizing class-level performance from saved results...")
            if writer is not None:
                with g_pathmgr.open(cfg.TENSORBOARD.PREDICTIONS_PATH,
                                    "rb") as f:
                    preds, labels = pickle.load(f, encoding="latin1")

                writer.plot_eval(preds, labels)

        if cfg.TENSORBOARD.MODEL_VIS.ENABLE:
            if cfg.TENSORBOARD.MODEL_VIS.GRAD_CAM.ENABLE:
                assert (
                    not cfg.DETECTION.ENABLE
                ), "Detection task is currently not supported for Grad-CAM visualization."
                if cfg.MODEL.ARCH in cfg.MODEL.SINGLE_PATHWAY_ARCH:
                    assert (
                        len(cfg.TENSORBOARD.MODEL_VIS.GRAD_CAM.LAYER_LIST) == 1
                    ), "The number of chosen CNN layers must be equal to the number of pathway(s), given {} layer(s).".format(
                        len(cfg.TENSORBOARD.MODEL_VIS.GRAD_CAM.LAYER_LIST))
                elif cfg.MODEL.ARCH in cfg.MODEL.MULTI_PATHWAY_ARCH:
                    assert (
                        len(cfg.TENSORBOARD.MODEL_VIS.GRAD_CAM.LAYER_LIST) == 2
                    ), "The number of chosen CNN layers must be equal to the number of pathway(s), given {} layer(s).".format(
                        len(cfg.TENSORBOARD.MODEL_VIS.GRAD_CAM.LAYER_LIST))
                else:
                    raise NotImplementedError(
                        "Model arch {} is not in {}".format(
                            cfg.MODEL.ARCH,
                            cfg.MODEL.SINGLE_PATHWAY_ARCH +
                            cfg.MODEL.MULTI_PATHWAY_ARCH,
                        ))
            logger.info("Visualize model analysis for {} iterations".format(
                len(vis_loader)))
            # Run visualization on the model
            run_visualization(vis_loader, model, cfg, writer)
        if cfg.TENSORBOARD.WRONG_PRED_VIS.ENABLE:
            logger.info("Visualize Wrong Predictions for {} iterations".format(
                len(vis_loader)))
            perform_wrong_prediction_vis(vis_loader, model, cfg)

        if writer is not None:
            writer.close()
Beispiel #7
0
def train(cfg):
    """
    Train a video model for many epochs on train set and evaluate it on val set.
    Args:
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
    """
    # Set up environment.
    du.init_distributed_training(cfg)
    # Set random seed from configs.
    np.random.seed(cfg.RNG_SEED)
    torch.manual_seed(cfg.RNG_SEED)

    # Setup logging format.
    logging.setup_logging()

    # Print config.
    logger.info("Train with config:")
    logger.info(pprint.pformat(cfg))

    # Build the video model and print model statistics.
    model = build_model(cfg)
    if du.is_master_proc() and cfg.LOG_MODEL_INFO:
        misc.log_model_info(model, cfg, is_train=True)

    # Construct the optimizer.
    optimizer = optim.construct_optimizer(model, cfg)

    # Load a checkpoint to resume training if applicable.
    if cfg.TRAIN.AUTO_RESUME and cu.has_checkpoint(cfg.OUTPUT_DIR):
        logger.info("Load from last checkpoint.")
        last_checkpoint = cu.get_last_checkpoint(cfg.OUTPUT_DIR)
        checkpoint_epoch = cu.load_checkpoint(last_checkpoint, model,
                                              cfg.NUM_GPUS > 1, optimizer)
        start_epoch = checkpoint_epoch + 1
    elif cfg.TRAIN.CHECKPOINT_FILE_PATH != "":
        logger.info("Load from given checkpoint file.")
        checkpoint_epoch = cu.load_checkpoint(
            cfg.TRAIN.CHECKPOINT_FILE_PATH,
            model,
            cfg.NUM_GPUS > 1,
            optimizer,
            inflation=cfg.TRAIN.CHECKPOINT_INFLATE,
            convert_from_caffe2=cfg.TRAIN.CHECKPOINT_TYPE == "caffe2",
        )
        start_epoch = checkpoint_epoch + 1
    else:
        start_epoch = 0

    # Create the video train and val loaders.
    train_loader = loader.construct_loader(cfg, "train")
    val_loader = loader.construct_loader(cfg, "val")

    # Create meters.
    if cfg.DETECTION.ENABLE:
        train_meter = AVAMeter(len(train_loader), cfg, mode="train")
        val_meter = AVAMeter(len(val_loader), cfg, mode="val")
    else:
        train_meter = TrainMeter(len(train_loader), cfg)
        val_meter = ValMeter(len(val_loader), cfg)

    # Perform the training loop.
    logger.info("Start epoch: {}".format(start_epoch + 1))

    for cur_epoch in range(start_epoch, cfg.SOLVER.MAX_EPOCH):
        # Shuffle the dataset.
        loader.shuffle_dataset(train_loader, cur_epoch)
        # Train for one epoch.
        train_epoch(train_loader, model, optimizer, train_meter, cur_epoch,
                    cfg)

        # Compute precise BN stats.
        if cfg.BN.USE_PRECISE_STATS and len(get_bn_modules(model)) > 0:
            calculate_and_update_precise_bn(train_loader, model,
                                            cfg.BN.NUM_BATCHES_PRECISE)
        _ = misc.aggregate_split_bn_stats(model, 0)

        # Save a checkpoint.
        if cu.is_checkpoint_epoch(cur_epoch, cfg.TRAIN.CHECKPOINT_PERIOD):
            cu.save_checkpoint(cfg.OUTPUT_DIR, model, optimizer, cur_epoch,
                               cfg)
        # Evaluate the model on validation set.
        if misc.is_eval_epoch(cfg, cur_epoch):
            eval_epoch(val_loader, model, val_meter, cur_epoch, cfg)
Beispiel #8
0
def test(cfg):
    """
    Perform multi-view testing on the pretrained video model.
    Args:
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
    """
    # Set up environment.
    du.init_distributed_training(cfg)
    # Set random seed from configs.
    np.random.seed(cfg.RNG_SEED)
    torch.manual_seed(cfg.RNG_SEED)

    # Setup logging format.
    logging.setup_logging(cfg.OUTPUT_DIR)

    # Print config.
    logger.info("Test with config:")
    logger.info(cfg)

    # Build the video model and print model statistics.
    model = build_model(cfg)
    if du.is_master_proc() and cfg.LOG_MODEL_INFO:
        misc.log_model_info(model, cfg, is_train=False)

    # Load a checkpoint to test if applicable.
    if cfg.TEST.CHECKPOINT_FILE_PATH != "":
        cu.load_checkpoint(
            cfg.TEST.CHECKPOINT_FILE_PATH,
            model,
            cfg.NUM_GPUS > 1,
            None,
            inflation=False,
            convert_from_caffe2=cfg.TEST.CHECKPOINT_TYPE == "caffe2",
        )
    elif cu.has_checkpoint(cfg.OUTPUT_DIR):
        last_checkpoint = cu.get_last_checkpoint(cfg.OUTPUT_DIR)
        cu.load_checkpoint(last_checkpoint, model, cfg.NUM_GPUS > 1)
    elif cfg.TRAIN.CHECKPOINT_FILE_PATH != "":
        # If no checkpoint found in TEST.CHECKPOINT_FILE_PATH or in the current
        # checkpoint folder, try to load checkpoint from
        # TRAIN.CHECKPOINT_FILE_PATH and test it.
        cu.load_checkpoint(
            cfg.TRAIN.CHECKPOINT_FILE_PATH,
            model,
            cfg.NUM_GPUS > 1,
            None,
            inflation=False,
            convert_from_caffe2=cfg.TRAIN.CHECKPOINT_TYPE == "caffe2",
        )
    else:
        # raise NotImplementedError("Unknown way to load checkpoint.")
        logger.info("Testing with random initialization. Only for debugging.")

    # Create video testing loaders.
    test_loader = loader.construct_loader(cfg, "test")
    logger.info("Testing model for {} iterations".format(len(test_loader)))

    assert (len(test_loader.dataset) %
            (cfg.TEST.NUM_ENSEMBLE_VIEWS * cfg.TEST.NUM_SPATIAL_CROPS) == 0)
    # Create meters for multi-view testing.
    test_meter = TestMeter(
        len(test_loader.dataset) //
        (cfg.TEST.NUM_ENSEMBLE_VIEWS * cfg.TEST.NUM_SPATIAL_CROPS),
        cfg.TEST.NUM_ENSEMBLE_VIEWS * cfg.TEST.NUM_SPATIAL_CROPS,
        cfg.MODEL.NUM_CLASSES,
        len(test_loader),
        cfg.DATA.MULTI_LABEL,
        cfg.DATA.ENSEMBLE_METHOD,
    )

    # Set up writer for logging to Tensorboard format.
    if cfg.TENSORBOARD.ENABLE and du.is_master_proc(
            cfg.NUM_GPUS * cfg.NUM_SHARDS):
        writer = tb.TensorboardWriter(cfg)
    else:
        writer = None

    # # Perform multi-view test on the entire dataset.
    perform_test(test_loader, model, test_meter, cfg, writer)
    if writer is not None:
        writer.close()
Beispiel #9
0
def test(cfg):
    """
    Perform multi-view testing on the pretrained video model.
    Args:
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
    """
    # Set up environment.
    du.init_distributed_training(cfg)
    # Set random seed from configs.
    np.random.seed(cfg.RNG_SEED)
    torch.manual_seed(cfg.RNG_SEED)

    # Setup logging format.
    logging.setup_logging(cfg.OUTPUT_DIR)

    # Print config.
    logger.info("Test with config:")
    logger.info(cfg)

    # Build the video model and print model statistics.
    model = build_model(cfg)

    out_str_prefix = "lin" if cfg.MODEL.DETACH_FINAL_FC else ""

    if du.is_master_proc() and cfg.LOG_MODEL_INFO:
        misc.log_model_info(model, cfg, use_train_input=False)

    if (cfg.TASK == "ssl" and cfg.MODEL.MODEL_NAME == "ContrastiveModel"
            and cfg.CONTRASTIVE.KNN_ON):
        train_loader = loader.construct_loader(cfg, "train")
        out_str_prefix = "knn"
        if hasattr(model, "module"):
            model.module.init_knn_labels(train_loader)
        else:
            model.init_knn_labels(train_loader)

    cu.load_test_checkpoint(cfg, model)

    # Create video testing loaders.
    test_loader = loader.construct_loader(cfg, "test")
    logger.info("Testing model for {} iterations".format(len(test_loader)))

    if cfg.DETECTION.ENABLE:
        assert cfg.NUM_GPUS == cfg.TEST.BATCH_SIZE or cfg.NUM_GPUS == 0
        test_meter = AVAMeter(len(test_loader), cfg, mode="test")
    else:
        assert (
            test_loader.dataset.num_videos %
            (cfg.TEST.NUM_ENSEMBLE_VIEWS * cfg.TEST.NUM_SPATIAL_CROPS) == 0)
        # Create meters for multi-view testing.
        test_meter = TestMeter(
            test_loader.dataset.num_videos //
            (cfg.TEST.NUM_ENSEMBLE_VIEWS * cfg.TEST.NUM_SPATIAL_CROPS),
            cfg.TEST.NUM_ENSEMBLE_VIEWS * cfg.TEST.NUM_SPATIAL_CROPS,
            cfg.MODEL.NUM_CLASSES if not cfg.TASK == "ssl" else
            cfg.CONTRASTIVE.NUM_CLASSES_DOWNSTREAM,
            len(test_loader),
            cfg.DATA.MULTI_LABEL,
            cfg.DATA.ENSEMBLE_METHOD,
        )

    # Set up writer for logging to Tensorboard format.
    if cfg.TENSORBOARD.ENABLE and du.is_master_proc(
            cfg.NUM_GPUS * cfg.NUM_SHARDS):
        writer = tb.TensorboardWriter(cfg)
    else:
        writer = None

    # # Perform multi-view test on the entire dataset.
    test_meter = perform_test(test_loader, model, test_meter, cfg, writer)
    if writer is not None:
        writer.close()
    result_string = (
        "_a{}{}{} Top1 Acc: {} Top5 Acc: {} MEM: {:.2f} dataset: {}{}"
        "".format(
            out_str_prefix,
            cfg.TEST.DATASET[0],
            test_meter.stats["top1_acc"],
            test_meter.stats["top1_acc"],
            test_meter.stats["top5_acc"],
            misc.gpu_mem_usage(),
            cfg.TEST.DATASET[0],
            cfg.MODEL.NUM_CLASSES,
        ))
    logger.info("testing done: {}".format(result_string))

    return result_string
def test(cfg):
    """
    Perform multi-view testing on the pretrained audio model.
    Args:
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
    """
    # Set up environment.
    du.init_distributed_training(cfg)
    # Set random seed from configs.
    np.random.seed(cfg.RNG_SEED)
    torch.manual_seed(cfg.RNG_SEED)

    # Setup logging format.
    logging.setup_logging(cfg.OUTPUT_DIR)

    # Print config.
    logger.info("Test with config:")
    logger.info(cfg)

    # Build the audio model and print model statistics.
    model = build_model(cfg)
    if du.is_master_proc() and cfg.LOG_MODEL_INFO:
        misc.log_model_info(model, cfg)

    cu.load_test_checkpoint(cfg, model)

    # Create audio testing loaders.
    test_loader = loader.construct_loader(cfg, "test")
    logger.info("Testing model for {} iterations".format(len(test_loader)))

    assert (
        len(test_loader.dataset)
        % cfg.TEST.NUM_ENSEMBLE_VIEWS
        == 0
    )
    # Create meters for multi-view testing.
    if cfg.TEST.DATASET == 'epickitchens':
        test_meter = EPICTestMeter(
            len(test_loader.dataset)
            // cfg.TEST.NUM_ENSEMBLE_VIEWS,
            cfg.TEST.NUM_ENSEMBLE_VIEWS,
            cfg.MODEL.NUM_CLASSES,
            len(test_loader),
            cfg.DATA.ENSEMBLE_METHOD,
        )
    else:
        test_meter = TestMeter(
            len(test_loader.dataset)
            // cfg.TEST.NUM_ENSEMBLE_VIEWS,
            cfg.TEST.NUM_ENSEMBLE_VIEWS,
            cfg.MODEL.NUM_CLASSES[0],
            len(test_loader),
            cfg.DATA.MULTI_LABEL,
            cfg.DATA.ENSEMBLE_METHOD,
        )

    # Set up writer for logging to Tensorboard format.
    if cfg.TENSORBOARD.ENABLE and du.is_master_proc(
        cfg.NUM_GPUS * cfg.NUM_SHARDS
    ):
        writer = tb.TensorboardWriter(cfg)
    else:
        writer = None

    # # Perform multi-view test on the entire dataset.
    test_meter, preds, preds_clips, labels, metadata = perform_test(test_loader, model, test_meter, cfg, writer)

    if du.is_master_proc():
        if cfg.TEST.DATASET == 'epickitchens':
            results = {'verb_output': preds[0],
                       'noun_output': preds[1],
                       'narration_id': metadata}
            scores_path = os.path.join(cfg.OUTPUT_DIR, 'scores')
            if not os.path.exists(scores_path):
                os.makedirs(scores_path)
            file_path = os.path.join(scores_path, cfg.EPICKITCHENS.TEST_SPLIT+'.pkl')
            pickle.dump(results, open(file_path, 'wb'))
        else:
            if cfg.TEST.DATASET == 'vggsound':
                get_stats(preds, labels)
            results = {'scores': preds, 'labels': labels}
            scores_path = os.path.join(cfg.OUTPUT_DIR, 'scores')
            if not os.path.exists(scores_path):
                os.makedirs(scores_path)
            file_path = os.path.join(scores_path, 'test.pkl')
            pickle.dump(results, open(file_path, 'wb'))

    if writer is not None:
        writer.close()
def train(cfg):
    """
    Train an audio model for many epochs on train set and evaluate it on val set.
    Args:
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
    """
    # Set up environment.
    du.init_distributed_training(cfg)
    # Set random seed from configs.
    np.random.seed(cfg.RNG_SEED)
    torch.manual_seed(cfg.RNG_SEED)

    # Setup logging format.
    logging.setup_logging(cfg.OUTPUT_DIR)

    # Print config.
    logger.info("Train with config:")
    logger.info(pprint.pformat(cfg))

    # Build the audio model and print model statistics.
    model = build_model(cfg)
    if du.is_master_proc() and cfg.LOG_MODEL_INFO:
        misc.log_model_info(model, cfg)

    if cfg.BN.FREEZE:
        model.module.freeze_fn(
            'bn_parameters') if cfg.NUM_GPUS > 1 else model.freeze_fn(
                'bn_parameters')

    # Construct the optimizer.
    optimizer = optim.construct_optimizer(model, cfg)

    # Load a checkpoint to resume training if applicable.
    start_epoch = cu.load_train_checkpoint(cfg, model, optimizer)

    # Create the audio train and val loaders.
    if cfg.TRAIN.DATASET != 'epickitchens' or not cfg.EPICKITCHENS.TRAIN_PLUS_VAL:
        train_loader = loader.construct_loader(cfg, "train")
        val_loader = loader.construct_loader(cfg, "val")
        precise_bn_loader = (loader.construct_loader(cfg, "train")
                             if cfg.BN.USE_PRECISE_STATS else None)
    else:
        train_loader = loader.construct_loader(cfg, "train+val")
        val_loader = loader.construct_loader(cfg, "val")
        precise_bn_loader = (loader.construct_loader(cfg, "train+val")
                             if cfg.BN.USE_PRECISE_STATS else None)

    # Create meters.
    if cfg.TRAIN.DATASET == 'epickitchens':
        train_meter = EPICTrainMeter(len(train_loader), cfg)
        val_meter = EPICValMeter(len(val_loader), cfg)
    else:
        train_meter = TrainMeter(len(train_loader), cfg)
        val_meter = ValMeter(len(val_loader), cfg)

    # set up writer for logging to Tensorboard format.
    if cfg.TENSORBOARD.ENABLE and du.is_master_proc(
            cfg.NUM_GPUS * cfg.NUM_SHARDS):
        writer = tb.TensorboardWriter(cfg)
    else:
        writer = None

    if cfg.WANDB.ENABLE and du.is_master_proc(cfg.NUM_GPUS * cfg.NUM_SHARDS):
        wandb_log = True
        if cfg.TRAIN.AUTO_RESUME and cfg.WANDB.RUN_ID != "":
            wandb.init(project='slowfast',
                       config=cfg,
                       sync_tensorboard=True,
                       resume=cfg.WANDB.RUN_ID)
        else:
            wandb.init(project='slowfast', config=cfg, sync_tensorboard=True)
        wandb.watch(model)

    else:
        wandb_log = False

    # Perform the training loop.
    logger.info("Start epoch: {}".format(start_epoch + 1))

    for cur_epoch in range(start_epoch, cfg.SOLVER.MAX_EPOCH):
        # Shuffle the dataset.
        loader.shuffle_dataset(train_loader, cur_epoch)

        # Train for one epoch.
        train_epoch(train_loader, model, optimizer, train_meter, cur_epoch,
                    cfg, writer, wandb_log)

        is_checkp_epoch = cu.is_checkpoint_epoch(
            cfg,
            cur_epoch,
        )
        is_eval_epoch = misc.is_eval_epoch(
            cfg,
            cur_epoch,
        )

        # Compute precise BN stats.
        if ((is_checkp_epoch or is_eval_epoch) and cfg.BN.USE_PRECISE_STATS
                and len(get_bn_modules(model)) > 0):
            calculate_and_update_precise_bn(
                precise_bn_loader,
                model,
                min(cfg.BN.NUM_BATCHES_PRECISE, len(precise_bn_loader)),
                cfg.NUM_GPUS > 0,
            )
        _ = misc.aggregate_sub_bn_stats(model)

        # Save a checkpoint.
        if is_checkp_epoch:
            cu.save_checkpoint(cfg.OUTPUT_DIR, model, optimizer, cur_epoch,
                               cfg)
        # Evaluate the model on validation set.
        if is_eval_epoch:
            is_best_epoch, _ = eval_epoch(val_loader, model, val_meter,
                                          cur_epoch, cfg, writer, wandb_log)
            if is_best_epoch:
                cu.save_checkpoint(cfg.OUTPUT_DIR,
                                   model,
                                   optimizer,
                                   cur_epoch,
                                   cfg,
                                   is_best_epoch=is_best_epoch)

    if writer is not None:
        writer.close()
Beispiel #12
0
def train(cfg):
    """
    Train a video model for many epochs on train set and evaluate it on val set.
    Args:
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
    """
    # Set up environment.
    du.init_distributed_training(cfg)
    # Set random seed from configs.
    np.random.seed(cfg.RNG_SEED)
    torch.manual_seed(cfg.RNG_SEED)

    # Setup logging format.
    logging.setup_logging(cfg.OUTPUT_DIR)

    # Init multigrid.
    multigrid = None
    if cfg.MULTIGRID.LONG_CYCLE or cfg.MULTIGRID.SHORT_CYCLE:
        multigrid = MultigridSchedule()
        cfg = multigrid.init_multigrid(cfg)
        if cfg.MULTIGRID.LONG_CYCLE:
            cfg, _ = multigrid.update_long_cycle(cfg, cur_epoch=0)
    # Print config.
    logger.info("Train with config:")
    logger.info(pprint.pformat(cfg))

    # Build the video model and print model statistics.
    model = build_model(cfg)
    if du.is_master_proc() and cfg.LOG_MODEL_INFO:
        misc.log_model_info(model, cfg, use_train_input=True)

    # Construct the optimizer.
    optimizer = optim.construct_optimizer(model, cfg)
    # Create a GradScaler for mixed precision training
    scaler = torch.cuda.amp.GradScaler(enabled=cfg.TRAIN.MIXED_PRECISION)

    # Load a checkpoint to resume training if applicable.
    if cfg.TRAIN.AUTO_RESUME and cu.has_checkpoint(cfg.OUTPUT_DIR):
        logger.info("Load from last checkpoint.")
        last_checkpoint = cu.get_last_checkpoint(cfg.OUTPUT_DIR, task=cfg.TASK)
        if last_checkpoint is not None:
            checkpoint_epoch = cu.load_checkpoint(
                last_checkpoint,
                model,
                cfg.NUM_GPUS > 1,
                optimizer,
                scaler if cfg.TRAIN.MIXED_PRECISION else None,
            )
            start_epoch = checkpoint_epoch + 1
        elif "ssl_eval" in cfg.TASK:
            last_checkpoint = cu.get_last_checkpoint(cfg.OUTPUT_DIR,
                                                     task="ssl")
            checkpoint_epoch = cu.load_checkpoint(
                last_checkpoint,
                model,
                cfg.NUM_GPUS > 1,
                optimizer,
                scaler if cfg.TRAIN.MIXED_PRECISION else None,
                epoch_reset=True,
                clear_name_pattern=cfg.TRAIN.CHECKPOINT_CLEAR_NAME_PATTERN,
            )
            start_epoch = checkpoint_epoch + 1
        else:
            start_epoch = 0
    elif cfg.TRAIN.CHECKPOINT_FILE_PATH != "":
        logger.info("Load from given checkpoint file.")
        checkpoint_epoch = cu.load_checkpoint(
            cfg.TRAIN.CHECKPOINT_FILE_PATH,
            model,
            cfg.NUM_GPUS > 1,
            optimizer,
            scaler if cfg.TRAIN.MIXED_PRECISION else None,
            inflation=cfg.TRAIN.CHECKPOINT_INFLATE,
            convert_from_caffe2=cfg.TRAIN.CHECKPOINT_TYPE == "caffe2",
            epoch_reset=cfg.TRAIN.CHECKPOINT_EPOCH_RESET,
            clear_name_pattern=cfg.TRAIN.CHECKPOINT_CLEAR_NAME_PATTERN,
        )
        start_epoch = checkpoint_epoch + 1
    else:
        start_epoch = 0

    # Create the video train and val loaders.
    train_loader = loader.construct_loader(cfg, "train")
    val_loader = loader.construct_loader(cfg, "val")

    precise_bn_loader = (loader.construct_loader(
        cfg, "train", is_precise_bn=True)
                         if cfg.BN.USE_PRECISE_STATS else None)

    # if (
    #     cfg.TASK == "ssl"
    #     and cfg.MODEL.MODEL_NAME == "ContrastiveModel"
    #     and cfg.CONTRASTIVE.KNN_ON
    # ):
    #     if hasattr(model, "module"):
    #         model.module.init_knn_labels(train_loader)
    #     else:
    #         model.init_knn_labels(train_loader)

    # Create meters.
    if cfg.DETECTION.ENABLE:
        train_meter = AVAMeter(len(train_loader), cfg, mode="train")
        val_meter = AVAMeter(len(val_loader), cfg, mode="val")
    else:
        train_meter = TrainMeter(1e6, cfg)
        val_meter = ValMeter(1e6, cfg)

    # set up writer for logging to Tensorboard format.
    if cfg.TENSORBOARD.ENABLE and du.is_master_proc(
            cfg.NUM_GPUS * cfg.NUM_SHARDS):
        writer = tb.TensorboardWriter(cfg)
    else:
        writer = None

    # Perform the training loop.
    logger.info("Start epoch: {}".format(start_epoch + 1))

    epoch_timer = EpochTimer()
    for cur_epoch in range(start_epoch, cfg.SOLVER.MAX_EPOCH):

        if cur_epoch > 0 and cfg.DATA.LOADER_CHUNK_SIZE > 0:
            num_chunks = math.ceil(cfg.DATA.LOADER_CHUNK_OVERALL_SIZE /
                                   cfg.DATA.LOADER_CHUNK_SIZE)
            skip_rows = (cur_epoch) % num_chunks * cfg.DATA.LOADER_CHUNK_SIZE
            logger.info(
                f"=================+++ num_chunks {num_chunks} skip_rows {skip_rows}"
            )
            cfg.DATA.SKIP_ROWS = skip_rows
            logger.info(f"|===========| skip_rows {skip_rows}")
            train_loader = loader.construct_loader(cfg, "train")
            loader.shuffle_dataset(train_loader, cur_epoch)

        if cfg.MULTIGRID.LONG_CYCLE:
            cfg, changed = multigrid.update_long_cycle(cfg, cur_epoch)
            if changed:
                (
                    model,
                    optimizer,
                    train_loader,
                    val_loader,
                    precise_bn_loader,
                    train_meter,
                    val_meter,
                ) = build_trainer(cfg)

                # Load checkpoint.
                if cu.has_checkpoint(cfg.OUTPUT_DIR):
                    last_checkpoint = cu.get_last_checkpoint(cfg.OUTPUT_DIR,
                                                             task=cfg.TASK)
                    assert "{:05d}.pyth".format(cur_epoch) in last_checkpoint
                else:
                    last_checkpoint = cfg.TRAIN.CHECKPOINT_FILE_PATH
                logger.info("Load from {}".format(last_checkpoint))
                cu.load_checkpoint(last_checkpoint, model, cfg.NUM_GPUS > 1,
                                   optimizer)

        # Shuffle the dataset.
        loader.shuffle_dataset(train_loader, cur_epoch)

        if hasattr(train_loader.dataset, "_set_epoch_num"):
            train_loader.dataset._set_epoch_num(cur_epoch)

        # Train for one epoch.
        epoch_timer.epoch_tic()

        train_epoch(
            train_loader,
            model,
            optimizer,
            scaler,
            train_meter,
            cur_epoch,
            cfg,
            writer,
        )
        epoch_timer.epoch_toc()
        logger.info(
            f"Epoch {cur_epoch} takes {epoch_timer.last_epoch_time():.2f}s. Epochs "
            f"from {start_epoch} to {cur_epoch} take "
            f"{epoch_timer.avg_epoch_time():.2f}s in average and "
            f"{epoch_timer.median_epoch_time():.2f}s in median.")
        logger.info(
            f"For epoch {cur_epoch}, each iteraction takes "
            f"{epoch_timer.last_epoch_time()/len(train_loader):.2f}s in average. "
            f"From epoch {start_epoch} to {cur_epoch}, each iteraction takes "
            f"{epoch_timer.avg_epoch_time()/len(train_loader):.2f}s in average."
        )

        is_checkp_epoch = (cu.is_checkpoint_epoch(
            cfg,
            cur_epoch,
            None if multigrid is None else multigrid.schedule,
        ) or cur_epoch == cfg.SOLVER.MAX_EPOCH - 1)
        is_eval_epoch = misc.is_eval_epoch(
            cfg, cur_epoch, None if multigrid is None else multigrid.schedule)

        # Compute precise BN stats.
        if ((is_checkp_epoch or is_eval_epoch) and cfg.BN.USE_PRECISE_STATS
                and len(get_bn_modules(model)) > 0):
            calculate_and_update_precise_bn(
                precise_bn_loader,
                model,
                min(cfg.BN.NUM_BATCHES_PRECISE, len(precise_bn_loader)),
                cfg.NUM_GPUS > 0,
            )
        _ = misc.aggregate_sub_bn_stats(model)

        # Save a checkpoint.
        if is_checkp_epoch:
            cu.save_checkpoint(
                cfg.OUTPUT_DIR,
                model,
                optimizer,
                cur_epoch,
                cfg,
                scaler if cfg.TRAIN.MIXED_PRECISION else None,
            )
        # Evaluate the model on validation set.
        if is_eval_epoch:
            eval_epoch(
                val_loader,
                model,
                val_meter,
                cur_epoch,
                cfg,
                train_loader,
                writer,
            )
    if writer is not None:
        writer.close()
    result_string = "Top1 Acc: {:.2f} Top5 Acc: {:.2f} MEM: {:.2f}" "".format(
        100 - val_meter.min_top1_err,
        100 - val_meter.min_top5_err,
        misc.gpu_mem_usage(),
    )
    logger.info("training done: {}".format(result_string))

    return result_string