Beispiel #1
0
def test_euler():
    from solver.algorithms import euler

    def f(x, y):
        return x**5 / y

    assert np.allclose(
        np.array(euler(.3, .9, 4, 4, f, False)),
        np.array([(.3, 4), (.5, 4.00012), (.7, 4.00168), (.9, 4.01008)]))

    def g(x, y):
        return -2 + 2 * x - 2 * y

    assert euler(1, 2, 5, 2, g, False) == [(1, 2), (1.25, 1), (1.5, .625),
                                           (1.75, 0.5625), (2, 0.65625)]
Beispiel #2
0
def problem4(t0, tf, NA0, NB0, tauA, tauB, n, returnlist=False):
    """Uses Euler's method to model the solution to a radioactive decay problem where dNA/dt = -NA/tauA and dNB/dt = NA/tauA - NB/tauB.

    Args:
        t0 (float): Start time
        tf (float): End time
        NA0 (int): Initial number of NA nuclei
        NB0 (int): Initial number of NB nuclei
        tauA (float): Decay time constant for NA
        tauB (float): Decay time constant for NB
        n (int): Number of points to sample at
        returnlist (bool) = Controls whether the function returns the list of points or not. Defaults to false

    Returns:
        solution (list): Points on the graph of the approximate solution. Each element in the list has the form (t, array([NA, NB]))

    In the graph, NA is green and NB is blue
    """
    print(
        "Problem 4: ~Radioactive Decay~ dNA/dt = -NA/tauA & dNB/dt = NA/tauA - NB/tauA - NB/tauB"
    )
    N0 = np.array([NA0, NB0])
    A = np.array([[-1 / tauA, 0], [1 / tauA, -1 / tauB]])

    def dN_dt(t, N):
        return A @ N

    h = (tf - t0) / (n - 1)
    print("Time step of %f seconds." % h)
    solution = alg.euler(t0, tf, n, N0, dN_dt)
    if returnlist:
        return solution
Beispiel #3
0
def problem3(t0, tf, n, a, b, returnlist=False):
    """Uses Euler's method to graph velocity of an object subject to friction and approximate terminal velocity
    Assumes that the the objects starts at the origin.

    Args:
        t0 (float): Start time
        tf (float): End time
        n (float): Number of points to sample at
        a (float): A constant such that dv/dt = a - bv
        b (float): A constant such that dv/dt = a - bv
        returnlist (bool) = Controls whether the function returns the list of points or not. Defaults to false

    Returns:
        solution (list): Points on the graph of the approximate solution as a list of tuples
        terminalvelocity (float): An approximation of the terminal velocity
    """
    print("Problem 3: ~Terminal Velocity~ dv/dt = a - bv")

    def vel(t, v):
        return a - b * v

    h = (tf - t0) / (n - 1)
    print("Graph of approximate solution")
    print("Time step of %f seconds." % h)
    solution = alg.euler(t0, tf, n, 0, vel)
    terminalvelocity = solution[-1][1]
    print("Conclusion: Terminal velocity is about %f." % terminalvelocity)
    if returnlist:
        return solution, terminalvelocity
    else:
        return terminalvelocity
Beispiel #4
0
def problem2(t0, tf, x0, v):
    """Uses Euler's method to graph position as function of time, with 2, 5, and 10 sample points

    Args:
        t0 (float): Start time
        tf (float): End time
        x0 (float): Initial position
        v (float): Velocity (assumed to be a constant)

    Returns:
        twopoints (List): Two points on the solution curve.
        fivepoints (List): Five points on the solution curve.
        tenpoints (List): Ten points on the solution curve.
    """
    print("Problem 2: ~Position~ dx/dt = -v")

    def vel(t, x):
        return v

    print("Approximate solutions:")
    h = (tf - t0) / 2
    print("Time step of %f seconds." % h)
    threepoints = alg.euler(t0, tf, 3, x0, vel)
    print(threepoints)

    h = (tf - t0) / 5
    print("Time step of %f seconds." % h)
    sixpoints = alg.euler(t0, tf, 6, x0, vel)
    print(sixpoints)

    h = (tf - t0) / 10
    print("Time step of %f seconds." % h)
    elevenpoints = alg.euler(t0, tf, 11, x0, vel)
    print(elevenpoints)

    print("Conclusion: x = x0 + v * t")

    return threepoints, sixpoints, elevenpoints
Beispiel #5
0
def problem1(t0, tf, v0):
    """Uses Euler's method to graph velocity subject to Earth's gravity run as function of time, with 2, 5, and 10 sample points

    Args:
        t0 (float): Start time
        tf (float): End time
        v0 (float): Initial velocity

    Returns:
        twopoints (List): Two points on the solution curve.
        fivepoints (List): Five points on the solution curve.
        tenpoints (List): Ten points on the solution curve.
    """
    print("Problem 1: ~Gravity~ dv/dt = -g")

    def accel(t, v):
        return -9.8

    print("Approximate solutions:")
    h = (tf - t0) / 2
    twopoints = alg.euler(t0, tf, 3, v0, accel)
    print("Time step of %f seconds." % h)
    print(twopoints)

    h = (tf - t0) / 5
    fivepoints = alg.euler(t0, tf, 6, v0, accel)
    print("Time step of %f seconds." % h)
    print(fivepoints)

    h = (tf - t0) / 10
    tenpoints = alg.euler(t0, tf, 11, v0, accel)
    print("Time step of %f seconds." % h)
    print(tenpoints)

    print("Conclusion: v = v0 - g * t")

    return twopoints, fivepoints, tenpoints