def __mutations_section(self, mutations_report, experiment_by_key):
        mutations_dict = dict()
        if self.mutations_report and self.mutations_report.rows:
            # if cnf.debug:
            #     mutations_report.regions = mutations_report.regions[::20]
            mutations_dict['table'] = build_report_html(mutations_report,
                                                        sortable=True)

            mutations_dict['total_variants'] = ', '.join(
                Metric.format_value(e.total_variants, is_html=True) + ' ' +
                k[1] for k, e in experiment_by_key.items())

            mutations_dict['total_key_genes'] = '/'.join(
                set(
                    Metric.format_value(len(e.key_gene_by_name_chrom.values()),
                                        is_html=True) + ' ' + k[1]
                    for k, e in experiment_by_key.items()))

            mutations_dict['experiments'] = [
                dict(header=k[1], key=k[1].lower())
                for k in self.experiment_by_key.keys()
            ]

            mutations_dict['plot_data'] = self.mutations_plot_data
            mutations_dict[
                'substitutions_plot_data'] = self.substitutions_plot_data

        return mutations_dict
    def make_key_genes_cov_report(experiment_by_key):
        info('Making key genes coverage report...')

        ms = [
            Metric('Gene'),
            Metric('Chr', with_heatmap=False, max_width=20, align='right')
        ]

        for i, (k, e) in enumerate(experiment_by_key.items()):
            ms.extend([
                Metric(k + ' Ave depth',
                       short_name=k + '\nave depth',
                       med=e.ave_depth,
                       class_='shifted_column' if i == 0 else ''),
                Metric(k + ' % cov at {}x'.format(e.depth_cutoff),
                       short_name='% at {}x'.format(e.depth_cutoff),
                       unit='%',
                       med=1,
                       low_inner_fence=0.5,
                       low_outer_fence=0.1),
                Metric(k + ' CNV', short_name='  CNV')
            ]  # short name is hack for IE9 who doesn't have "text-align: left" and tries to stick "CNV" to the previous col header
                      )
        clinical_cov_metric_storage = MetricStorage(
            sections=[ReportSection(metrics=ms)])
        key_genes_report = PerRegionSampleReport(
            sample=experiment_by_key.values()[0].sample,
            metric_storage=clinical_cov_metric_storage)

        # Writing records
        hits_by_gene_by_experiment = OrderedDefaultDict(OrderedDict)
        for k, e in experiment_by_key.items():
            for gene in e.key_gene_by_name.values():
                hits_by_gene_by_experiment[gene.name][e] = gene

        for gname, hit_by_experiment in sorted(
                hits_by_gene_by_experiment.items(), key=lambda
            (gname, h): gname):
            gene = next(
                (m for m in hit_by_experiment.values() if m is not None), None)

            row = key_genes_report.add_row()
            row.add_record('Gene', gene.name)
            row.add_record('Chr', gene.chrom.replace('chr', ''))

            for e, hit in hit_by_experiment.items():
                row.add_record(e.key + ' Ave depth', hit.ave_depth)
                m = clinical_cov_metric_storage.find_metric(
                    e.key + ' % cov at {}x'.format(e.depth_cutoff))
                row.add_record(
                    m.name,
                    next((cov for cutoff, cov in hit.cov_by_threshs.items()
                          if cutoff == e.depth_cutoff), None))
                if hit.seq2c_event and (hit.seq2c_event.is_amp()
                                        or hit.seq2c_event.is_del()):
                    row.add_record(
                        e.key + ' CNV', hit.seq2c_event.amp_del + ', ' +
                        hit.seq2c_event.fragment)

        return key_genes_report
Beispiel #3
0
def _prep_comb_report(metric_storage, samples, shared_general_metrics,
                      shared_metrics):
    comb_general_metrics = shared_general_metrics[:]
    comb_general_metrics.append(Metric('For each sample'))
    for s in samples:
        comb_general_metrics.append(Metric(s.name + ' ave depth'))

    comb_metrics = shared_metrics[:]
    for s in samples:
        comb_metrics.append(
            DepthsMetric(s.name + ' hotspots depths/norm depths',
                         short_name=s.name))

    comb_report_metric_storage = MetricStorage(
        general_section=ReportSection('general_section',
                                      metrics=comb_general_metrics),
        sections=[ReportSection(metrics=comb_metrics)])

    report = PerRegionSampleReport(sample='Combined',
                                   metric_storage=comb_report_metric_storage)

    report.add_record(
        'Sample', 'contains values from all samples: ' +
        ', '.join([s.name for s in samples]))
    report.add_record('For each sample',
                      'Depths and normalized depths for each hotspot.')

    m = metric_storage.find_metric('Average sample depth')
    for s in samples:
        val = BaseReport.find_record(s.report.records, m.name).value
        report.add_record(s.name + ' ave depth', val)

    return report
Beispiel #4
0
def create_section(report, num_regions, genes, region_type):
    flagged_dict = dict()
    if report.rows:
        # if cnf.debug:
        #     mutations_report.regions = mutations_report.regions[::20]
        flagged_dict['table'] = build_report_html(report, sortable=True)
        flagged_dict['total_regions'] = Metric.format_value(num_regions,
                                                            is_html=True)
        flagged_dict['total_key_genes'] = Metric.format_value(len(genes),
                                                              is_html=True)
        flagged_dict['region_type'] = Metric.format_value(region_type,
                                                          is_html=True)
    return flagged_dict
def find_other_occurences(row, mut_by_experiment, cur_group_num, samples_data,
                          parameters_info):
    num_by_samples = defaultdict(set)
    tooltips = []
    if cur_group_num:
        for e, m in mut_by_experiment.items():
            if get_group_num(e.key) == cur_group_num:
                continue
            sample_parameters = get_sample_info(e.sample.name,
                                                e.sample.dirpath, samples_data)
            sample_parameters = remove_parameters_to_combine(sample_parameters)
            short_parameters = [
                parameters_info.items()[i][1].prefixes[p.lower()]
                for i, p in enumerate(sample_parameters)
            ]
            num_by_samples[tuple(short_parameters)].add(get_group_num(e.key))
            report_link = '<a href="' + basename(
                e.sample.clinical_html
            ) + '" target="_blank">' + e.sample.name + '</a>'
            freq = Metric.format_value(m.freq, is_html=True, unit='%')
            tooltip = report_link + ':  ' + str(freq) + '  ' + str(
                m.depth) + '<br>'
            tooltips.append((e.sample.name, tooltip))
        tooltips = [tooltip[1] for tooltip in sorted(tooltips)]
        other_occurences = ', '.join(
            [str(len(v)) + ''.join(k) for k, v in num_by_samples.iteritems()])
        other_occurences = add_tooltip(other_occurences, ''.join(tooltips))
        row.add_record('Other occurrences', other_occurences)
    return row
Beispiel #6
0
 def format(self, value, human_readable=True):
     variants = value
     fmt_pos = lambda pos: Metric.format_value(int(pos),
                                               human_readable=True)
     return '  '.join(
         '{pos}:{var.ref}/{var.alt}'.format(pos=fmt_pos(var.pos), var=var)
         for var in variants)
Beispiel #7
0
 def format(self, value, human_readable=True):
     depth_tuples = value
     fmt = lambda dp: Metric.format_value(dp, human_readable=True)
     return '  '.join('{depth}/{norm_depth}'.format(
         depth=fmt(int(depth) if depth is not None else None),
         norm_depth=fmt(
             float(norm_depth) if norm_depth is not None else None))
                      for (depth, norm_depth) in depth_tuples)
Beispiel #8
0
def make_expression_heatmap(bcbio_structure, gene_counts):
    samples_names = [sample.name for sample in bcbio_structure.samples]
    metrics = [Metric('Gene')] + [
        Metric(sample_name, max_width=40) for sample_name in samples_names
    ]
    metric_storage = MetricStorage(
        sections=[ReportSection(metrics=metrics, name='samples')])
    report = PerRegionSampleReport(metric_storage=metric_storage,
                                   expandable=True,
                                   unique=True,
                                   heatmap_by_rows=True,
                                   keep_order=True,
                                   large_table=True,
                                   vertical_sample_names=True)
    printed_genes = set()

    # Writing records
    for gene in sorted(gene_counts.keys()):
        first_record = gene_counts[gene][0]
        if first_record.is_hidden_row:
            printed_genes.add(first_record.gene_name)
            row = report.add_row()
            row.add_record('Gene', first_record.gene_name)
            for sample in samples_names:
                row.add_record(
                    sample,
                    sum([
                        record.counts[sample] for record in gene_counts[gene]
                    ]))
            row.class_ = ' expandable_gene_row collapsed'
        for record in gene_counts[gene]:
            gene_expression = record.counts
            row = report.add_row()
            if record.is_hidden_row:
                row_class = ' row_to_hide row_hidden'
            else:
                row_class = ' expandable_gene_row collapsed'
            row.add_record('Gene', record.name)
            for sample, count in gene_expression.iteritems():
                if sample in samples_names:
                    row.add_record(sample, count)
            row.class_ = row_class
    return report
Beispiel #9
0
def _mutations_records(general_section, bcbio_structure, base_dirpath):
    records = []

    caller = bcbio_structure.variant_callers.get('vardict') or \
             bcbio_structure.variant_callers.get('vardict-java')

    _base_mut_fname = variant_filtering.mut_fname_template.format(
        caller_name=caller.name)
    _base_mut_fpath = join(bcbio_structure.date_dirpath, _base_mut_fname)
    mut_fpath = add_suffix(_base_mut_fpath, variant_filtering.mut_pass_suffix)
    single_mut_fpath = add_suffix(
        add_suffix(_base_mut_fpath, variant_filtering.mut_single_suffix),
        variant_filtering.mut_pass_suffix)
    paired_mut_fpath = add_suffix(
        add_suffix(_base_mut_fpath, variant_filtering.mut_paired_suffix),
        variant_filtering.mut_pass_suffix)
    mut_fpath = verify_file(mut_fpath, silent=True)
    single_mut_fpath = verify_file(single_mut_fpath, silent=True)
    paired_mut_fpath = verify_file(paired_mut_fpath, silent=True)

    for fpath, metric_name in ((mut_fpath, MUTATIONS_NAME),
                               (single_mut_fpath, MUTATIONS_SINGLE_NAME),
                               (paired_mut_fpath, MUTATIONS_PAIRED_NAME)):
        if fpath:
            metric = Metric(metric_name, common=True)
            rec = Record(metric=metric,
                         value=basename(fpath),
                         url=relpath(fpath, base_dirpath))
            general_section.add_metric(metric)
            records.append(rec)

    if bcbio_structure.seq2c_fpath and isfile(bcbio_structure.seq2c_fpath):
        metric = Metric(CNV_NAME, common=True)
        fpath = bcbio_structure.seq2c_fpath
        rec = Record(metric=metric,
                     value=basename(fpath),
                     url=relpath(fpath, base_dirpath))
        general_section.add_metric(metric)
        records.append(rec)

    return records
Beispiel #10
0
 def __repr__(self):
     fmt_pos = lambda pos: Metric.format_value(pos, human_readable=True)
     return '{pos} {var.ref}/{var.alt} {var.cls[0]}'.format(pos=fmt_pos(
         int(self.pos)),
                                                            var=self)
Beispiel #11
0
            for var in variants)


class DepthsMetric(Metric):
    def format(self, value, human_readable=True):
        depth_tuples = value
        fmt = lambda dp: Metric.format_value(dp, human_readable=True)
        return '  '.join('{depth}/{norm_depth}'.format(
            depth=fmt(int(depth) if depth is not None else None),
            norm_depth=fmt(
                float(norm_depth) if norm_depth is not None else None))
                         for (depth, norm_depth) in depth_tuples)


shared_metrics = [
    Metric('Gene'),
    Metric('Chr'),
    Metric('Start'),
    Metric('End'),
    Metric('Strand'),
    Metric('Feature'),
    Metric('Biotype'),
    Metric('ID'),
    Metric('Hotspots num', short_name='#HS'),
    VariantsMetric('Hotspots list', short_name='Hotspots')
]

shared_general_metrics = [Metric('Sample', short_name='Sample', common=True)]

single_report_metric_storage = MetricStorage(
    general_section=ReportSection(
Beispiel #12
0
def _generate_summary_flagged_regions_report(cnf, bcbio_structure, samples,
                                             mutations, key_or_target_genes):
    region_types = ['exons', 'target']
    coverage_types = ['low', 'high']
    flagged_regions_metrics = [
        Metric('Gene', min_width=50, max_width=70),
        Metric('Chr', with_heatmap=False, max_width=20, align='right'),
        Metric('Position', td_class='td_position', min_width=70,
               max_width=120),
        Metric('Ave depth',
               td_class='long_expanded_line right_aligned',
               max_width=100,
               with_heatmap=False),
        Metric('#HS', quality='Less is better', align='right', max_width=30),
        Metric('Hotspots & Deleterious',
               td_class='long_expanded_line',
               min_width=100,
               max_width=150),
        Metric('Found mutations',
               td_class='long_expanded_line',
               min_width=150,
               max_width=200),
        Metric('Samples',
               td_class='long_expanded_line',
               min_width=100,
               max_width=120),
        Metric('Possible reasons',
               td_class='long_expanded_line',
               max_width=120)
    ]
    flagged_regions_metric_storage = MetricStorage(
        sections=[ReportSection(metrics=flagged_regions_metrics)])
    flagged_regions_report_dirpath = bcbio_structure.flagged_regions_dirpath
    safe_mkdir(flagged_regions_report_dirpath)
    if key_or_target_genes == 'target':
        genes_description = 'genes'
    else:
        genes_description = 'genes that have been previously implicated in various cancers'
    for region_type in region_types:
        regions_dict = {}
        total_regions = 0
        info()
        info('Preparing report for ' + region_type)
        for coverage_type in coverage_types:
            regions_by_gene = {}
            for sample in samples:
                selected_regions_bed_fpath = join(
                    sample.flagged_regions_dirpath,
                    coverage_type + '_cov_' + region_type + '.bed')
                regions_by_reasons = {}
                if verify_file(selected_regions_bed_fpath, is_critical=False):
                    intersection_fpath = _intersect_with_tricky_regions(
                        cnf, selected_regions_bed_fpath, sample.name)
                    regions_by_reasons = _parse_intersection_with_tricky_regions(
                        cnf, intersection_fpath)
                total_report_fpath = add_suffix(
                    add_suffix(sample.flagged_tsv, region_type), coverage_type)
                if verify_file(total_report_fpath, is_critical=False):
                    with open(total_report_fpath) as f:
                        for l in f:
                            l = l.strip()
                            if not l or l.startswith('#'):
                                continue
                            fs = l.split('\t')
                            (chrom, start, end, size, gene, strand, feature,
                             biotype, min_depth, avg_depth) = fs[:10]
                            start, end = int(start), int(end)
                            regions_by_gene.setdefault(gene, [])
                            cur_region = Region(sample_name=[sample.name],
                                                avg_depth=[avg_depth],
                                                gene_name=gene,
                                                strand=strand,
                                                feature=feature,
                                                biotype=biotype,
                                                chrom=chrom,
                                                start=start,
                                                end=end)
                            for r in regions_by_reasons:
                                if r[0] <= start and end <= r[1]:
                                    cur_region.extra_fields = regions_by_reasons[
                                        r]
                            cur_region.missed_by_db = []
                            was_added = False
                            for r in regions_by_gene[gene]:
                                if r.start <= cur_region.start <= r.end and r.start <= cur_region.end <= r.end:
                                    was_added = True
                                    if sample.name not in r.sample_name:
                                        r.sample_name.append(sample.name)
                                        r.avg_depth.append(avg_depth)
                            if not was_added:
                                regions_by_gene[gene].append(cur_region)
                report_fpath = join(
                    sample.flagged_regions_dirpath,
                    coverage_type + '_cov_' + region_type + '.oncomine.tsv')
                if verify_file(report_fpath, is_critical=False):
                    with open(report_fpath) as f:
                        for l in f:
                            l = l.strip()
                            if not l or l.startswith('#'):
                                continue
                            fs = l.split('\t')
                            hotspots = []
                            (gene, chrom, start, end, strand, feature, biotype,
                             id_, num_hotspots) = fs[:9]
                            start, end = int(start), int(end)
                            if int(num_hotspots) != 0:
                                hotspots = fs[9].split()

                            regions_by_gene.setdefault(gene, [])
                            cur_region = Region(sample_name=[sample.name],
                                                gene_name=gene,
                                                strand=strand,
                                                feature=feature,
                                                biotype=biotype,
                                                chrom=chrom,
                                                start=start,
                                                end=end)
                            for r in regions_by_gene[gene]:
                                if r.start <= cur_region.start <= r.end and r.start <= cur_region.end <= r.end:
                                    if sample.name not in r.sample_name:
                                        r.sample_name.append(sample.name)
                                        r.avg_depth.append('.')
                                    new_hotspots = [
                                        hs for hs in hotspots
                                        if hs not in r.missed_by_db
                                    ]
                                    r.missed_by_db.extend(new_hotspots)
            flagged_regions_report = PerRegionSampleReport(
                name='Flagged regions',
                metric_storage=flagged_regions_metric_storage)
            num_regions = 0
            non_hs_class = ' no_hotspots'
            slash_with_zero_space = '/&#x200b;'
            for gene in regions_by_gene.keys():
                if regions_by_gene[gene]:
                    num_regions += len(regions_by_gene[gene])
                    row_class = ' expandable_row collapsed'
                    if len(regions_by_gene[gene]) > 1:
                        reg = flagged_regions_report.add_row()
                        reg.class_ = ' expandable_gene_row collapsed'
                        chr = regions_by_gene[gene][0].chrom
                        num_hotspots = [
                            len(r.missed_by_db) for r in regions_by_gene[gene]
                        ]
                        all_samples = [
                            sample for r in regions_by_gene[gene]
                            for sample in r.sample_name
                        ]
                        all_unique_samples = []
                        all_unique_samples = [
                            sample for sample in all_samples
                            if sample not in all_unique_samples
                            and not all_unique_samples.append(sample)
                        ]
                        all_tricky_regions = sorted(
                            set([
                                tricky_region for r in regions_by_gene[gene]
                                for tricky_region in r.extra_fields
                            ]))
                        all_depths = [[]
                                      for x in range(len(all_unique_samples))]
                        for r in regions_by_gene[gene]:
                            for sample_num, sample in enumerate(
                                    all_unique_samples):
                                if sample in r.sample_name:
                                    cur_sample_index = r.sample_name.index(
                                        sample)
                                    if r.avg_depth[cur_sample_index] != '.':
                                        all_depths[sample_num].append(
                                            float(
                                                r.avg_depth[cur_sample_index]))
                        avg_depth_per_samples = [
                            sum(all_depths[i]) /
                            len(all_depths[i]) if len(all_depths[i]) > 0 else 0
                            for i in range(len(all_depths))
                        ]
                        reg.add_record('Gene', gene)
                        reg.add_record('Chr', chr.replace('chr', ''))
                        reg.add_record('#HS', sum(num_hotspots))
                        reg.add_record(
                            'Position',
                            str(len(regions_by_gene[gene])) + ' regions')
                        reg.add_record(
                            'Ave depth',
                            slash_with_zero_space.join([
                                format(depth, '.2f') if depth != '.' else '.'
                                for depth in avg_depth_per_samples
                            ]),
                            num=sum(avg_depth_per_samples) /
                            len(avg_depth_per_samples))
                        reg.add_record('Hotspots & Deleterious', '')
                        reg.add_record('Possible reasons',
                                       ', '.join(all_tricky_regions))
                        reg.add_record('Samples',
                                       ',\n'.join(all_unique_samples))
                        reg.add_record('Found mutations', '')
                        if sum(num_hotspots) == 0:
                            reg.class_ += non_hs_class
                        row_class += ' row_to_hide row_hidden'
                    else:
                        row_class += ' not_to_hide'
                    for r in regions_by_gene[gene]:
                        reg = flagged_regions_report.add_row()
                        reg.class_ = row_class
                        reg.add_record('Gene', r.gene_name)
                        reg.add_record('Chr', r.chrom.replace('chr', ''))
                        avg_depths = [
                            float(depth) for depth in r.avg_depth
                            if depth != '.'
                        ]
                        reg.add_record(
                            'Ave depth',
                            slash_with_zero_space.join([
                                format(depth, '.2f') if depth != '.' else depth
                                for depth in avg_depths
                            ]),
                            num=sum(avg_depths) / len(avg_depths))
                        reg.add_record(
                            'Position',
                            Metric.format_value(
                                r.start, human_readable=True, is_html=True) +
                            '-' + Metric.format_value(
                                r.end, human_readable=True, is_html=True))
                        reg.add_record('#HS', len(r.missed_by_db))
                        if len(r.missed_by_db) == 0:
                            reg.class_ += non_hs_class
                        uniq_hs_positions = sorted(
                            set([
                                hotspot.split(':')[0]
                                for hotspot in r.missed_by_db
                            ]))
                        hs_by_pos = {
                            pos: [
                                h.split(':')[1] for h in r.missed_by_db
                                if h.split(':')[0] == pos
                            ]
                            for pos in uniq_hs_positions
                        }
                        hs_breakable = [
                            gray(
                                Metric.format_value(int(pos.replace(',', '')),
                                                    human_readable=True,
                                                    is_html=True)) + ': ' +
                            ','.join([
                                h.replace('/', slash_with_zero_space)
                                for h in hs_by_pos[pos]
                            ]) for pos in uniq_hs_positions
                        ]
                        reg.add_record('Hotspots & Deleterious',
                                       '\n'.join(hs_breakable))
                        reg.add_record('Possible reasons',
                                       ', '.join(r.extra_fields))
                        reg.add_record('Samples', ',\n'.join(r.sample_name))
                        found_mutations = []
                        for sample in samples:
                            if sample.name in r.sample_name:
                                for mut in mutations[sample.name]:
                                    if mut.gene.name == r.gene_name and r.start <= mut.pos <= r.end:
                                        found_mutations.append(
                                            gray(
                                                Metric.format_value(
                                                    mut.pos,
                                                    human_readable=True,
                                                    is_html=True)) + ':' +
                                            mut.ref + '>' + mut.alt + ' (' +
                                            sample.name + ')')
                        reg.add_record('Found mutations',
                                       '\n'.join(found_mutations))
            flagged_regions_report.expandable = True
            flagged_regions_report.unique = True
            regions_dict[coverage_type] = create_section(
                flagged_regions_report, num_regions, regions_by_gene.keys(),
                region_type)
            total_regions += num_regions
        flagged_report_fpath = join(flagged_regions_report_dirpath,
                                    'flagged_' + region_type + '.html')
        write_static_html_report(cnf, {
            'key_or_target': key_or_target_genes,
            'region_type': region_type,
            'genes_description': genes_description,
            'flagged_low': regions_dict['low'],
            'flagged_high': regions_dict['high'],
        },
                                 flagged_report_fpath,
                                 tmpl_fpath=join(
                                     dirname(abspath(__file__)),
                                     'template_flagged_regions.html'),
                                 extra_js_fpaths=[
                                     join(dirname(abspath(__file__)), 'static',
                                          'flagged_regions.js')
                                 ],
                                 extra_css_fpaths=[
                                     join(dirname(abspath(__file__)), 'static',
                                          'flagged_regions.css')
                                 ])
        #BaseReport.save_html(flagged_regions_report, cnf, flagged_report_fpath, caption='Flagged regions')
        info('')
        info('Flagged regions (total ' + str(total_regions) + ' ' +
             region_type + ') saved into:')
        info('  ' + flagged_report_fpath)
Beispiel #13
0
from source.variants import vcf_parser

import source
from source.logger import step_greetings, warn
from source.file_utils import open_gzipsafe
from source.reporting.reporting import Metric, MetricStorage, ReportSection, SampleReport
from source.utils import get_db_path
from source.variants.vcf_processing import get_sample_column_index
import source.variants.vcf_processing as vcf_processing

metric_storage = MetricStorage(sections=[
    ReportSection(
        'basic',
        '',
        [
            Metric('Total variants', 'Total',
                   'Total number of passed variants with'),
            Metric('SNPs', 'SNP', 'SNPs'),
            Metric('Insertions', 'Ins', 'Insertions'),
            Metric('Deletions', 'Del', 'Deletions'),
            Metric('Novel', 'Novel', 'Novel (not in dbSNP or Cosmic'),
            Metric('Novel, %', '%', '% novel varinats', unit='%'),
            # Metric('dbsnp_loci',          'Loci in dnSNP',       'Loci in dbSNP (just CHROM:POS matches, regardless if allele is the same)'),
            # Metric('dbsnp_loci_percent',  '%',                   '% loci in dbSNP (just CHROM:POS matches, regardless if allele is the same)', unit='%'),
            Metric('In dbSNP', 'dbSNP', 'Variants in dbSNP'),
            Metric('In dbSNP, %', '%', '% variants in dbSNP', unit='%'),
            # Metric('cosmic_loci',         'Loci in Cosmic',      'Loci in Cosmic (just CHROM:POS matches, regardless if allele is the same)'),
            # Metric('cosmic_loci_percent', '%',                   '% loci in Cosmic (just CHROM:POS matches, regardless if allele is the same)', unit='%'),
            Metric('In Cosmic', 'Cosmic', 'Variants in Cosmic'),
            Metric('In Cosmic, %', '%', '% variants in Cosmic', unit='%'),
            # Metric('bases_per_variant',   'Bp/var',              'Reference bases per variant', quality='Less is better'),
            Metric('Het/hom', 'Het/hom', 'Heterozygosity to homozygosity ratio'
Beispiel #14
0
from source.reporting.reporting import Metric, Record, MetricStorage, ReportSection

metric_storage = MetricStorage(
    general_section=ReportSection('general_section', '', [
        Metric('Reference size', short_name='Reference size', common=True),
        Metric('Regions size/percentage of reference (on target)',
               short_name='Regions size/percentage of reference',
               common=True),
        Metric('Regions size/percentage of reference (on target) %',
               short_name='Regions size/percentage of reference',
               common=True),
    ]),
    sections=[
        # ReportSection('basic_metrics', 'General', [
        #     Metric('Number of reads',                               'Reads',                       'Total number of reads'),
        #     Metric('Mapped reads',                                  'Mapped',                      'Number of mapped reads'),
        #     Metric('Mapped reads %',                                'Mapped %',                      'Number of mapped reads'),
        #     Metric('Unmapped reads',                                'Unmapped ',                    'Number of unmapped reads',               quality='Less is better'),
        #     Metric('Unmapped reads %',                              'Unmapped %',                    'Number of unmapped reads',               quality='Less is better'),
        # ]),

        # ReportSection('on_off_metrics', 'ON/OFF target', [
        # Metric('Mapped reads, only first in pair',              'Mapped, 1st',                 'Number of mapped reads, only first in pair'),
        # Metric('Mapped reads, only second in pair',             'Mapped, 2nd',                 'Number of mapped reads, only second in pair'),
        # Metric('Mapped reads, both in pair',                    'Mapped, both',                'Number of mapped reads, both in pair'),
        # Metric('Mapped reads, singletons',                      'Mapped, single',              'Number of mapped reads, singletons'),

        # Metric('Mapped reads, only first in pair (on target)',  'Mapped, 1st (on trg)',        'Number of mapped reads inside of regions, only first in pair'),
        # Metric('Mapped reads, only second in pair (on target)', 'Mapped, 2nd (on trg)',        'Number of mapped reads inside of regions, only second in pair'),
        # Metric('Mapped reads, both in pair (on target)',        'Mapped, both (on trg)',       'Number of mapped reads inside of regions, both in pair'),
        # Metric('Mapped reads, singletons (on target)',          'Mapped, single (on trg)',     'Number of mapped reads inside of regions, singletons')
Beispiel #15
0
GENE_TPM_NAME = 'Gene TPM'
ISOFORM_TPM_NAME = 'Isoform TPM'

mutation_names = [
    MUTATIONS_NAME, MUTATIONS_SINGLE_NAME, MUTATIONS_PAIRED_NAME, CNV_NAME
]
expression_names = [
    GENE_COUNTS_NAME,
    EXON_COUNTS_NAME,
    GENE_TPM_NAME,
    ISOFORM_TPM_NAME,
]

metric_storage = MetricStorage(
    general_section=ReportSection(metrics=[
        Metric(PRE_FASTQC_NAME),
        Metric(FASTQC_NAME),
        Metric(EXAC_NAME),
        Metric(MUTATIONS_NAME),
        Metric(MUTATIONS_SINGLE_NAME),
        Metric(MUTATIONS_PAIRED_NAME),
        Metric(ABNORMAL_NAME),
        Metric(GENE_COUNTS_NAME),
        Metric(EXON_COUNTS_NAME),
        Metric(GENE_TPM_NAME),
        Metric(ISOFORM_TPM_NAME),
    ]),
    sections=[
        ReportSection(metrics=[
            Metric(PRE_FASTQC_NAME),
            Metric(FASTQC_NAME),