def test_kpls_training_with_zeroed_outputs(self): # Test scikit-learn 0.24 regression cf. https://github.com/SMTorg/smt/issues/274 x = np.random.rand(50, 3) y = np.zeros(50) kpls = KPLS() kpls.set_training_values(x, y) # KPLS training fails anyway but not due to PLS exception StopIteration self.assertRaises(ValueError, kpls.train)
def test_predict_output(self): d, n = (3, 10) sx = LHS( xlimits=np.repeat(np.atleast_2d([0.0, 1.0]), d, axis=0), criterion="m", random_state=42, ) x = sx(n) sy = LHS( xlimits=np.repeat(np.atleast_2d([0.0, 1.0]), 1, axis=0), criterion="m", random_state=42, ) y = sy(n) kriging = KPLS(n_comp=2) kriging.set_training_values(x, y) kriging.train() x_fail_1 = np.asarray([0, 0, 0, 0]) x_fail_2 = np.asarray([0]) self.assertRaises(ValueError, lambda: kriging.predict_values(x_fail_1)) self.assertRaises(ValueError, lambda: kriging.predict_values(x_fail_2)) var = kriging.predict_variances(x) self.assertEqual(y.shape[0], var.shape[0])
def setUp(self): ndim = 10 nt = 50 ne = 100 problems = OrderedDict() problems["Branin"] = Branin(ndim=2) problems["Rosenbrock"] = Rosenbrock(ndim=3) problems["sphere"] = Sphere(ndim=ndim) problems["exp"] = TensorProduct(ndim=ndim, func="exp") problems["tanh"] = TensorProduct(ndim=ndim, func="tanh") problems["cos"] = TensorProduct(ndim=ndim, func="cos") sms = OrderedDict() sms["KPLS"] = KPLS(eval_n_comp=True) t_errors = {} e_errors = {} t_errors["KPLS"] = 1e-3 e_errors["KPLS"] = 2.5 n_comp_opt = {} n_comp_opt["Branin"] = 2 n_comp_opt["Rosenbrock"] = 1 n_comp_opt["sphere"] = 1 n_comp_opt["exp"] = 3 n_comp_opt["tanh"] = 1 n_comp_opt["cos"] = 1 self.nt = nt self.ne = ne self.problems = problems self.sms = sms self.t_errors = t_errors self.e_errors = e_errors self.n_comp_opt = n_comp_opt
def train(self, X_train, y_train): if self.flavour == 'plain': self.smt_model = KRG(poly=self.poly, corr=self.corr, theta0=self.theta0) elif self.flavour == 'pls': self.smt_model = KPLS(poly=self.poly, corr=self.corr, theta0=self.theta0, n_comp=self.n_comp) elif self.flavour == 'plsk': self.smt_model = KPLSK(poly=self.poly, corr=self.corr, theta0=self.theta0, n_comp=self.n_comp) elif self.flavour == 'gepls': self.smt_model = GEKPLS(poly=self.poly, corr=self.corr, theta0=self.theta0, n_comp=self.n_comp, xlimits=self.xlimits, delta_x=self.delta_x, extra_points=self.extra_points) super(KrigingModel, self).train(X_train, y_train)
def setUp(self): ndim = 3 nt = 100 ne = 100 ncomp = 1 problems = OrderedDict() problems['exp'] = TensorProduct(ndim=ndim, func='exp') problems['tanh'] = TensorProduct(ndim=ndim, func='tanh') problems['cos'] = TensorProduct(ndim=ndim, func='cos') sms = OrderedDict() sms['LS'] = LS() sms['QP'] = QP() sms['KRG'] = KRG(theta0=[1e-2] * ndim) sms['KPLS'] = KPLS(theta0=[1e-2] * ncomp, n_comp=ncomp) sms['KPLSK'] = KPLSK(theta0=[1] * ncomp, n_comp=ncomp) sms['GEKPLS'] = GEKPLS(theta0=[1e-2] * ncomp, n_comp=ncomp, delta_x=1e-1) if compiled_available: sms['IDW'] = IDW() sms['RBF'] = RBF() sms['RMTC'] = RMTC() sms['RMTB'] = RMTB() t_errors = {} t_errors['LS'] = 1.0 t_errors['QP'] = 1.0 t_errors['KRG'] = 1e-5 t_errors['KPLS'] = 1e-5 t_errors['KPLSK'] = 1e-5 t_errors['GEKPLS'] = 1e-5 if compiled_available: t_errors['IDW'] = 1e-15 t_errors['RBF'] = 1e-2 t_errors['RMTC'] = 1e-1 t_errors['RMTB'] = 1e-1 e_errors = {} e_errors['LS'] = 1.5 e_errors['QP'] = 1.5 e_errors['KRG'] = 1e-2 e_errors['KPLS'] = 1e-2 e_errors['KPLSK'] = 1e-2 e_errors['GEKPLS'] = 1e-2 if compiled_available: e_errors['IDW'] = 1e0 e_errors['RBF'] = 1e0 e_errors['RMTC'] = 2e-1 e_errors['RMTB'] = 2e-1 self.nt = nt self.ne = ne self.ndim = ndim self.problems = problems self.sms = sms self.t_errors = t_errors self.e_errors = e_errors
def test_predict_output(self): x = np.random.random((10, 3)) y = np.random.random((10)) kriging = KPLS(n_comp=2) kriging.set_training_values(x, y) kriging.train() x_fail_1 = np.asarray([0, 0, 0, 0]) x_fail_2 = np.asarray([0]) self.assertRaises(ValueError, lambda: kriging.predict_values(x_fail_1)) self.assertRaises(ValueError, lambda: kriging.predict_values(x_fail_2)) var = kriging.predict_variances(x) self.assertEqual(y.shape[0], var.shape[0])
def test_kpls_training_with_zeroed_outputs(self): # Test scikit-learn 0.24 regression cf. https://github.com/SMTorg/smt/issues/274 x = np.random.rand(50, 3) y = np.zeros(50) kpls = KPLS() kpls.set_training_values(x, y) kpls.train() x_test = np.asarray([[0, 0, 0], [0.5, 0.5, 0.5], [1, 1, 1]]) y_test = kpls.predict_values(x_test) # KPLS training fails anyway but not due to PLS exception StopIteration self.assertEqual(np.linalg.norm(y_test - np.asarray([[0, 0, 0]])), 0)
def test_kpls(self): import numpy as np import matplotlib.pyplot as plt from smt.surrogate_models import KPLS xt = np.array([0.0, 1.0, 2.0, 3.0, 4.0]) yt = np.array([0.0, 1.0, 1.5, 0.9, 1.0]) sm = KPLS(theta0=[1e-2]) sm.set_training_values(xt, yt) sm.train() num = 100 x = np.linspace(0.0, 4.0, num) y = sm.predict_values(x) # estimated variance s2 = sm.predict_variances(x) # to compute the derivative according to the first variable dydx = sm.predict_derivatives(xt, 0) plt.plot(xt, yt, "o") plt.plot(x, y) plt.xlabel("x") plt.ylabel("y") plt.legend(["Training data", "Prediction"]) plt.show() # add a plot with variance plt.plot(xt, yt, "o") plt.plot(x, y) plt.fill_between( np.ravel(x), np.ravel(y - 3 * np.sqrt(s2)), np.ravel(y + 3 * np.sqrt(s2)), color="lightgrey", ) plt.xlabel("x") plt.ylabel("y") plt.legend(["Training data", "Prediction", "Confidence Interval 99%"]) plt.show()
def setUp(self): ndim = 10 nt = 500 ne = 100 problems = OrderedDict() problems["sphere"] = Sphere(ndim=ndim) problems["exp"] = TensorProduct(ndim=ndim, func="exp") problems["tanh"] = TensorProduct(ndim=ndim, func="tanh") problems["cos"] = TensorProduct(ndim=ndim, func="cos") sms = OrderedDict() sms["LS"] = LS() sms["QP"] = QP() sms["KRG"] = KRG(theta0=[4e-1] * ndim) sms["KPLS"] = KPLS() if compiled_available: sms["IDW"] = IDW() sms["RBF"] = RBF() t_errors = {} t_errors["LS"] = 1.0 t_errors["QP"] = 1.0 t_errors["KRG"] = 1e-4 t_errors["IDW"] = 1e-15 t_errors["RBF"] = 1e-2 t_errors["KPLS"] = 1e-3 e_errors = {} e_errors["LS"] = 2.5 e_errors["QP"] = 2.0 e_errors["KRG"] = 2.0 e_errors["IDW"] = 4 e_errors["RBF"] = 2 e_errors["KPLS"] = 2.5 self.nt = nt self.ne = ne self.problems = problems self.sms = sms self.t_errors = t_errors self.e_errors = e_errors
def train(self, train_method, **kwargs): """Trains the surrogate model with given training data. Parameters ---------- train_method : str Training method among ``IDW``, ``KPLS``, ``KPLSK``, ``KRG``, ``LS``, ``QP``, ``RBF``, ``RMTB``, ``RMTC`` kwargs : dict Additional keyword arguments supported by SMT objects """ if train_method == 'IDW': self.trained = IDW(**kwargs) elif train_method == 'KPLS': self.trained = KPLS(**kwargs) elif train_method == 'KPLSK': self.trained = KPLSK(**kwargs) elif train_method == 'KRG': self.trained = KRG(**kwargs) elif train_method == 'LS': self.trained = LS(**kwargs) elif train_method == 'QP': self.trained = QP(**kwargs) elif train_method == 'RBF': self.trained = RBF(**kwargs) elif train_method == 'RMTB': self.trained = RMTB(xlimits=self.limits, **kwargs) elif train_method == 'RMTC': self.trained = RMTC(xlimits=self.limits, **kwargs) else: raise ValueError( 'train_method must be one between IDW, KPLS, KPLSK, KRG, LS, QP, RBF, RMTB, RMTC' ) self.trained.set_training_values(self.x_samp, self.m_prop) self.trained.train()
def test_kpls(self): import numpy as np import matplotlib.pyplot as plt from smt.surrogate_models import KPLS xt = np.array([0., 1., 2., 3., 4.]) yt = np.array([0., 1., 1.5, 0.5, 1.0]) sm = KPLS(theta0=[1e-2]) sm.set_training_values(xt, yt) sm.train() num = 100 x = np.linspace(0., 4., num) y = sm.predict_values(x) plt.plot(xt, yt, 'o') plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.legend(['Training data', 'Prediction']) plt.show()
def test_kpls(self): import numpy as np import matplotlib.pyplot as plt from smt.surrogate_models import KPLS xt = np.array([0.0, 1.0, 2.0, 3.0, 4.0]) yt = np.array([0.0, 1.0, 1.5, 0.5, 1.0]) sm = KPLS(theta0=[1e-2]) sm.set_training_values(xt, yt) sm.train() num = 100 x = np.linspace(0.0, 4.0, num) y = sm.predict_values(x) plt.plot(xt, yt, "o") plt.plot(x, y) plt.xlabel("x") plt.ylabel("y") plt.legend(["Training data", "Prediction"]) plt.show()
if l == 2: l = 0 k += 1 else: l += 1 if plot_status: plt.show() ########### The KPLS model # The variables 'name' must be equal to 'KPLS'. 'n_comp' and 'theta0' must be # an integer in [1,ndim[ and a list of length n_comp, respectively. Here is an # an example using 2 principal components. t = KPLS(n_comp=2, theta0=[1e-2, 1e-2], print_prediction=False) t.set_training_values(xt, yt[:, 0]) t.train() # Prediction of the validation points y = t.predict_values(xtest) print("KPLS, err: " + str(compute_rms_error(t, xtest, ytest))) if plot_status: k, l = 0, 0 f, axarr = plt.subplots(4, 3) axarr[k, l].plot(ytest, ytest, "-.") axarr[k, l].plot(ytest, y, ".") l += 1 axarr[3, 2].arrow(0.3, 0.3, 0.2, 0) axarr[3, 2].arrow(0.3, 0.3, 0.0, 0.4)
def setUp(self): ndim = 3 nt = 100 ne = 100 ncomp = 1 problems = OrderedDict() problems["exp"] = TensorProduct(ndim=ndim, func="exp") problems["tanh"] = TensorProduct(ndim=ndim, func="tanh") problems["cos"] = TensorProduct(ndim=ndim, func="cos") sms = OrderedDict() sms["LS"] = LS() sms["QP"] = QP() sms["KRG"] = KRG(theta0=[1e-2] * ndim) sms["MFK"] = MFK(theta0=[1e-2] * ndim) sms["KPLS"] = KPLS(theta0=[1e-2] * ncomp, n_comp=ncomp) sms["KPLSK"] = KPLSK(theta0=[1] * ncomp, n_comp=ncomp) sms["GEKPLS"] = GEKPLS(theta0=[1e-2] * ncomp, n_comp=ncomp, delta_x=1e-1) sms["GENN"] = genn() if compiled_available: sms["IDW"] = IDW() sms["RBF"] = RBF() sms["RMTC"] = RMTC() sms["RMTB"] = RMTB() t_errors = {} t_errors["LS"] = 1.0 t_errors["QP"] = 1.0 t_errors["KRG"] = 1e0 t_errors["MFK"] = 1e0 t_errors["KPLS"] = 1e0 t_errors["KPLSK"] = 1e0 t_errors["GEKPLS"] = 1e0 t_errors["GENN"] = 1e0 if compiled_available: t_errors["IDW"] = 1e0 t_errors["RBF"] = 1e-2 t_errors["RMTC"] = 1e-1 t_errors["RMTB"] = 1e-1 e_errors = {} e_errors["LS"] = 1.5 e_errors["QP"] = 1.5 e_errors["KRG"] = 1e-2 e_errors["MFK"] = 1e-2 e_errors["KPLS"] = 1e-2 e_errors["KPLSK"] = 1e-2 e_errors["GEKPLS"] = 1e-2 e_errors["GENN"] = 1e-2 if compiled_available: e_errors["IDW"] = 1e0 e_errors["RBF"] = 1e0 e_errors["RMTC"] = 2e-1 e_errors["RMTB"] = 2e-1 self.nt = nt self.ne = ne self.ndim = ndim self.problems = problems self.sms = sms self.t_errors = t_errors self.e_errors = e_errors
# define a RMTS spline interpolant # TODO replace with a different SMT surrogate limits = np.array([[0.2, 0.8], [0.05, 1.0], [0.0, 3.5]]) sm = RMTB(print_global=False, order=3, xlimits=limits, nonlinear_maxiter=100) # sm1 = KRG(hyper_opt='TNC', corr='abs_exp') # sm2 = KPLS(n_comp=3, corr='abs_exp', hyper_opt='TNC') sm3 = KPLSK(print_global=False, n_comp=3, theta0=np.ones(3), corr='squar_exp') sm4 = QP(print_global=False, ) sm5 = LS(print_global=False, ) sm1 = KPLS(print_global=False, n_comp=3, theta0=np.ones(3), corr='abs_exp') sm2 = KRG(print_global=False, theta0=np.ones(3), corr='abs_exp') sm6 = MOE(smooth_recombination=False, n_clusters=2) experts_list = dict() experts_list['KRG'] = (KRG, {'theta0': np.ones(3), 'corr': 'abs_exp'}) experts_list['RBF'] = (RBF, dict()) experts_list['KPLS'] = (KPLS, { 'n_comp': 3, 'theta0': np.ones(3), 'corr': 'abs_exp' }) experts_list['KPLSK'] = (KPLSK, { 'n_comp': 3, 'theta0': np.ones(3), 'corr': 'squar_exp' })
def test_smt_kpls(self): self._check_smt(KPLS(theta0=[1e-2]))