Beispiel #1
0
def main():
	#Load .xls .xlsx file
	file_name = raw_input('File name: ')
	work_book = load_workbook(file_name)

	#Load sheet
	print (work_book.get_sheet_names())
	sheet_name = raw_input('\nSheet name: ')
	work_sheet = work_book.get_sheet_by_name(sheet_name)

	#Select workspace in sheet
	begin_position = raw_input('Begin position: ')
	end_position = raw_input('End position: ')
	workspace = work_sheet[begin_position : end_position] #Workspace(begin, end)

	#Load data
	training_set = []
	for row in workspace:
		class_name = row[0].value # first column is class name

		for item in row[1:]: # skip first column
			inputs = np.array([item.value])
			training_set.append((inputs, class_name))

	#Create SOM ANN
	som_ann = SOM((1, 4, 4))

	#Train network
	print 'Wait, I\'m traning...'
	som_ann.train([i[0] for i in training_set], 200, -1, 'quadratic')

	somplot(som_ann, training_set)
Beispiel #2
0
    def som(self, m, n, dim, iterations):
        # step 4
        trainData = numpy.zeros((len(self.contrastPoints), 1))

        for i in range(len(self.contrastPoints)):
            trainData[i] = [self.contrastPoints[i]]

        som = SOM(m, n, dim, iterations)
        som.train(trainData)    
        mapped = som.map_vects(trainData)
        d0 = 0
        d1 = 0
        d2 = 0

        for d, m in zip(trainData, mapped):
            mapv = m[0] + m[1]
            
            if (d0 == 0 and mapv == 0):
                d0 = d[0] if d0 < d[0] else d0

            if (d1 == 0  and mapv == 1):    
                d1 = d[0] if d1 < d[0] else d1
                
            if (d2 == 0  and mapv == 2): 
                d2 = d[0] if d2 < d[0] else d2
                
        least = 0 if d0 < d1 and d0 < d2 else (1 if d1 < d0 and d1 < d2 else (2 if d2 < d1 and d2 < d0 else 0))
        most = 0 if d0 > d1 and d0 > d2 else (1 if d1 > d0 and d1 > d2 else (2 if d2 > d1 and d2 > d0 else 0))
        mean = 0 if d0 > d1 and d0 < d2 else (1 if d1 > d0 and d1 < d2 else (2 if d2 > d1 and d2 < d0 else 0))
        print(d0, d1, d2)
        print(least, most, mean)
        self.mappingDict = {'least':  least, 'mean': mean, 'most': most}  
        self.blocksMapping = mapped
Beispiel #3
0
def SelfOrganizingMap(Feature_List):
    som = SOM(SOM_LINES, SOM_COLS, len(Feature_List[0]), SOM_ITERATIONS)
    som.train(Feature_List)

    image_grid = som.get_centroids()
    mapped = som.map_vects(Feature_List)

    return mapped, image_grid
def SelfOrganizingMap(feature_list):
    no_features = len(feature_list[0])
    print('Clustering', no_features, 'features')
    som = SOM(SOM_LINES, SOM_COLS, no_features, SOM_ITERATIONS, alpha=ALPHA, sigma=SIGMA)
    som.train(feature_list)

    image_grid = som.get_centroids()
    mapped = som.map_vects(feature_list)

    return mapped, image_grid
Beispiel #5
0
def solve_tsp(filename: str):
    # Parse problem from txt file
    problem = parse_tsp_problem(filename)
    cases = problem[:, 1:]

    # Initialize self organizing map
    som = SOM(cases=cases)
    # Train
    som.train()

    # Use Som weights to generate a solution for tsp problem
    solution = create_tsp_solution(som.cases, som.weights)
    visualize_tsp(solution, som.weights)
Beispiel #6
0
def main():
    # Training inputs for RGBcolors
    credits_data = pd.read_csv("testdata/credit_train.csv", header=None)
    columns = credits_data.columns
    train_data = credits_data[columns[:-1]].copy().values
    label_data = credits_data[columns[-1]].copy().values
    train_data_scale = preprocessing.scale(train_data)
    # colors = np.array(
    #     [[0., 0., 0.],
    #      [0., 0., 1.],
    #      [0., 0., 0.5],
    #      [0.125, 0.529, 1.0],
    #      [0.33, 0.4, 0.67],
    #      [0.6, 0.5, 1.0],
    #      [0., 1., 0.],
    #      [1., 0., 0.],
    #      [0., 1., 1.],
    #      [1., 0., 1.],
    #      [1., 1., 0.],
    #      [1., 1., 1.],
    #      [.33, .33, .33],
    #      [.5, .5, .5],
    #      [.66, .66, .66]])
    # color_names = \
    #     ['black', 'blue', 'darkblue', 'skyblue',
    #      'greyblue', 'lilac', 'green', 'red',
    #      'cyan', 'violet', 'yellow', 'white',
    #      'darkgrey', 'mediumgrey', 'lightgrey']

    # Train a 20x30 SOM with 400 iterations
    som = SOM(1, 2, len(columns) - 1, 400)
    som.train(train_data_scale)

    # Get output grid
    image_grid = som.get_centroids()

    # Map colours to their closest neurons
    mapped = som.map_vects(train_data_scale)

    # Plot
    plt.imshow(image_grid)
    plt.title('Color SOM')
    for i, m in enumerate(mapped):
        plt.text(m[1],
                 m[0],
                 label_data[i],
                 ha='center',
                 va='center',
                 bbox=dict(facecolor='white', alpha=0.5, lw=0))
    plt.show()
def SortingSelfOrganizingMap(Feature_List):
    # Train a SS_LINES x SS_COLS self-organizing map using NUM_ITERATIONS iterations
    som = SOM(SS_LINES, SS_COLS, len(Feature_List[0]), NUM_ITERATIONS)
    som.train(Feature_List)
    mapped = som.map_vects(Feature_List)

    # Grayscale landscape
    sorting_landscape = np.zeros((SS_LINES, SS_COLS), np.float16)

    for i in range(len(mapped)):
        lin = mapped[i][0]
        col = mapped[i][1]
        sorting_landscape[lin][col] = Feature_List[i][0]

    io.imsave('sorted_landscape.png', sorting_landscape)
Beispiel #8
0
def call_som(m, n, dim, input_data, weight_after_insertion=None, alpha=None, sigma=None):
    # get the shape of input data inorder to calc iternumber in SOM
    iter_no = input_data.shape[0]*10
    som = SOM(m, n, dim, weight_after_insertion, n_iterations= iter_no)
    trained_weight = som.train(input_data)
    mapped = som.map_vects(input_data)
    result = np.array(mapped)
    return trained_weight, result
Beispiel #9
0
def som_plot(img, som_dim):
    # Method for creating a small Kohonen Self-Organizing Map (SOM) of the image and
    # plotting the SOM on the screen. RGB values of the colors are printed on the screen.

    # Select small amount of random pixels from the image.
    n_pixels = 500

    colors = shuffle(img.reshape((img.shape[0] * img.shape[1], 3)))[:n_pixels]

    print('\n')
    print('=' * 80)
    print('Self-Organized Map of {} randomly picked colors:'.format(som_dim *
                                                                    som_dim))

    # Train the SOM model with small amount of iterations.
    som = SOM(som_dim, som_dim, 3, 10)
    som.train(colors)

    #Get output grid from the SOM. This is plotted as color palette.
    image_grid = som.get_centroids()
    plt.figure(figsize=(5, 5))
    plt.imshow(image_grid)
    plt.title('Color map')
    plt.show()

    # Create RGB palette values from the image_grid.
    grid = np.array(image_grid)
    grid *= 255
    grid = grid.astype(np.int)
    rgb_df = pd.DataFrame(np.zeros((som_dim, som_dim)))
    hex_df = pd.DataFrame(np.zeros((som_dim, som_dim)))

    for i in range(som_dim):
        for j in range(som_dim):
            rgb_df.iloc[i, j] = str(grid[i, j])
            hex_color = '#{:02x}{:02x}{:02x}'.format(grid[i, j, 0],
                                                     grid[i, j, 1], grid[i, j,
                                                                         2])
            hex_df.iloc[i, j] = hex_color

    print('RGB values:')
    print(rgb_df)
    print('\n')
    print('HEX color values:')
    print(hex_df)
Beispiel #10
0
def call_som(m,
             n,
             dim,
             input_data,
             weight_after_insertion=None,
             alpha=None,
             sigma=None):
    som = SOM(m, n, dim, weight_after_insertion)
    trained_weight = som.train(input_data)
    mapped = som.map_vects(input_data)
    result = np.array(mapped)
    return trained_weight, result
Beispiel #11
0
def tensorSOM():
    import numpy as np
    from som import SOM
    import tensorflow as tf

    sess = tf.InteractiveSession()
    map_size = 30

    s = SOM(input_shape=(num_features, ),
            map_size_n=map_size,
            num_expected_iterations=epochs,
            session=sess)

    sess.run(tf.initialize_all_variables())

    #Training inputs
    for i in range(10):
        print('Epoch: {0}'.format(i))
        rnd_ind = np.random.randint(0, len(X))
        s.train(X[rnd_ind, :])

    print(np.reshape(s.get_weights(), [map_size, map_size, num_features]))
    print(np.array(y) * s.get_weights())
Beispiel #12
0
def main():
	# FIT THE LDA
	lda = TagsLDA(skip=10)
	theta, beta = lda.train(ntopics=30, niter=300, seed=42)

	# TRAIN THE SOM
	dist_func = lambda p, q: divergence(p, q)
	som = SOM(grid_shape=(20, 20), ndims=lda.nterms, dist_func=dist_func)		# len(dictionary) = len(dictionary.token2id)
	som.train(lda.beta, nepochs=10)
	
	# PLOT
	labels = [lda.topic_representatives(i, topn=3, show_scores=False) for i in range(lda.ntopics)]
	areas = np.array([30*2*np.pi*score**2 for score in lda.topic_significances()])
	areas_top, top_indices = zip(*sorted([(a, i) for i, a in enumerate(areas)], reverse=True)[:10])
	locations = som.get_locations(vecs=lda.beta[top_indices, :], labels=labels)

	# print(locations)
	labels, data = zip(*locations.items())
	x, y = zip(*data)
	plt.scatter(x, y, s=areas_top, alpha=0.5)
	for l, x, y in zip(labels, x, y):
		plt.annotate(l, xy=(x, y), textcoords='offset points', xytext=(0, 20), horizontalalignment='center')
	plt.show()		
Beispiel #13
0
    def som3(self, m, n, dim, iterations):
        # step 4
        trainData = numpy.zeros((len(self.contrastPoints), 3))

        for i in range(len(self.contrastPoints)):
            trainData[i] = [self.diagonalContrast[i], self.verticalContrast[i], self.horizontalContrast[i]]

        som = SOM(m, n, dim, iterations)
        som.train(trainData)    
        mapped = som.map_vects(trainData)
        d0 = 0
        d1 = 0
        d2 = 0

        for d, m in zip(trainData, mapped):
            mapv = m[0] + m[1]
            
            if (d0 == 0 and mapv == 0):
                d0 = d[0] if d0 < d[0] else d0

            if (d1 == 0  and mapv == 1):    
                d1 = d[0] if d1 < d[0] else d1
                
            if (d2 == 0  and mapv == 2): 
                d2 = d[0] if d2 < d[0] else d2
                
        arr = numpy.array([d0, d1, d2])
        most = numpy.argmax(arr)
        numpy.delete(arr, most, 0)
        least = numpy.argmin(arr)
        numpy.delete(arr, least, 0)
        mean = 0 if (arr[most] == d1 or arr[most] == d2) and (arr[least] == d1 or arr[least] == d2) else (1 if (arr[most] == d0 or arr[most] == d2) and (arr[least] == d0 or arr[least] == d2) else 2)
       
        self.mappingDict = {'least':  least, 'mean': mean, 'most': most}  
        self.blocksMapping = mapped
        self.neuronsMap = som.get_centroids()
Beispiel #14
0
def main():
	'''
	Create and train a SOM with the XOR problem

	SOM settings
	------------
	The SOM used in this test works in a 2D space with a 
	map's weights of 2x2

	Train settings
	---------------
	The SOM will be trained with the XOR problem, this training
	will run in 2000 iterations. In the weights adjustment function, a 
	zero neighborhood radius, that mean that only the winner neuron's 
	weights will be updated.
	'''
	som_ann = SOM((2, 2, 2))

	training_set = [
		np.array([1, 0]),
		np.array([0, 1]),
		np.array([1, 1]),
		np.array([0, 0]),
	]

	#Train network
	converged, epochs = som_ann.train(training_set, 2000, -1, 'zero')
	if not converged:
		print 'SOM didn\'t converge with the minimum learning rate\n'
	else:
		print 'SOM converged in {0} epochs\n'.format(epochs)

	#Mapping values
	for entry in training_set:
		class_name = som_ann.map(entry)
		print 'The object {0} belongs to class: {1}'.format(entry, class_name)

	#Get the full mapped classes
	print ''
	elements = som_ann.get_mapped_classes()
	print elements
    y_list.append(float(data[1]))
    z_list.append(int(data[2]))

input_list = [[a, b] for a, b in zip(x_list, y_list)]
output_list = [a for a in z_list]

input_list = np.array(input_list)
output_list = np.array(output_list)

"""
Get Central points from SOM network
"""

som = SOM(2, 2, 2)
print('Running SOM network...')
som.train(input_list, num_epochs=200, init_learning_rate=0.3)
som_result = [np.array(som.output[i]) for i in range(len(som.output))]

"""
Create RBF objects and run RBF network
"""


print('RBF with random c, updated by LMS: \n')
rbf_1 = RBF(input_list, output_list, 9, 'random', som_c_list=None, update='lms')
rbf_1.run()
print("-------------------------------------")

print('RBF with random c, updated by SGA: \n')
rbf_2 = RBF(input_list, output_list, 9, 'random', som_c_list=None, update='sga')
rbf_2.run()
Beispiel #16
0
		filename, varstring = file.split(':')
		varnames = varstring.split(',')

		sources.append((filename, varnames))


	som = SOM(som_shape, sources)

print('SOM nodes shape ', som.nodes.shape)
print('SOM std and mean ', som.std.shape, som.mean.shape)

radius = (float(max(som.shape)), 0.0)

now = time.time()
som.train(args.iterations, radius, args.rate)
print("\nThat took {:.3f} seconds".format(time.time()-now))

#som.plot('result.png', 0)

#plt.figure(figsize=(8,8))

#i = 1
#for index in np.ndindex(som.shape):

#	print(index, i)

#	node_full = np.empty(tuple(variables[0].shape[1:])).flatten()
#	mask = np.ma.getmaskarray(variables[0][0,:].flatten())

#	print(node_full.shape, mask.shape)
def SelfOrganizingMap(Feature_List, where):
    if not os.path.exists(where):
        os.makedirs(where)

    som = SOM(SOM_LINES, SOM_COLS, len(Feature_List[0]), NUM_ITERATIONS)
    som.train(Feature_List)
    # Get output grid
    image_grid = som.get_centroids()
    #print 'Image grid shows weights for all the input features'
    #print image_grid
    # Get vector mappings
    mapped = som.map_vects(Feature_List)
    #print 'Mapping', mapped

    # Visualization part
    # Needs to be refactored to produce output for any number of clusters
    avg_line = []
    for i in range(NUM_CLUST):
        avg_line.append(0)
    avg_column = []
    for i in range(NUM_CLUST):
        avg_column.append(0)

    for i in range(0, len(mapped), NUM_CLUST):
        for j in range(NUM_CLUST):
            avg_line[(i + j) % NUM_CLUST] += mapped[i + j][0]
            avg_column[(i + j) % NUM_CLUST] += mapped[i + j][1]

    for i in range(len(avg_line)):
        avg_line[i] = avg_line[i] / (len(mapped) / NUM_CLUST)

    for i in range(len(avg_column)):
        avg_column[i] = avg_column[i] / (len(mapped) / NUM_CLUST)

    'Average location'
    print avg_line, avg_column

    # Grayscale landscape
    sorting_landscape = []
    for i in range(NUM_CLUST):
        sorting_landscape.append(np.zeros((SOM_LINES, SOM_COLS), np.float16))

    for i in range(len(mapped)):
        lin = mapped[i][0]
        col = mapped[i][1]
        sorting_landscape[i % NUM_CLUST][lin][col] += 0.05
        if sorting_landscape[i % NUM_CLUST][lin][col] > 1.0:
            sorting_landscape[i % NUM_CLUST][lin][col] = 1.0

    for i in range(NUM_CLUST):
        sorting_landscape[i][avg_line[i]][avg_column[i]] = 1.0

    for i in range(NUM_CLUST):
        io.imsave(where + str(i) + '_sorting_cluster.png',
                  sorting_landscape[i])

    # Colored landscape
    colored_landscape = np.zeros((SOM_LINES, SOM_COLS, 3), np.float16)
    white = np.array([1.0, 1.0, 1.0])

    # sorting
    insertion_color = np.array([0.0, 0.0, 1.0])  # blue
    bubble_color = np.array([0.0, 1.0, 0.0])  # green
    heap_color = np.array([1.0, 0.0, 0.0])  # red
    quick_color = np.array([1.0, 0.0, 1.0])  # magenta
    random_color = np.array([1.0, 1.0, 0.0])  # yellow

    # non-sorting
    reverseSorted_color = np.array([0.0, 1.0, 1.0])  # cyan
    intervalSwapSorted_color = np.array([1.0, 0.5, 0.0])  # orange
    reverse_color = np.array([0.5, 1.0, 0.0])  # lime-green
    intervalSwap_color = np.array([1.0, 0.0, 0.5])  # fuchsia

    colored = [
        insertion_color, bubble_color, heap_color, quick_color, random_color
    ]
    #add_colored = [reverseSorted_color, intervalSwapSorted_color, reverse_color, intervalSwap_color]
    #colored.extend(add_colored)

    grad = 0.005
    for i in range(len(mapped)):
        lin = mapped[i][0]
        col = mapped[i][1]
        colored_landscape[lin][col] += grad * colored[i % NUM_CLUST]
        #if colored_landscape[lin][col].any() > 1.0:
        #	colored_landscape[lin][col] -= 0.05*colored[i%NUM_CLUST]

    for i in range(NUM_CLUST):
        colored_landscape[avg_line[i]][
            avg_column[i]] = 0.3 * white + 0.7 * colored[i]

    io.imsave(where + 'all_sorting_clusters.png', colored_landscape)
Beispiel #18
0
import numpy as np
import pandas as pd
from som import SOM
from sklearn.datasets import load_boston
from sklearn.preprocessing import StandardScaler

# read in data
boston = load_boston().data
# standard scale data
ss = StandardScaler()
X = ss.fit_transform(boston)

# instantiate SOM
som = SOM(X, 3, 3, 1, 100, 0.01)
# train model
tree, weights, winners, distances = som.train(X)
# print data
# print(weights)
print(set(winners))


dist, ind = som.predict(X, tree)
print(set([x[0] for x in ind]))
from som import SOM
import pandas as pd
import numpy as np

input_data = pd.read_csv("C:/Users/KHT/Desktop/hw2out.csv")

som_net = SOM(10, 10, 2)

coor_data = input_data.iloc[np.random.permutation(len(input_data))]
trunc_data = coor_data[["x", "y"]]

print(trunc_data.values)
# print(trunc_data.values.shape[0])

som_net.train(trunc_data.values, num_epochs=1000, init_learning_rate=0.1)
"""
def predict(df):
    bmu, bmu_idx = som_net.find_bmu(df.values)
    df['bmu'] = bmu
    df['bmu_idx'] = bmu_idx
    return df


clustered_df = trunc_data.apply(predict, axis=1)
result_array = clustered_df.to_records().tolist()

print("ID number {0}".format(result_array[0][0]))
print("X Coordinate on topological map {0}".format(result_array[0][4][0]))
print("Y Coordinate on topological map {0}".format(result_array[0][4][1]))
"""
Beispiel #20
0
#For plotting the images
from matplotlib import pyplot as plt
import numpy as np
from som import SOM

colors = np.array([[0., 0., 1.], [0., 0., 0.95], [0., 0.05, 1.], [0., 1., 0.],
                   [0., 0.95, 0.], [0., 1, 0.05], [1., 0., 0.], [1., 0.05, 0.],
                   [1., 0., 0.05], [1., 1., 0.]])

som = SOM(4, 4, 3)
som.train(colors)

plt.imshow(som.centroid_grid)
plt.show()
    inputFilename = 'myo_raw_data.csv'
    header = '% qx, qy, qz, qw, ax, ay, az, gx, gy, gz\n'

    try:
        f = open(inputFilename, 'r')
    except Exception as error:
        print("ERROR: Couldn't read from {}".format(inputFilename))
    else:
        with f:
            reader = csv.reader(f)
            for row in reader:
                if row[0][0] is not '%':
                    myo_data.append(row)
            print myo_data[0]

    #Training inputs for Myo data (quat, accel, gyro)
    som_data = np.array(myo_data)

    #Train a 20x30 SOM with 400 iterations
    som = SOM(SOM_X, SOM_Y, MYO_DATA_DIM, SOM_ITER)
    som.train(som_data)

    #Get output grid
    image_grid = som.get_centroids()

    #Plot
    plt.imshow(image_grid)
    plt.title('Myo SOM')
    plt.show()
Beispiel #22
0
     [1., 1., 1.],
     [.33, .33, .33],
     [.5, .5, .5],
     [.66, .66, .66]])

colors2 = np.array(
    [[0., 0., 0.],
     [0., 0., 1.],
     [1., 1., 0.],
     [1., 1., 1.],
     [1., 0., 0.]])

color_names = \
    ['black', 'blue', 'darkblue', 'skyblue',
     'greyblue', 'lilac', 'green', 'red',
     'cyan', 'violet', 'yellow', 'white',
     'darkgrey', 'mediumgrey', 'lightgrey']

s = SOM(colors2, [25, 25], alpha=0.3)

# Initial weights
plt.imshow(s.w_nodes)
plt.show()

# Learning to cluster the RGB colors
s.train(max_it=30)

# Trained weights
plt.imshow(s.w_nodes)
plt.show()
Beispiel #23
0
f.close()
f = open('appdata.json', 'r')
applist = json.load(f)
applist = applist['applist']['apps']
f.close()
f = open('tagDATA2.json', 'r')
tag = json.load(f)
f.close()

data2 = []
for i in data0:
    data2.append(data0[i]['gameplay'])
data = np.array(data2)
# Train a 20x30 SOM with 400 iterations
som = SOM(5, 2, 10, 100)  # My parameters
som.train(data)
cnn0 = load_model('model0.h5')
cnn1 = load_model('model1.h5')
cnn2 = load_model('model2.h5')
cnn3 = load_model('model3.h5')
cnn4 = load_model('model4.h5')
cnn5 = load_model('model5.h5')
cnn6 = load_model('model6.h5')
cnn7 = load_model('model7.h5')
cnn8 = load_model('model8.h5')
cnn9 = load_model('model9.h5')


def gameRecommendation(id):
    id = str(id)
    url = 'http://api.steampowered.com/IPlayerService/GetOwnedGames/v0001/?key=DF0E97F40E0BEE667B0BF01B6626A9DA&steamid=' \
Beispiel #24
0
#For plotting the images
from matplotlib import pyplot as plt
import numpy as np
from som import SOM

colors = np.array(
     [[0., 0., 1.],
      [0., 0., 0.95],
      [0., 0.05, 1.],
      [0., 1., 0.],
      [0., 0.95, 0.],
      [0., 1, 0.05],
      [1., 0., 0.],
      [1., 0.05, 0.],
      [1., 0., 0.05],
      [1., 1., 0.]])

som = SOM(4, 4, 3)
som.train(colors)

plt.imshow(som.centroid_grid)
plt.show()
### PREPARE THE BACKGROUND ARRAY ###
bg = np.loadtxt('eta_mc_som_background_feb2019.txt') # convert to np array
np.random.shuffle(bg)
bg = bg[:2000,:]
bg2 = bg
backupbg = bg2
#bg = bg[:10000,:] # cut the np array to preferred size
flag_bg = bg[:,8] # array of zeros for background, flags each event as background 
bg = bg[:,[0,1,2,3,4,5,6,7]] # cuts the background array to only include variables you want to train on
# finish preparing the final dataset (one big numpy array)
data = np.concatenate((sig,bg),axis=0) # concatenate the sig and bg numpy arrays into one big array
flags = np.concatenate((flag_sig, flag_bg), axis=0) # concatenates the flag arrays into one array, each entry corresponding to the entry of the data array
### TRAINING ###
#som = SOM(dimx, dimy, 8, 400) # Train a dimx X dimy SOM with 400 iterations, 8 is the number of variables in the data array
som = SOM(dimx, dimy, 8)
som.train(data) # trains on the dataset prepared
### THIS WILL TAKE AWHILE ###
### TO STORE THE TRAINING RESULTS INTERACTIVELY IN ipython DO: 
### weightages = som._weightages 
### %store weightages 
### THEN TO RECOVER DO: 
### %store -r 
### som = SOM(dimx, dimy, 8, 400)
### som._weightages = weightages
### som._trained = True
print(str(datetime.datetime.now())) # print the time to observe how long the training will take
mapped = np.array(som.map_vects(data)) # map each datapoint to its nearest neuron
# post training manipulations to the final dataset (one big numpy array)
data = np.append(data,mapped,axis=1) # append the mapped neurons to data
data = np.column_stack((data,flags)) # append the flags to the dataset 
##test U-matrix
Beispiel #26
0
weights = [[5, 0], [-1, 4]]

sigma = 1

learning_rate = 1

sigma_decrease_rate = 0

som = SOM(inputs,
          weights,
          sigma=sigma,
          learning_rate=learning_rate,
          sigma_decrease_rate=sigma_decrease_rate,
          epochs=10)
som.train(ignore_hk=True, display=True)
points = [[1, 4], [6, 2], [1, 3], [5, 1], [4, 0], [0, 4], [3, 4]]

predictions = som.predict(points, ignore_hk=True, display=True)

p, m = som.prediction_line(display=True)


def med(points, p, m):
    y = []
    for point in points:
        y.append(m * (point - p[0]) + p[1])
    return y


plt.grid()
Beispiel #27
0
from som import SOM

if __name__ == "__main__":
    a = SOM(5, 5, 3, 2, False, 0.05)
    a.train(100,
            [[[0, 0, 0], [0, 0]], [[1, 0, 0], [0, 1]], [[0, 1, 0], [1, 0]],
             [[1, 1, 1], [1, 1]]])
    print("Prediction 0 and 0 ,", round(a.predict([0, 0, 0])[0, 1]))
Beispiel #28
0
data = []

# parse data
for row in r:
    l = []
    n = row[0]
    v = map(float, row[1:])
    v = map(lambda x: x / max(v), v)
    l.append(n)
    for x in v:
        l.append(x)
    data.append(l)

# create SOM & train
s = SOM()
results = s.train(data)

# restart if only one node (growth threshold not triggered)
while len(results) == 1:
    print 'Only one node, restarting...'
    s = SOM()
    results = s.train(data)

print """
Parameters summary:
    Epochs: {epochs}
    Cluster Threshold: >={threshold}
    Radius: {radius}
    Radius Decay Rate: {radius_decay}
    Rate: {rate}
    Rate Decay: {rate_decay}
Beispiel #29
0
                             [0.6, 0.5, 1.0], [0., 1., 0.], [1., 0., 0.],
                             [0., 1., 1.], [1., 0., 1.], [1., 1., 0.],
                             [1., 1., 1.], [.33, .33, .33], [.5, .5, .5],
                             [.66, .66, .66]])

#the color's corresponding names, to label the plot
color_names = \
 ['black', 'blue', 'darkblue', 'skyblue',
    'greyblue', 'lilac', 'green', 'red',
    'cyan', 'violet', 'yellow', 'white',
    'darkgrey', 'mediumgrey', 'lightgrey']

som = SOM(60, 100, 3)
start = time.time()
scaling_factor = 1e2
som.train(training_samples, 400, 0.8, scaling_factor, 20, scaling_factor)
end = time.time()
total_time = end - start
print("Elapsed time: {}".format(total_time))
pl.imshow(som.som, origin='lower')

#label each weight with its corresponding name
for i in range(len(training_samples)):
    bmu = som.get_bmu(training_samples[i])
    pl.text(bmu[1],
            bmu[0],
            color_names[i],
            ha='center',
            va='center',
            bbox=dict(facecolor='white', alpha=0.5, lw=0))
def display_digit(num):
    label = y_train[num].argmax(axis=0)
    image = x_train[num].reshape([28, 28])
    plt.title('Example: %d  Label: %d' % (num, label))
    plt.imshow(image, cmap=plt.get_cmap('gray_r'))
    plt.show()


display_digit(ran.randint(0, x_train.shape[0]))

# Import som class and train into 30 * 30 sized of SOM lattice
from som import SOM

som = SOM(30, 30, x_train.shape[1], 200)
som.train(x_train)

# Fit train data into SOM lattice
mapped = som.map_vects(x_train)
mappedarr = np.array(mapped)
x1 = mappedarr[:, 0]
y1 = mappedarr[:, 1]

index = [np.where(r == 1)[0][0] for r in y_train]
index = list(map(str, index))

## Plots: 1) Train 2) Test+Train ###

plt.figure(1, figsize=(12, 6))
plt.subplot(121)
# Plot 1 for Training only
Beispiel #31
0
samples = [[random.gauss(m, 0.1) for e in range(0, 5)] 
    for m in range(0, 20) 
    for sample in range(0,10)]

# training
for index in range(0, len(samples)):

    # learn_rate as a factor of how much the weight vectors are 
    # pulled to the target vector. 
    learn_rate = exponentional_damping(\
        start = 1.0, end = 0.1,\
        t = float(index), tmax = len(samples)) 

    # sigma influences neighbourhood radius
    sigma = exponentional_damping(\
        start = 1.0, end = 0.1,\
        t = float(index), tmax = len(samples))

    mh = mexican_hat_with_sigma(sigma)

    som.train(target = samples[index], rate = learn_rate, 
        distance = euclidean, nf = mh)

# query
for sample in samples:
    winner = som.query(target = sample, distance = euclidean)
    print(winner)


Beispiel #32
0
projection = {
    '_id': False,
    'title': True,
    'runtime': True,
    'metacritic': True,
    'tomato.rating': True,
    'year': True,
    'awards.wins': True
}

brute_data = conn.find_docs(collec='movieDetails', f=filtro, p=projection)
print("...Recuperados datos en bruto...")

# Limpia y estandariza la data
clean_data = cleaner(brute_data)
data = [list(map(standarize, lst)) for lst in clean_data]

print("...Creando una SOM...")
topo = len(data[0])
red = SOM(100, 100, topo)

print("...Entrenando la red...")
red.train(clean_data, L0=0.8, lam=1e2, sigma0=10)

print("...Construyendo gráfico en 2D...")
for p in red.som:
    build_JSON_coor(p, 'son_map')

print("...Calculando el error de cálculo...")
print(red.quant_err())