Beispiel #1
0
    def test_krg_mixed_5D(self):
        xtypes = [FLOAT, (ENUM, 3), INT]
        xlimits = [[-10, 10], ["blue", "red", "green"], [-10, 10]]
        mixint = MixedIntegerContext(xtypes, xlimits)

        sm = mixint.build_surrogate(KRG(print_prediction=False))
        sampling = mixint.build_sampling_method(LHS, criterion="m")

        fun = Sphere(ndim=5)
        xt = sampling(20)
        yt = fun(xt)
        sm.set_training_values(xt, yt)
        sm.train()

        x_out = mixint.fold_with_enum_indexes(xt)
        eq_check = True
        for i in range(x_out.shape[0]):
            if abs(float(x_out[i, :][2]) - int(float(x_out[i, :][2]))) > 10e-8:
                eq_check = False
            if not (x_out[i, :][1] == 0 or x_out[i, :][1] == 1
                    or x_out[i, :][1] == 2):
                eq_check = False
        self.assertTrue(eq_check)
Beispiel #2
0
class EGO(SurrogateBasedApplication):
    def _initialize(self):
        super(EGO, self)._initialize()
        declare = self.options.declare

        declare("fun", None, types=FunctionType, desc="Function to minimize")
        declare(
            "criterion",
            "EI",
            types=str,
            values=["EI", "SBO", "UCB"],
            desc="criterion for next evaluation point determination: Expected Improvement, \
            Surrogate-Based Optimization or Upper Confidence Bound",
        )
        declare("n_iter", None, types=int, desc="Number of optimizer steps")
        declare(
            "n_max_optim",
            20,
            types=int,
            desc="Maximum number of internal optimizations",
        )
        declare("n_start", 20, types=int, desc="Number of optimization start points")
        declare(
            "n_parallel",
            1,
            types=int,
            desc="Number of parallel samples to compute using qEI criterion",
        )
        declare(
            "qEI",
            "KBLB",
            types=str,
            values=["KB", "KBLB", "KBUB", "KBRand", "CLmin"],
            desc="Approximated q-EI maximization strategy",
        )
        declare(
            "evaluator",
            default=Evaluator(),
            types=Evaluator,
            desc="Object used to run function fun to optimize at x points (nsamples, nxdim)",
        )
        declare(
            "n_doe",
            None,
            types=int,
            desc="Number of points of the initial LHS doe, only used if xdoe is not given",
        )
        declare("xdoe", None, types=np.ndarray, desc="Initial doe inputs")
        declare("ydoe", None, types=np.ndarray, desc="Initial doe outputs")
        declare("xlimits", None, types=np.ndarray, desc="Bounds of function fun inputs")
        declare("verbose", False, types=bool, desc="Print computation information")
        declare(
            "enable_tunneling",
            False,
            types=bool,
            desc="Enable the penalization of points that have been already evaluated in EI criterion",
        )
        declare(
            "surrogate",
            KRG(print_global=False),
            types=(KRG, KPLS, KPLSK),
            desc="SMT kriging-based surrogate model used internaly",
        )
        declare(
            "xtypes",
            None,
            types=list,
            desc="x type specifications: either FLOAT for continuous, INT for integer "
            "or (ENUM n) for categorical doimension with n levels",
        )

    def optimize(self, fun):
        """
        Optimizes fun

        Parameters
        ----------

        fun: function to optimize: ndarray[n, nx] or ndarray[n] -> ndarray[n, 1]

        Returns
        -------

        [nx, 1]: x optimum
        [1, 1]: y optimum
        int: index of optimum in data arrays 
        [ndoe + n_iter, nx]: coord-x data
        [ndoe + n_iter, 1]: coord-y data
        [ndoe, nx]: coord-x initial doe
        [ndoe, 1]: coord-y initial doe
        """
        x_data, y_data = self._setup_optimizer(fun)

        n_iter = self.options["n_iter"]
        n_parallel = self.options["n_parallel"]

        for k in range(n_iter):

            # Virtual enrichement loop
            for p in range(n_parallel):
                # find next best x-coord point to evaluate
                x_et_k, success = self._find_best_point(
                    x_data, y_data, self.options["enable_tunneling"]
                )
                if not success:
                    self.log(
                        "Internal optimization failed at EGO iter = {}.{}".format(k, p)
                    )
                    break
                elif success:
                    self.log(
                        "Internal optimization succeeded at EGO iter = {}.{}".format(
                            k, p
                        )
                    )
                # Set temporaly the y-coord point based on the kriging prediction
                y_et_k = self._get_virtual_point(np.atleast_2d(x_et_k), y_data)

                # Update y_data with predicted value
                y_data = np.atleast_2d(np.append(y_data, y_et_k)).T
                x_data = np.atleast_2d(np.append(x_data, x_et_k, axis=0))

            # Compute the real values of y_data
            x_to_compute = np.atleast_2d(x_data[-n_parallel:])
            if self.mixint:
                x_to_compute = self.mixint.fold_with_enum_indexes(x_to_compute)
            y = self._evaluator.run(fun, x_to_compute)
            y_data[-n_parallel:] = y

        # Find the optimal point
        ind_best = np.argmin(y_data)
        x_opt = x_data[ind_best]
        y_opt = y_data[ind_best]

        return x_opt, y_opt, ind_best, x_data, y_data

    def log(self, msg):
        if self.options["verbose"]:
            print(msg)

    def EI(self, points, y_data, enable_tunneling=False, x_data=None):
        """ Expected improvement """
        f_min = np.min(y_data)
        pred = self.gpr.predict_values(points)
        sig = np.sqrt(self.gpr.predict_variances(points))
        args0 = (f_min - pred) / sig
        args1 = (f_min - pred) * norm.cdf(args0)
        args2 = sig * norm.pdf(args0)
        if sig.size == 1 and sig == 0.0:  # can be use only if one point is computed
            return 0.0
        ei = args1 + args2
        # penalize the points already evaluated with tunneling
        if enable_tunneling:
            for i in range(len(points)):
                p = np.atleast_2d(points[i])
                EIp = self.EI(p, y_data, enable_tunneling=False)
                for x in x_data:
                    x = np.atleast_2d(x)
                    # if np.abs(p-x)<1:
                    # ei[i]=ei[i]*np.reciprocal(1+100*np.exp(-np.reciprocal(1-np.square(p-x))))
                    pena = (
                        EIp - self.EI(x, y_data, enable_tunneling=False)
                    ) / np.power(np.linalg.norm(p - x), 4)
                    if pena > 0:
                        ei[i] = ei[i] - pena
                    ei[i] = max(ei[i], 0)
        return ei

    def SBO(self, point):
        """ Surrogate based optimization: min the surrogate model by suing the mean mu """
        res = self.gpr.predict_values(point)
        return res

    def UCB(self, point):
        """ Upper confidence bound optimization: minimize by using mu - 3*sigma """
        pred = self.gpr.predict_values(point)
        var = self.gpr.predict_variances(point)
        res = pred - 3.0 * np.sqrt(var)
        return res

    def _setup_optimizer(self, fun):
        """
        Instanciate internal surrogate used for optimization 
        and setup function evaluator wrt options

        Parameters
        ----------

        fun: function to optimize: ndarray[n, nx] or ndarray[n] -> ndarray[n, 1]

        Returns
        -------

        ndarray: initial coord-x doe
        ndarray: initial coord-y doe = fun(xdoe)

        """
        # Set the model
        self.gpr = self.options["surrogate"]
        self.xlimits = self.options["xlimits"]

        # Handle mixed integer optimization
        xtypes = self.options["xtypes"]
        if xtypes:
            self.mixint = MixedIntegerContext(xtypes, self.xlimits)
            self.gpr = self.mixint.build_surrogate(self.gpr)
            self._sampling = self.mixint.build_sampling_method(LHS, criterion="ese")
        else:
            self.mixint = None
            self._sampling = LHS(xlimits=self.xlimits, criterion="ese")

        # Build DOE
        self._evaluator = self.options["evaluator"]
        xdoe = self.options["xdoe"]
        if xdoe is None:
            self.log("Build initial DOE with LHS")
            n_doe = self.options["n_doe"]
            x_doe = self._sampling(n_doe)
        else:
            self.log("Initial DOE given")
            x_doe = np.atleast_2d(xdoe)

        ydoe = self.options["ydoe"]
        if ydoe is None:
            y_doe = self._evaluator.run(fun, x_doe)
        else:  # to save time if y_doe is already given to EGO
            y_doe = ydoe

        return x_doe, y_doe

    def _find_best_point(self, x_data=None, y_data=None, enable_tunneling=False):
        """
        Function that analyse a set of x_data and y_data and give back the 
        more interesting point to evaluates according to the selected criterion
        
        Parameters
        ----------

        x_data: ndarray(n_points, nx)
        y_data: ndarray(n_points, 1)
        
        Returns
        -------

        ndarray(nx, 1): the next best point to evaluate
        boolean: success flag
        
        """
        self.gpr.set_training_values(x_data, y_data)
        self.gpr.train()

        criterion = self.options["criterion"]
        n_start = self.options["n_start"]
        n_max_optim = self.options["n_max_optim"]
        if self.mixint:
            bounds = self.mixint.unfold_to_continuous_limits(self.xlimits)
        else:
            bounds = self.xlimits

        if criterion == "EI":
            self.obj_k = lambda x: -self.EI(
                np.atleast_2d(x), y_data, enable_tunneling, x_data
            )
        elif criterion == "SBO":
            self.obj_k = lambda x: self.SBO(np.atleast_2d(x))
        elif criterion == "UCB":
            self.obj_k = lambda x: self.UCB(np.atleast_2d(x))

        success = False
        n_optim = 1  # in order to have some success optimizations with SLSQP
        while not success and n_optim <= n_max_optim:
            opt_all = []
            x_start = self._sampling(n_start)
            for ii in range(n_start):

                opt_all.append(
                    minimize(
                        lambda x: float(self.obj_k(x)),
                        x_start[ii, :],
                        method="SLSQP",
                        bounds=bounds,
                        options={"maxiter": 200},
                    )
                )

            opt_all = np.asarray(opt_all)

            opt_success = opt_all[[opt_i["success"] for opt_i in opt_all]]
            obj_success = np.array([opt_i["fun"] for opt_i in opt_success])
            success = obj_success.size != 0
            if not success:
                self.log("New start point for the internal optimization")
                n_optim += 1

        if n_optim >= n_max_optim:
            # self.log("Internal optimization failed at EGO iter = {}".format(k))
            return np.atleast_2d(0), False
        ind_min = np.argmin(obj_success)
        opt = opt_success[ind_min]
        x_et_k = np.atleast_2d(opt["x"])

        if self.mixint:
            self.mixint.cast_to_discrete_values(x_et_k)

        return x_et_k, True

    def _get_virtual_point(self, x, y_data):
        """
        Depending on the qEI attribute return a predicted value at given point x

        Parameters
        ----------

        x: ndarray(1, 1) the x-coord point where to forecast the y-coord virtual point
        y_data: current y evaluation list only used when qEI is CLmin

        Returns
        -------

        ndarray(1, 1): the so-called virtual y-coord point

        """
        qEI = self.options["qEI"]

        if qEI == "CLmin":
            return np.min(y_data)

        if qEI == "KB":
            return self.gpr.predict_values(x)
        if qEI == "KBUB":
            conf = 3.0

        if qEI == "KBLB":
            conf = -3.0

        if qEI == "KBRand":
            conf = np.random.randn()
        pred = self.gpr.predict_values(x)
        var = self.gpr.predict_variances(x)

        return pred + conf * np.sqrt(var)