Beispiel #1
0
def main():

    progname = os.path.basename(sys.argv[0])
    usage = progname + " proj_stack output_averages --MPI"
    parser = OptionParser(usage, version=SPARXVERSION)

    parser.add_option("--img_per_group",
                      type="int",
                      default=100,
                      help="number of images per group")
    parser.add_option("--radius",
                      type="int",
                      default=-1,
                      help="radius for alignment")
    parser.add_option(
        "--xr",
        type="string",
        default="2 1",
        help="range for translation search in x direction, search is +/xr")
    parser.add_option(
        "--yr",
        type="string",
        default="-1",
        help=
        "range for translation search in y direction, search is +/yr (default = same as xr)"
    )
    parser.add_option(
        "--ts",
        type="string",
        default="1 0.5",
        help=
        "step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional"
    )
    parser.add_option(
        "--iter",
        type="int",
        default=30,
        help="number of iterations within alignment (default = 30)")
    parser.add_option(
        "--num_ali",
        type="int",
        default=5,
        help="number of alignments performed for stability (default = 5)")
    parser.add_option("--thld_err",
                      type="float",
                      default=1.0,
                      help="threshold of pixel error (default = 1.732)")
    parser.add_option(
        "--grouping",
        type="string",
        default="GRP",
        help=
        "do grouping of projections: PPR - per projection, GRP - different size groups, exclusive (default), GEV - grouping equal size"
    )
    parser.add_option(
        "--delta",
        type="float",
        default=-1.0,
        help="angular step for reference projections (required for GEV method)"
    )
    parser.add_option(
        "--fl",
        type="float",
        default=0.3,
        help="cut-off frequency of hyperbolic tangent low-pass Fourier filter")
    parser.add_option(
        "--aa",
        type="float",
        default=0.2,
        help="fall-off of hyperbolic tangent low-pass Fourier filter")
    parser.add_option("--CTF",
                      action="store_true",
                      default=False,
                      help="Consider CTF correction during the alignment ")
    parser.add_option("--MPI",
                      action="store_true",
                      default=False,
                      help="use MPI version")

    (options, args) = parser.parse_args()

    myid = mpi.mpi_comm_rank(MPI_COMM_WORLD)
    number_of_proc = mpi.mpi_comm_size(MPI_COMM_WORLD)
    main_node = 0

    if len(args) == 2:
        stack = args[0]
        outdir = args[1]
    else:
        sp_global_def.ERROR("Incomplete list of arguments",
                            "sxproj_stability.main",
                            1,
                            myid=myid)
        return
    if not options.MPI:
        sp_global_def.ERROR("Non-MPI not supported!",
                            "sxproj_stability.main",
                            1,
                            myid=myid)
        return

    if sp_global_def.CACHE_DISABLE:
        from sp_utilities import disable_bdb_cache
        disable_bdb_cache()
    sp_global_def.BATCH = True

    img_per_grp = options.img_per_group
    radius = options.radius
    ite = options.iter
    num_ali = options.num_ali
    thld_err = options.thld_err

    xrng = get_input_from_string(options.xr)
    if options.yr == "-1":
        yrng = xrng
    else:
        yrng = get_input_from_string(options.yr)

    step = get_input_from_string(options.ts)

    if myid == main_node:
        nima = EMUtil.get_image_count(stack)
        img = get_image(stack)
        nx = img.get_xsize()
        ny = img.get_ysize()
    else:
        nima = 0
        nx = 0
        ny = 0
    nima = bcast_number_to_all(nima)
    nx = bcast_number_to_all(nx)
    ny = bcast_number_to_all(ny)
    if radius == -1: radius = nx / 2 - 2
    mask = model_circle(radius, nx, nx)

    st = time()
    if options.grouping == "GRP":
        if myid == main_node:
            sxprint("  A  ", myid, "  ", time() - st)
            proj_attr = EMUtil.get_all_attributes(stack, "xform.projection")
            proj_params = []
            for i in range(nima):
                dp = proj_attr[i].get_params("spider")
                phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp[
                    "psi"], -dp["tx"], -dp["ty"]
                proj_params.append([phi, theta, psi, s2x, s2y])

            # Here is where the grouping is done, I didn't put enough annotation in the group_proj_by_phitheta,
            # So I will briefly explain it here
            # proj_list  : Returns a list of list of particle numbers, each list contains img_per_grp particle numbers
            #              except for the last one. Depending on the number of particles left, they will either form a
            #              group or append themselves to the last group
            # angle_list : Also returns a list of list, each list contains three numbers (phi, theta, delta), (phi,
            #              theta) is the projection angle of the center of the group, delta is the range of this group
            # mirror_list: Also returns a list of list, each list contains img_per_grp True or False, which indicates
            #              whether it should take mirror position.
            # In this program angle_list and mirror list are not of interest.

            proj_list_all, angle_list, mirror_list = group_proj_by_phitheta(
                proj_params, img_per_grp=img_per_grp)
            del proj_params
            sxprint("  B  number of groups  ", myid, "  ", len(proj_list_all),
                    time() - st)
        mpi_barrier(MPI_COMM_WORLD)

        # Number of groups, actually there could be one or two more groups, since the size of the remaining group varies
        # we will simply assign them to main node.
        n_grp = nima / img_per_grp - 1

        # Divide proj_list_all equally to all nodes, and becomes proj_list
        proj_list = []
        for i in range(n_grp):
            proc_to_stay = i % number_of_proc
            if proc_to_stay == main_node:
                if myid == main_node: proj_list.append(proj_list_all[i])
            elif myid == main_node:
                mpi_send(len(proj_list_all[i]), 1, MPI_INT, proc_to_stay,
                         SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
                mpi_send(proj_list_all[i], len(proj_list_all[i]), MPI_INT,
                         proc_to_stay, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
            elif myid == proc_to_stay:
                img_per_grp = mpi_recv(1, MPI_INT, main_node,
                                       SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
                img_per_grp = int(img_per_grp[0])
                temp = mpi_recv(img_per_grp, MPI_INT, main_node,
                                SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
                proj_list.append(list(map(int, temp)))
                del temp
            mpi_barrier(MPI_COMM_WORLD)
        sxprint("  C  ", myid, "  ", time() - st)
        if myid == main_node:
            # Assign the remaining groups to main_node
            for i in range(n_grp, len(proj_list_all)):
                proj_list.append(proj_list_all[i])
            del proj_list_all, angle_list, mirror_list

    #   Compute stability per projection projection direction, equal number assigned, thus overlaps
    elif options.grouping == "GEV":

        if options.delta == -1.0:
            ERROR(
                "Angular step for reference projections is required for GEV method"
            )
            return

        from sp_utilities import even_angles, nearestk_to_refdir, getvec
        refproj = even_angles(options.delta)
        img_begin, img_end = MPI_start_end(len(refproj), number_of_proc, myid)
        # Now each processor keeps its own share of reference projections
        refprojdir = refproj[img_begin:img_end]
        del refproj

        ref_ang = [0.0] * (len(refprojdir) * 2)
        for i in range(len(refprojdir)):
            ref_ang[i * 2] = refprojdir[0][0]
            ref_ang[i * 2 + 1] = refprojdir[0][1] + i * 0.1

        sxprint("  A  ", myid, "  ", time() - st)
        proj_attr = EMUtil.get_all_attributes(stack, "xform.projection")
        #  the solution below is very slow, do not use it unless there is a problem with the i/O
        """
		for i in xrange(number_of_proc):
			if myid == i:
				proj_attr = EMUtil.get_all_attributes(stack, "xform.projection")
			mpi_barrier(MPI_COMM_WORLD)
		"""
        sxprint("  B  ", myid, "  ", time() - st)

        proj_ang = [0.0] * (nima * 2)
        for i in range(nima):
            dp = proj_attr[i].get_params("spider")
            proj_ang[i * 2] = dp["phi"]
            proj_ang[i * 2 + 1] = dp["theta"]
        sxprint("  C  ", myid, "  ", time() - st)
        asi = Util.nearestk_to_refdir(proj_ang, ref_ang, img_per_grp)
        del proj_ang, ref_ang
        proj_list = []
        for i in range(len(refprojdir)):
            proj_list.append(asi[i * img_per_grp:(i + 1) * img_per_grp])
        del asi
        sxprint("  D  ", myid, "  ", time() - st)
        #from sys import exit
        #exit()

    #   Compute stability per projection
    elif options.grouping == "PPR":
        sxprint("  A  ", myid, "  ", time() - st)
        proj_attr = EMUtil.get_all_attributes(stack, "xform.projection")
        sxprint("  B  ", myid, "  ", time() - st)
        proj_params = []
        for i in range(nima):
            dp = proj_attr[i].get_params("spider")
            phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp[
                "psi"], -dp["tx"], -dp["ty"]
            proj_params.append([phi, theta, psi, s2x, s2y])
        img_begin, img_end = MPI_start_end(nima, number_of_proc, myid)
        sxprint("  C  ", myid, "  ", time() - st)
        from sp_utilities import nearest_proj
        proj_list, mirror_list = nearest_proj(
            proj_params, img_per_grp,
            list(range(img_begin, img_begin + 1)))  #range(img_begin, img_end))
        refprojdir = proj_params[img_begin:img_end]
        del proj_params, mirror_list
        sxprint("  D  ", myid, "  ", time() - st)

    else:
        ERROR("Incorrect projection grouping option")
        return

    ###########################################################################################################
    # Begin stability test
    from sp_utilities import get_params_proj, read_text_file
    #if myid == 0:
    #	from utilities import read_text_file
    #	proj_list[0] = map(int, read_text_file("lggrpp0.txt"))

    from sp_utilities import model_blank
    aveList = [model_blank(nx, ny)] * len(proj_list)
    if options.grouping == "GRP":
        refprojdir = [[0.0, 0.0, -1.0]] * len(proj_list)
    for i in range(len(proj_list)):
        sxprint("  E  ", myid, "  ", time() - st)
        class_data = EMData.read_images(stack, proj_list[i])
        #print "  R  ",myid,"  ",time()-st
        if options.CTF:
            from sp_filter import filt_ctf
            for im in range(len(class_data)):  #  MEM LEAK!!
                atemp = class_data[im].copy()
                btemp = filt_ctf(atemp, atemp.get_attr("ctf"), binary=1)
                class_data[im] = btemp
                #class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1)
        for im in class_data:
            try:
                t = im.get_attr(
                    "xform.align2d")  # if they are there, no need to set them!
            except:
                try:
                    t = im.get_attr("xform.projection")
                    d = t.get_params("spider")
                    set_params2D(im, [0.0, -d["tx"], -d["ty"], 0, 1.0])
                except:
                    set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0])
        #print "  F  ",myid,"  ",time()-st
        # Here, we perform realignment num_ali times
        all_ali_params = []
        for j in range(num_ali):
            if (xrng[0] == 0.0 and yrng[0] == 0.0):
                avet = ali2d_ras(class_data,
                                 randomize=True,
                                 ir=1,
                                 ou=radius,
                                 rs=1,
                                 step=1.0,
                                 dst=90.0,
                                 maxit=ite,
                                 check_mirror=True,
                                 FH=options.fl,
                                 FF=options.aa)
            else:
                avet = within_group_refinement(class_data, mask, True, 1,
                                               radius, 1, xrng, yrng, step,
                                               90.0, ite, options.fl,
                                               options.aa)
            ali_params = []
            for im in range(len(class_data)):
                alpha, sx, sy, mirror, scale = get_params2D(class_data[im])
                ali_params.extend([alpha, sx, sy, mirror])
            all_ali_params.append(ali_params)
        #aveList[i] = avet
        #print "  G  ",myid,"  ",time()-st
        del ali_params
        # We determine the stability of this group here.
        # stable_set contains all particles deemed stable, it is a list of list
        # each list has two elements, the first is the pixel error, the second is the image number
        # stable_set is sorted based on pixel error
        #from utilities import write_text_file
        #write_text_file(all_ali_params, "all_ali_params%03d.txt"%myid)
        stable_set, mir_stab_rate, average_pix_err = multi_align_stability(
            all_ali_params, 0.0, 10000.0, thld_err, False, 2 * radius + 1)
        #print "  H  ",myid,"  ",time()-st
        if (len(stable_set) > 5):
            stable_set_id = []
            members = []
            pix_err = []
            # First put the stable members into attr 'members' and 'pix_err'
            for s in stable_set:
                # s[1] - number in this subset
                stable_set_id.append(s[1])
                # the original image number
                members.append(proj_list[i][s[1]])
                pix_err.append(s[0])
            # Then put the unstable members into attr 'members' and 'pix_err'
            from sp_fundamentals import rot_shift2D
            avet.to_zero()
            if options.grouping == "GRP":
                aphi = 0.0
                atht = 0.0
                vphi = 0.0
                vtht = 0.0
            l = -1
            for j in range(len(proj_list[i])):
                #  Here it will only work if stable_set_id is sorted in the increasing number, see how l progresses
                if j in stable_set_id:
                    l += 1
                    avet += rot_shift2D(class_data[j], stable_set[l][2][0],
                                        stable_set[l][2][1],
                                        stable_set[l][2][2],
                                        stable_set[l][2][3])
                    if options.grouping == "GRP":
                        phi, theta, psi, sxs, sy_s = get_params_proj(
                            class_data[j])
                        if (theta > 90.0):
                            phi = (phi + 540.0) % 360.0
                            theta = 180.0 - theta
                        aphi += phi
                        atht += theta
                        vphi += phi * phi
                        vtht += theta * theta
                else:
                    members.append(proj_list[i][j])
                    pix_err.append(99999.99)
            aveList[i] = avet.copy()
            if l > 1:
                l += 1
                aveList[i] /= l
                if options.grouping == "GRP":
                    aphi /= l
                    atht /= l
                    vphi = (vphi - l * aphi * aphi) / l
                    vtht = (vtht - l * atht * atht) / l
                    from math import sqrt
                    refprojdir[i] = [
                        aphi, atht,
                        (sqrt(max(vphi, 0.0)) + sqrt(max(vtht, 0.0))) / 2.0
                    ]

            # Here more information has to be stored, PARTICULARLY WHAT IS THE REFERENCE DIRECTION
            aveList[i].set_attr('members', members)
            aveList[i].set_attr('refprojdir', refprojdir[i])
            aveList[i].set_attr('pixerr', pix_err)
        else:
            sxprint(" empty group ", i, refprojdir[i])
            aveList[i].set_attr('members', [-1])
            aveList[i].set_attr('refprojdir', refprojdir[i])
            aveList[i].set_attr('pixerr', [99999.])

    del class_data

    if myid == main_node:
        km = 0
        for i in range(number_of_proc):
            if i == main_node:
                for im in range(len(aveList)):
                    aveList[im].write_image(args[1], km)
                    km += 1
            else:
                nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL,
                              MPI_COMM_WORLD)
                nl = int(nl[0])
                for im in range(nl):
                    ave = recv_EMData(i, im + i + 70000)
                    nm = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL,
                                  MPI_COMM_WORLD)
                    nm = int(nm[0])
                    members = mpi_recv(nm, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL,
                                       MPI_COMM_WORLD)
                    ave.set_attr('members', list(map(int, members)))
                    members = mpi_recv(nm, MPI_FLOAT, i,
                                       SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
                    ave.set_attr('pixerr', list(map(float, members)))
                    members = mpi_recv(3, MPI_FLOAT, i,
                                       SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
                    ave.set_attr('refprojdir', list(map(float, members)))
                    ave.write_image(args[1], km)
                    km += 1
    else:
        mpi_send(len(aveList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL,
                 MPI_COMM_WORLD)
        for im in range(len(aveList)):
            send_EMData(aveList[im], main_node, im + myid + 70000)
            members = aveList[im].get_attr('members')
            mpi_send(len(members), 1, MPI_INT, main_node,
                     SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
            mpi_send(members, len(members), MPI_INT, main_node,
                     SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
            members = aveList[im].get_attr('pixerr')
            mpi_send(members, len(members), MPI_FLOAT, main_node,
                     SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
            try:
                members = aveList[im].get_attr('refprojdir')
                mpi_send(members, 3, MPI_FLOAT, main_node,
                         SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
            except:
                mpi_send([-999.0, -999.0, -999.0], 3, MPI_FLOAT, main_node,
                         SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)

    sp_global_def.BATCH = False
    mpi_barrier(MPI_COMM_WORLD)
Beispiel #2
0
def main():
    def params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror):
        # the final ali2d parameters already combine shifts operation first and rotation operation second for parameters converted from 3D
        if mirror:
            m = 1
            alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0,
                                                       540.0 - psi, 0, 0, 1.0)
        else:
            m = 0
            alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0,
                                                       360.0 - psi, 0, 0, 1.0)
        return alpha, sx, sy, m

    progname = os.path.basename(sys.argv[0])
    usage = progname + " prj_stack  --ave2D= --var2D=  --ave3D= --var3D= --img_per_grp= --fl=  --aa=   --sym=symmetry --CTF"
    parser = OptionParser(usage, version=SPARXVERSION)

    parser.add_option("--output_dir",
                      type="string",
                      default="./",
                      help="Output directory")
    parser.add_option("--ave2D",
                      type="string",
                      default=False,
                      help="Write to the disk a stack of 2D averages")
    parser.add_option("--var2D",
                      type="string",
                      default=False,
                      help="Write to the disk a stack of 2D variances")
    parser.add_option("--ave3D",
                      type="string",
                      default=False,
                      help="Write to the disk reconstructed 3D average")
    parser.add_option("--var3D",
                      type="string",
                      default=False,
                      help="Compute 3D variability (time consuming!)")
    parser.add_option(
        "--img_per_grp",
        type="int",
        default=100,
        help="Number of neighbouring projections.(Default is 100)")
    parser.add_option(
        "--no_norm",
        action="store_true",
        default=False,
        help="Do not use normalization.(Default is to apply normalization)")
    #parser.add_option("--radius", 	    type="int"         ,	default=-1   ,				help="radius for 3D variability" )
    parser.add_option(
        "--npad",
        type="int",
        default=2,
        help=
        "Number of time to pad the original images.(Default is 2 times padding)"
    )
    parser.add_option("--sym",
                      type="string",
                      default="c1",
                      help="Symmetry. (Default is no symmetry)")
    parser.add_option(
        "--fl",
        type="float",
        default=0.0,
        help=
        "Low pass filter cutoff in absolute frequency (0.0 - 0.5) and is applied to decimated images. (Default - no filtration)"
    )
    parser.add_option(
        "--aa",
        type="float",
        default=0.02,
        help=
        "Fall off of the filter. Use default value if user has no clue about falloff (Default value is 0.02)"
    )
    parser.add_option("--CTF",
                      action="store_true",
                      default=False,
                      help="Use CFT correction.(Default is no CTF correction)")
    #parser.add_option("--MPI" , 		action="store_true",	default=False,				help="use MPI version")
    #parser.add_option("--radiuspca", 	type="int"         ,	default=-1   ,				help="radius for PCA" )
    #parser.add_option("--iter", 		type="int"         ,	default=40   ,				help="maximum number of iterations (stop criterion of reconstruction process)" )
    #parser.add_option("--abs", 		type="float"   ,        default=0.0  ,				help="minimum average absolute change of voxels' values (stop criterion of reconstruction process)" )
    #parser.add_option("--squ", 		type="float"   ,	    default=0.0  ,				help="minimum average squared change of voxels' values (stop criterion of reconstruction process)" )
    parser.add_option(
        "--VAR",
        action="store_true",
        default=False,
        help="Stack of input consists of 2D variances (Default False)")
    parser.add_option(
        "--decimate",
        type="float",
        default=0.25,
        help="Image decimate rate, a number less than 1. (Default is 0.25)")
    parser.add_option(
        "--window",
        type="int",
        default=0,
        help=
        "Target image size relative to original image size. (Default value is zero.)"
    )
    #parser.add_option("--SND",			action="store_true",	default=False,				help="compute squared normalized differences (Default False)")
    #parser.add_option("--nvec",			type="int"         ,	default=0    ,				help="Number of eigenvectors, (Default = 0 meaning no PCA calculated)")
    parser.add_option(
        "--symmetrize",
        action="store_true",
        default=False,
        help="Prepare input stack for handling symmetry (Default False)")
    parser.add_option("--overhead",
                      type="float",
                      default=0.5,
                      help="python overhead per CPU.")

    (options, args) = parser.parse_args()
    #####
    from mpi import mpi_comm_rank, mpi_comm_size, mpi_recv, MPI_COMM_WORLD
    from mpi import mpi_barrier, mpi_reduce, mpi_bcast, mpi_send, MPI_FLOAT, MPI_SUM, MPI_INT, MPI_MAX
    #from mpi import *
    from sp_applications import MPI_start_end
    from sp_reconstruction import recons3d_em, recons3d_em_MPI
    from sp_reconstruction import recons3d_4nn_MPI, recons3d_4nn_ctf_MPI
    from sp_utilities import print_begin_msg, print_end_msg, print_msg
    from sp_utilities import read_text_row, get_image, get_im, wrap_mpi_send, wrap_mpi_recv
    from sp_utilities import bcast_EMData_to_all, bcast_number_to_all
    from sp_utilities import get_symt

    #  This is code for handling symmetries by the above program.  To be incorporated. PAP 01/27/2015

    from EMAN2db import db_open_dict

    # Set up global variables related to bdb cache
    if sp_global_def.CACHE_DISABLE:
        from sp_utilities import disable_bdb_cache
        disable_bdb_cache()

    # Set up global variables related to ERROR function
    sp_global_def.BATCH = True

    # detect if program is running under MPI
    RUNNING_UNDER_MPI = "OMPI_COMM_WORLD_SIZE" in os.environ
    if RUNNING_UNDER_MPI: sp_global_def.MPI = True
    if options.output_dir == "./":
        current_output_dir = os.path.abspath(options.output_dir)
    else:
        current_output_dir = options.output_dir
    if options.symmetrize:

        if mpi.mpi_comm_size(MPI_COMM_WORLD) > 1:
            ERROR("Cannot use more than one CPU for symmetry preparation")

        if not os.path.exists(current_output_dir):
            os.makedirs(current_output_dir)
            sp_global_def.write_command(current_output_dir)

        from sp_logger import Logger, BaseLogger_Files
        if os.path.exists(os.path.join(current_output_dir, "log.txt")):
            os.remove(os.path.join(current_output_dir, "log.txt"))
        log_main = Logger(BaseLogger_Files())
        log_main.prefix = os.path.join(current_output_dir, "./")

        instack = args[0]
        sym = options.sym.lower()
        if (sym == "c1"):
            ERROR("There is no need to symmetrize stack for C1 symmetry")

        line = ""
        for a in sys.argv:
            line += " " + a
        log_main.add(line)

        if (instack[:4] != "bdb:"):
            #if output_dir =="./": stack = "bdb:data"
            stack = "bdb:" + current_output_dir + "/data"
            delete_bdb(stack)
            junk = cmdexecute("sp_cpy.py  " + instack + "  " + stack)
        else:
            stack = instack

        qt = EMUtil.get_all_attributes(stack, 'xform.projection')

        na = len(qt)
        ts = get_symt(sym)
        ks = len(ts)
        angsa = [None] * na

        for k in range(ks):
            #Qfile = "Q%1d"%k
            #if options.output_dir!="./": Qfile = os.path.join(options.output_dir,"Q%1d"%k)
            Qfile = os.path.join(current_output_dir, "Q%1d" % k)
            #delete_bdb("bdb:Q%1d"%k)
            delete_bdb("bdb:" + Qfile)
            #junk = cmdexecute("e2bdb.py  "+stack+"  --makevstack=bdb:Q%1d"%k)
            junk = cmdexecute("e2bdb.py  " + stack + "  --makevstack=bdb:" +
                              Qfile)
            #DB = db_open_dict("bdb:Q%1d"%k)
            DB = db_open_dict("bdb:" + Qfile)
            for i in range(na):
                ut = qt[i] * ts[k]
                DB.set_attr(i, "xform.projection", ut)
                #bt = ut.get_params("spider")
                #angsa[i] = [round(bt["phi"],3)%360.0, round(bt["theta"],3)%360.0, bt["psi"], -bt["tx"], -bt["ty"]]
            #write_text_row(angsa, 'ptsma%1d.txt'%k)
            #junk = cmdexecute("e2bdb.py  "+stack+"  --makevstack=bdb:Q%1d"%k)
            #junk = cmdexecute("sxheader.py  bdb:Q%1d  --params=xform.projection  --import=ptsma%1d.txt"%(k,k))
            DB.close()
        #if options.output_dir =="./": delete_bdb("bdb:sdata")
        delete_bdb("bdb:" + current_output_dir + "/" + "sdata")
        #junk = cmdexecute("e2bdb.py . --makevstack=bdb:sdata --filt=Q")
        sdata = "bdb:" + current_output_dir + "/" + "sdata"
        sxprint(sdata)
        junk = cmdexecute("e2bdb.py   " + current_output_dir +
                          "  --makevstack=" + sdata + " --filt=Q")
        #junk = cmdexecute("ls  EMAN2DB/sdata*")
        #a = get_im("bdb:sdata")
        a = get_im(sdata)
        a.set_attr("variabilitysymmetry", sym)
        #a.write_image("bdb:sdata")
        a.write_image(sdata)

    else:

        from sp_fundamentals import window2d
        myid = mpi_comm_rank(MPI_COMM_WORLD)
        number_of_proc = mpi_comm_size(MPI_COMM_WORLD)
        main_node = 0
        shared_comm = mpi_comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED,
                                          0, MPI_INFO_NULL)
        myid_on_node = mpi_comm_rank(shared_comm)
        no_of_processes_per_group = mpi_comm_size(shared_comm)
        masters_from_groups_vs_everything_else_comm = mpi_comm_split(
            MPI_COMM_WORLD, main_node == myid_on_node, myid_on_node)
        color, no_of_groups, balanced_processor_load_on_nodes = get_colors_and_subsets(main_node, MPI_COMM_WORLD, myid, \
            shared_comm, myid_on_node, masters_from_groups_vs_everything_else_comm)
        overhead_loading = options.overhead * number_of_proc
        #memory_per_node  = options.memory_per_node
        #if memory_per_node == -1.: memory_per_node = 2.*no_of_processes_per_group
        keepgoing = 1

        current_window = options.window
        current_decimate = options.decimate

        if len(args) == 1: stack = args[0]
        else:
            sxprint("Usage: " + usage)
            sxprint("Please run \'" + progname + " -h\' for detailed options")
            ERROR(
                "Invalid number of parameters used. Please see usage information above."
            )
            return

        t0 = time()
        # obsolete flags
        options.MPI = True
        #options.nvec = 0
        options.radiuspca = -1
        options.iter = 40
        options.abs = 0.0
        options.squ = 0.0

        if options.fl > 0.0 and options.aa == 0.0:
            ERROR("Fall off has to be given for the low-pass filter",
                  myid=myid)

        #if options.VAR and options.SND:
        #	ERROR( "Only one of var and SND can be set!",myid=myid )

        if options.VAR and (options.ave2D or options.ave3D or options.var2D):
            ERROR(
                "When VAR is set, the program cannot output ave2D, ave3D or var2D",
                myid=myid)

        #if options.SND and (options.ave2D or options.ave3D):
        #	ERROR( "When SND is set, the program cannot output ave2D or ave3D", myid=myid )

        #if options.nvec > 0 :
        #	ERROR( "PCA option not implemented", myid=myid )

        #if options.nvec > 0 and options.ave3D == None:
        #	ERROR( "When doing PCA analysis, one must set ave3D", myid=myid )

        if current_decimate > 1.0 or current_decimate < 0.0:
            ERROR("Decimate rate should be a value between 0.0 and 1.0",
                  myid=myid)

        if current_window < 0.0:
            ERROR("Target window size should be always larger than zero",
                  myid=myid)

        if myid == main_node:
            img = get_image(stack, 0)
            nx = img.get_xsize()
            ny = img.get_ysize()
            if (min(nx, ny) < current_window): keepgoing = 0
        keepgoing = bcast_number_to_all(keepgoing, main_node, MPI_COMM_WORLD)
        if keepgoing == 0:
            ERROR(
                "The target window size cannot be larger than the size of decimated image",
                myid=myid)

        import string
        options.sym = options.sym.lower()
        # if global_def.CACHE_DISABLE:
        # 	from utilities import disable_bdb_cache
        # 	disable_bdb_cache()
        # global_def.BATCH = True

        if myid == main_node:
            if not os.path.exists(current_output_dir):
                os.makedirs(current_output_dir
                            )  # Never delete output_dir in the program!

        img_per_grp = options.img_per_grp
        #nvec        = options.nvec
        radiuspca = options.radiuspca
        from sp_logger import Logger, BaseLogger_Files
        #if os.path.exists(os.path.join(options.output_dir, "log.txt")): os.remove(os.path.join(options.output_dir, "log.txt"))
        log_main = Logger(BaseLogger_Files())
        log_main.prefix = os.path.join(current_output_dir, "./")

        if myid == main_node:
            line = ""
            for a in sys.argv:
                line += " " + a
            log_main.add(line)
            log_main.add("-------->>>Settings given by all options<<<-------")
            log_main.add("Symmetry             : %s" % options.sym)
            log_main.add("Input stack          : %s" % stack)
            log_main.add("Output_dir           : %s" % current_output_dir)

            if options.ave3D:
                log_main.add("Ave3d                : %s" % options.ave3D)
            if options.var3D:
                log_main.add("Var3d                : %s" % options.var3D)
            if options.ave2D:
                log_main.add("Ave2D                : %s" % options.ave2D)
            if options.var2D:
                log_main.add("Var2D                : %s" % options.var2D)
            if options.VAR: log_main.add("VAR                  : True")
            else: log_main.add("VAR                  : False")
            if options.CTF: log_main.add("CTF correction       : True  ")
            else: log_main.add("CTF correction       : False ")

            log_main.add("Image per group      : %5d" % options.img_per_grp)
            log_main.add("Image decimate rate  : %4.3f" % current_decimate)
            log_main.add("Low pass filter      : %4.3f" % options.fl)
            current_fl = options.fl
            if current_fl == 0.0: current_fl = 0.5
            log_main.add(
                "Current low pass filter is equivalent to cutoff frequency %4.3f for original image size"
                % round((current_fl * current_decimate), 3))
            log_main.add("Window size          : %5d " % current_window)
            log_main.add("sx3dvariability begins")

        symbaselen = 0
        if myid == main_node:
            nima = EMUtil.get_image_count(stack)
            img = get_image(stack)
            nx = img.get_xsize()
            ny = img.get_ysize()
            nnxo = nx
            nnyo = ny
            if options.sym != "c1":
                imgdata = get_im(stack)
                try:
                    i = imgdata.get_attr("variabilitysymmetry").lower()
                    if (i != options.sym):
                        ERROR(
                            "The symmetry provided does not agree with the symmetry of the input stack",
                            myid=myid)
                except:
                    ERROR(
                        "Input stack is not prepared for symmetry, please follow instructions",
                        myid=myid)
                from sp_utilities import get_symt
                i = len(get_symt(options.sym))
                if ((nima / i) * i != nima):
                    ERROR(
                        "The length of the input stack is incorrect for symmetry processing",
                        myid=myid)
                symbaselen = nima / i
            else:
                symbaselen = nima
        else:
            nima = 0
            nx = 0
            ny = 0
            nnxo = 0
            nnyo = 0
        nima = bcast_number_to_all(nima)
        nx = bcast_number_to_all(nx)
        ny = bcast_number_to_all(ny)
        nnxo = bcast_number_to_all(nnxo)
        nnyo = bcast_number_to_all(nnyo)
        if current_window > max(nx, ny):
            ERROR("Window size is larger than the original image size")

        if current_decimate == 1.:
            if current_window != 0:
                nx = current_window
                ny = current_window
        else:
            if current_window == 0:
                nx = int(nx * current_decimate + 0.5)
                ny = int(ny * current_decimate + 0.5)
            else:
                nx = int(current_window * current_decimate + 0.5)
                ny = nx
        symbaselen = bcast_number_to_all(symbaselen)

        # check FFT prime number
        from sp_fundamentals import smallprime
        is_fft_friendly = (nx == smallprime(nx))

        if not is_fft_friendly:
            if myid == main_node:
                log_main.add(
                    "The target image size is not a product of small prime numbers"
                )
                log_main.add("Program adjusts the input settings!")
            ### two cases
            if current_decimate == 1.:
                nx = smallprime(nx)
                ny = nx
                current_window = nx  # update
                if myid == main_node:
                    log_main.add("The window size is updated to %d." %
                                 current_window)
            else:
                if current_window == 0:
                    nx = smallprime(int(nx * current_decimate + 0.5))
                    current_decimate = float(nx) / nnxo
                    ny = nx
                    if (myid == main_node):
                        log_main.add("The decimate rate is updated to %f." %
                                     current_decimate)
                else:
                    nx = smallprime(
                        int(current_window * current_decimate + 0.5))
                    ny = nx
                    current_window = int(nx / current_decimate + 0.5)
                    if (myid == main_node):
                        log_main.add("The window size is updated to %d." %
                                     current_window)

        if myid == main_node:
            log_main.add("The target image size is %d" % nx)

        if radiuspca == -1: radiuspca = nx / 2 - 2
        if myid == main_node:
            log_main.add("%-70s:  %d\n" % ("Number of projection", nima))
        img_begin, img_end = MPI_start_end(nima, number_of_proc, myid)
        """
		if options.SND:
			from sp_projection		import prep_vol, prgs
			from sp_statistics		import im_diff
			from sp_utilities		import get_im, model_circle, get_params_proj, set_params_proj
			from sp_utilities		import get_ctf, generate_ctf
			from sp_filter			import filt_ctf
		
			imgdata = EMData.read_images(stack, range(img_begin, img_end))

			if options.CTF:
				vol = recons3d_4nn_ctf_MPI(myid, imgdata, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1)
			else:
				vol = recons3d_4nn_MPI(myid, imgdata, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1)

			bcast_EMData_to_all(vol, myid)
			volft, kb = prep_vol(vol)

			mask = model_circle(nx/2-2, nx, ny)
			varList = []
			for i in xrange(img_begin, img_end):
				phi, theta, psi, s2x, s2y = get_params_proj(imgdata[i-img_begin])
				ref_prj = prgs(volft, kb, [phi, theta, psi, -s2x, -s2y])
				if options.CTF:
					ctf_params = get_ctf(imgdata[i-img_begin])
					ref_prj = filt_ctf(ref_prj, generate_ctf(ctf_params))
				diff, A, B = im_diff(ref_prj, imgdata[i-img_begin], mask)
				diff2 = diff*diff
				set_params_proj(diff2, [phi, theta, psi, s2x, s2y])
				varList.append(diff2)
			mpi_barrier(MPI_COMM_WORLD)
		"""

        if options.VAR:  # 2D variance images have no shifts
            #varList   = EMData.read_images(stack, range(img_begin, img_end))
            from EMAN2 import Region
            for index_of_particle in range(img_begin, img_end):
                image = get_im(stack, index_of_proj)
                if current_window > 0:
                    varList.append(
                        fdecimate(
                            window2d(image, current_window, current_window),
                            nx, ny))
                else:
                    varList.append(fdecimate(image, nx, ny))

        else:
            from sp_utilities import bcast_number_to_all, bcast_list_to_all, send_EMData, recv_EMData
            from sp_utilities import set_params_proj, get_params_proj, params_3D_2D, get_params2D, set_params2D, compose_transform2
            from sp_utilities import model_blank, nearest_proj, model_circle, write_text_row, wrap_mpi_gatherv
            from sp_applications import pca
            from sp_statistics import avgvar, avgvar_ctf, ccc
            from sp_filter import filt_tanl
            from sp_morphology import threshold, square_root
            from sp_projection import project, prep_vol, prgs
            from sets import Set
            from sp_utilities import wrap_mpi_recv, wrap_mpi_bcast, wrap_mpi_send
            import numpy as np
            if myid == main_node:
                t1 = time()
                proj_angles = []
                aveList = []
                tab = EMUtil.get_all_attributes(stack, 'xform.projection')
                for i in range(nima):
                    t = tab[i].get_params('spider')
                    phi = t['phi']
                    theta = t['theta']
                    psi = t['psi']
                    x = theta
                    if x > 90.0: x = 180.0 - x
                    x = x * 10000 + psi
                    proj_angles.append([x, t['phi'], t['theta'], t['psi'], i])
                t2 = time()
                log_main.add(
                    "%-70s:  %d\n" %
                    ("Number of neighboring projections", img_per_grp))
                log_main.add("...... Finding neighboring projections\n")
                log_main.add("Number of images per group: %d" % img_per_grp)
                log_main.add("Now grouping projections")
                proj_angles.sort()
                proj_angles_list = np.full((nima, 4), 0.0, dtype=np.float32)
                for i in range(nima):
                    proj_angles_list[i][0] = proj_angles[i][1]
                    proj_angles_list[i][1] = proj_angles[i][2]
                    proj_angles_list[i][2] = proj_angles[i][3]
                    proj_angles_list[i][3] = proj_angles[i][4]
            else:
                proj_angles_list = 0
            proj_angles_list = wrap_mpi_bcast(proj_angles_list, main_node,
                                              MPI_COMM_WORLD)
            proj_angles = []
            for i in range(nima):
                proj_angles.append([
                    proj_angles_list[i][0], proj_angles_list[i][1],
                    proj_angles_list[i][2],
                    int(proj_angles_list[i][3])
                ])
            del proj_angles_list
            proj_list, mirror_list = nearest_proj(proj_angles, img_per_grp,
                                                  range(img_begin, img_end))
            all_proj = Set()
            for im in proj_list:
                for jm in im:
                    all_proj.add(proj_angles[jm][3])
            all_proj = list(all_proj)
            index = {}
            for i in range(len(all_proj)):
                index[all_proj[i]] = i
            mpi_barrier(MPI_COMM_WORLD)
            if myid == main_node:
                log_main.add("%-70s:  %.2f\n" %
                             ("Finding neighboring projections lasted [s]",
                              time() - t2))
                log_main.add("%-70s:  %d\n" %
                             ("Number of groups processed on the main node",
                              len(proj_list)))
                log_main.add("Grouping projections took:  %12.1f [m]" %
                             ((time() - t2) / 60.))
                log_main.add("Number of groups on main node: ", len(proj_list))
            mpi_barrier(MPI_COMM_WORLD)

            if myid == main_node:
                log_main.add("...... Calculating the stack of 2D variances \n")
            # Memory estimation. There are two memory consumption peaks
            # peak 1. Compute ave, var;
            # peak 2. Var volume reconstruction;
            # proj_params = [0.0]*(nima*5)
            aveList = []
            varList = []
            #if nvec > 0: eigList = [[] for i in range(nvec)]
            dnumber = len(
                all_proj)  # all neighborhood set for assigned to myid
            pnumber = len(proj_list) * 2. + img_per_grp  # aveList and varList
            tnumber = dnumber + pnumber
            vol_size2 = nx**3 * 4. * 8 / 1.e9
            vol_size1 = 2. * nnxo**3 * 4. * 8 / 1.e9
            proj_size = nnxo * nnyo * len(
                proj_list) * 4. * 2. / 1.e9  # both aveList and varList
            orig_data_size = nnxo * nnyo * 4. * tnumber / 1.e9
            reduced_data_size = nx * nx * 4. * tnumber / 1.e9
            full_data = np.full((number_of_proc, 2), -1., dtype=np.float16)
            full_data[myid] = orig_data_size, reduced_data_size
            if myid != main_node:
                wrap_mpi_send(full_data, main_node, MPI_COMM_WORLD)
            if myid == main_node:
                for iproc in range(number_of_proc):
                    if iproc != main_node:
                        dummy = wrap_mpi_recv(iproc, MPI_COMM_WORLD)
                        full_data[np.where(dummy > -1)] = dummy[np.where(
                            dummy > -1)]
                del dummy
            mpi_barrier(MPI_COMM_WORLD)
            full_data = wrap_mpi_bcast(full_data, main_node, MPI_COMM_WORLD)
            # find the CPU with heaviest load
            minindx = np.argsort(full_data, 0)
            heavy_load_myid = minindx[-1][1]
            total_mem = sum(full_data)
            if myid == main_node:
                if current_window == 0:
                    log_main.add(
                        "Nx:   current image size = %d. Decimated by %f from %d"
                        % (nx, current_decimate, nnxo))
                else:
                    log_main.add(
                        "Nx:   current image size = %d. Windowed to %d, and decimated by %f from %d"
                        % (nx, current_window, current_decimate, nnxo))
                log_main.add("Nproj:       number of particle images.")
                log_main.add("Navg:        number of 2D average images.")
                log_main.add("Nvar:        number of 2D variance images.")
                log_main.add(
                    "Img_per_grp: user defined image per group for averaging = %d"
                    % img_per_grp)
                log_main.add(
                    "Overhead:    total python overhead memory consumption   = %f"
                    % overhead_loading)
                log_main.add("Total memory) = 4.0*nx^2*(nproj + navg +nvar+ img_per_grp)/1.0e9 + overhead: %12.3f [GB]"%\
                   (total_mem[1] + overhead_loading))
            del full_data
            mpi_barrier(MPI_COMM_WORLD)
            if myid == heavy_load_myid:
                log_main.add(
                    "Begin reading and preprocessing images on processor. Wait... "
                )
                ttt = time()
            #imgdata = EMData.read_images(stack, all_proj)
            imgdata = [None for im in range(len(all_proj))]
            for index_of_proj in range(len(all_proj)):
                #image = get_im(stack, all_proj[index_of_proj])
                if (current_window > 0):
                    imgdata[index_of_proj] = fdecimate(
                        window2d(get_im(stack, all_proj[index_of_proj]),
                                 current_window, current_window), nx, ny)
                else:
                    imgdata[index_of_proj] = fdecimate(
                        get_im(stack, all_proj[index_of_proj]), nx, ny)

                if (current_decimate > 0.0 and options.CTF):
                    ctf = imgdata[index_of_proj].get_attr("ctf")
                    ctf.apix = ctf.apix / current_decimate
                    imgdata[index_of_proj].set_attr("ctf", ctf)

                if myid == heavy_load_myid and index_of_proj % 100 == 0:
                    log_main.add(" ...... %6.2f%% " %
                                 (index_of_proj / float(len(all_proj)) * 100.))
            mpi_barrier(MPI_COMM_WORLD)
            if myid == heavy_load_myid:
                log_main.add("All_proj preprocessing cost %7.2f m" %
                             ((time() - ttt) / 60.))
                log_main.add("Wait untill reading on all CPUs done...")
            '''	
			imgdata2 = EMData.read_images(stack, range(img_begin, img_end))
			if options.fl > 0.0:
				for k in xrange(len(imgdata2)):
					imgdata2[k] = filt_tanl(imgdata2[k], options.fl, options.aa)
			if options.CTF:
				vol = recons3d_4nn_ctf_MPI(myid, imgdata2, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1)
			else:
				vol = recons3d_4nn_MPI(myid, imgdata2, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1)
			if myid == main_node:
				vol.write_image("vol_ctf.hdf")
				print_msg("Writing to the disk volume reconstructed from averages as		:  %s\n"%("vol_ctf.hdf"))
			del vol, imgdata2
			mpi_barrier(MPI_COMM_WORLD)
			'''
            from sp_applications import prepare_2d_forPCA
            from sp_utilities import model_blank
            from EMAN2 import Transform
            if not options.no_norm:
                mask = model_circle(nx / 2 - 2, nx, nx)
            if options.CTF:
                from sp_utilities import pad
                from sp_filter import filt_ctf
            from sp_filter import filt_tanl
            if myid == heavy_load_myid:
                log_main.add("Start computing 2D aveList and varList. Wait...")
                ttt = time()
            inner = nx // 2 - 4
            outer = inner + 2
            xform_proj_for_2D = [None for i in range(len(proj_list))]
            for i in range(len(proj_list)):
                ki = proj_angles[proj_list[i][0]][3]
                if ki >= symbaselen: continue
                mi = index[ki]
                dpar = Util.get_transform_params(imgdata[mi],
                                                 "xform.projection", "spider")
                phiM, thetaM, psiM, s2xM, s2yM = dpar["phi"], dpar[
                    "theta"], dpar[
                        "psi"], -dpar["tx"] * current_decimate, -dpar[
                            "ty"] * current_decimate
                grp_imgdata = []
                for j in range(img_per_grp):
                    mj = index[proj_angles[proj_list[i][j]][3]]
                    cpar = Util.get_transform_params(imgdata[mj],
                                                     "xform.projection",
                                                     "spider")
                    alpha, sx, sy, mirror = params_3D_2D_NEW(
                        cpar["phi"], cpar["theta"], cpar["psi"],
                        -cpar["tx"] * current_decimate,
                        -cpar["ty"] * current_decimate, mirror_list[i][j])
                    if thetaM <= 90:
                        if mirror == 0:
                            alpha, sx, sy, scale = compose_transform2(
                                alpha, sx, sy, 1.0, phiM - cpar["phi"], 0.0,
                                0.0, 1.0)
                        else:
                            alpha, sx, sy, scale = compose_transform2(
                                alpha, sx, sy, 1.0, 180 - (phiM - cpar["phi"]),
                                0.0, 0.0, 1.0)
                    else:
                        if mirror == 0:
                            alpha, sx, sy, scale = compose_transform2(
                                alpha, sx, sy, 1.0, -(phiM - cpar["phi"]), 0.0,
                                0.0, 1.0)
                        else:
                            alpha, sx, sy, scale = compose_transform2(
                                alpha, sx, sy, 1.0,
                                -(180 - (phiM - cpar["phi"])), 0.0, 0.0, 1.0)
                    imgdata[mj].set_attr(
                        "xform.align2d",
                        Transform({
                            "type": "2D",
                            "alpha": alpha,
                            "tx": sx,
                            "ty": sy,
                            "mirror": mirror,
                            "scale": 1.0
                        }))
                    grp_imgdata.append(imgdata[mj])
                if not options.no_norm:
                    for k in range(img_per_grp):
                        ave, std, minn, maxx = Util.infomask(
                            grp_imgdata[k], mask, False)
                        grp_imgdata[k] -= ave
                        grp_imgdata[k] /= std
                if options.fl > 0.0:
                    for k in range(img_per_grp):
                        grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl,
                                                   options.aa)

                #  Because of background issues, only linear option works.
                if options.CTF:
                    ave, var = aves_wiener(grp_imgdata,
                                           SNR=1.0e5,
                                           interpolation_method="linear")
                else:
                    ave, var = ave_var(grp_imgdata)
                # Switch to std dev
                # threshold is not really needed,it is just in case due to numerical accuracy something turns out negative.
                var = square_root(threshold(var))

                set_params_proj(ave, [phiM, thetaM, 0.0, 0.0, 0.0])
                set_params_proj(var, [phiM, thetaM, 0.0, 0.0, 0.0])

                aveList.append(ave)
                varList.append(var)
                xform_proj_for_2D[i] = [phiM, thetaM, 0.0, 0.0, 0.0]
                '''
				if nvec > 0:
					eig = pca(input_stacks=grp_imgdata, subavg="", mask_radius=radiuspca, nvec=nvec, incore=True, shuffle=False, genbuf=True)
					for k in range(nvec):
						set_params_proj(eig[k], [phiM, thetaM, 0.0, 0.0, 0.0])
						eigList[k].append(eig[k])
					"""
					if myid == 0 and i == 0:
						for k in xrange(nvec):
							eig[k].write_image("eig.hdf", k)
					"""
				'''
                if (myid == heavy_load_myid) and (i % 100 == 0):
                    log_main.add(" ......%6.2f%%  " %
                                 (i / float(len(proj_list)) * 100.))
            del imgdata, grp_imgdata, cpar, dpar, all_proj, proj_angles, index
            if not options.no_norm: del mask
            if myid == main_node: del tab
            #  At this point, all averages and variances are computed
            mpi_barrier(MPI_COMM_WORLD)

            if (myid == heavy_load_myid):
                log_main.add("Computing aveList and varList took %12.1f [m]" %
                             ((time() - ttt) / 60.))

            xform_proj_for_2D = wrap_mpi_gatherv(xform_proj_for_2D, main_node,
                                                 MPI_COMM_WORLD)
            if (myid == main_node):
                write_text_row([str(entry) for entry in xform_proj_for_2D],
                               os.path.join(current_output_dir, "params.txt"))
            del xform_proj_for_2D
            mpi_barrier(MPI_COMM_WORLD)
            if options.ave2D:
                from sp_fundamentals import fpol
                from sp_applications import header
                if myid == main_node:
                    log_main.add("Compute ave2D ... ")
                    km = 0
                    for i in range(number_of_proc):
                        if i == main_node:
                            for im in range(len(aveList)):
                                aveList[im].write_image(
                                    os.path.join(current_output_dir,
                                                 options.ave2D), km)
                                km += 1
                        else:
                            nl = mpi_recv(1, MPI_INT, i,
                                          SPARX_MPI_TAG_UNIVERSAL,
                                          MPI_COMM_WORLD)
                            nl = int(nl[0])
                            for im in range(nl):
                                ave = recv_EMData(i, im + i + 70000)
                                """
								nm = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
								nm = int(nm[0])
								members = mpi_recv(nm, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
								ave.set_attr('members', map(int, members))
								members = mpi_recv(nm, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
								ave.set_attr('pix_err', map(float, members))
								members = mpi_recv(3, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
								ave.set_attr('refprojdir', map(float, members))
								"""
                                tmpvol = fpol(ave, nx, nx, 1)
                                tmpvol.write_image(
                                    os.path.join(current_output_dir,
                                                 options.ave2D), km)
                                km += 1
                else:
                    mpi_send(len(aveList), 1, MPI_INT, main_node,
                             SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
                    for im in range(len(aveList)):
                        send_EMData(aveList[im], main_node, im + myid + 70000)
                        """
						members = aveList[im].get_attr('members')
						mpi_send(len(members), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
						mpi_send(members, len(members), MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
						members = aveList[im].get_attr('pix_err')
						mpi_send(members, len(members), MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
						try:
							members = aveList[im].get_attr('refprojdir')
							mpi_send(members, 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
						except:
							mpi_send([-999.0,-999.0,-999.0], 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
						"""
                if myid == main_node:
                    header(os.path.join(current_output_dir, options.ave2D),
                           params='xform.projection',
                           fimport=os.path.join(current_output_dir,
                                                "params.txt"))
                mpi_barrier(MPI_COMM_WORLD)
            if options.ave3D:
                from sp_fundamentals import fpol
                t5 = time()
                if myid == main_node: log_main.add("Reconstruct ave3D ... ")
                ave3D = recons3d_4nn_MPI(myid,
                                         aveList,
                                         symmetry=options.sym,
                                         npad=options.npad)
                bcast_EMData_to_all(ave3D, myid)
                if myid == main_node:
                    if current_decimate != 1.0:
                        ave3D = resample(ave3D, 1. / current_decimate)
                    ave3D = fpol(ave3D, nnxo, nnxo,
                                 nnxo)  # always to the orignal image size
                    set_pixel_size(ave3D, 1.0)
                    ave3D.write_image(
                        os.path.join(current_output_dir, options.ave3D))
                    log_main.add("Ave3D reconstruction took %12.1f [m]" %
                                 ((time() - t5) / 60.0))
                    log_main.add("%-70s:  %s\n" %
                                 ("The reconstructed ave3D is saved as ",
                                  options.ave3D))

            mpi_barrier(MPI_COMM_WORLD)
            del ave, var, proj_list, stack, alpha, sx, sy, mirror, aveList
            '''
			if nvec > 0:
				for k in range(nvec):
					if myid == main_node:log_main.add("Reconstruction eigenvolumes", k)
					cont = True
					ITER = 0
					mask2d = model_circle(radiuspca, nx, nx)
					while cont:
						#print "On node %d, iteration %d"%(myid, ITER)
						eig3D = recons3d_4nn_MPI(myid, eigList[k], symmetry=options.sym, npad=options.npad)
						bcast_EMData_to_all(eig3D, myid, main_node)
						if options.fl > 0.0:
							eig3D = filt_tanl(eig3D, options.fl, options.aa)
						if myid == main_node:
							eig3D.write_image(os.path.join(options.outpout_dir, "eig3d_%03d.hdf"%(k, ITER)))
						Util.mul_img( eig3D, model_circle(radiuspca, nx, nx, nx) )
						eig3Df, kb = prep_vol(eig3D)
						del eig3D
						cont = False
						icont = 0
						for l in range(len(eigList[k])):
							phi, theta, psi, s2x, s2y = get_params_proj(eigList[k][l])
							proj = prgs(eig3Df, kb, [phi, theta, psi, s2x, s2y])
							cl = ccc(proj, eigList[k][l], mask2d)
							if cl < 0.0:
								icont += 1
								cont = True
								eigList[k][l] *= -1.0
						u = int(cont)
						u = mpi_reduce([u], 1, MPI_INT, MPI_MAX, main_node, MPI_COMM_WORLD)
						icont = mpi_reduce([icont], 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD)

						if myid == main_node:
							u = int(u[0])
							log_main.add(" Eigenvector: ",k," number changed ",int(icont[0]))
						else: u = 0
						u = bcast_number_to_all(u, main_node)
						cont = bool(u)
						ITER += 1

					del eig3Df, kb
					mpi_barrier(MPI_COMM_WORLD)
				del eigList, mask2d
			'''
            if options.ave3D: del ave3D
            if options.var2D:
                from sp_fundamentals import fpol
                from sp_applications import header
                if myid == main_node:
                    log_main.add("Compute var2D...")
                    km = 0
                    for i in range(number_of_proc):
                        if i == main_node:
                            for im in range(len(varList)):
                                tmpvol = fpol(varList[im], nx, nx, 1)
                                tmpvol.write_image(
                                    os.path.join(current_output_dir,
                                                 options.var2D), km)
                                km += 1
                        else:
                            nl = mpi_recv(1, MPI_INT, i,
                                          SPARX_MPI_TAG_UNIVERSAL,
                                          MPI_COMM_WORLD)
                            nl = int(nl[0])
                            for im in range(nl):
                                ave = recv_EMData(i, im + i + 70000)
                                tmpvol = fpol(ave, nx, nx, 1)
                                tmpvol.write_image(
                                    os.path.join(current_output_dir,
                                                 options.var2D), km)
                                km += 1
                else:
                    mpi_send(len(varList), 1, MPI_INT, main_node,
                             SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
                    for im in range(len(varList)):
                        send_EMData(varList[im], main_node, im + myid +
                                    70000)  #  What with the attributes??
                mpi_barrier(MPI_COMM_WORLD)
                if myid == main_node:
                    from sp_applications import header
                    header(os.path.join(current_output_dir, options.var2D),
                           params='xform.projection',
                           fimport=os.path.join(current_output_dir,
                                                "params.txt"))
                mpi_barrier(MPI_COMM_WORLD)
        if options.var3D:
            if myid == main_node: log_main.add("Reconstruct var3D ...")
            t6 = time()
            # radiusvar = options.radius
            # if( radiusvar < 0 ):  radiusvar = nx//2 -3
            res = recons3d_4nn_MPI(myid,
                                   varList,
                                   symmetry=options.sym,
                                   npad=options.npad)
            #res = recons3d_em_MPI(varList, vol_stack, options.iter, radiusvar, options.abs, True, options.sym, options.squ)
            if myid == main_node:
                from sp_fundamentals import fpol
                if current_decimate != 1.0:
                    res = resample(res, 1. / current_decimate)
                res = fpol(res, nnxo, nnxo, nnxo)
                set_pixel_size(res, 1.0)
                res.write_image(os.path.join(current_output_dir,
                                             options.var3D))
                log_main.add(
                    "%-70s:  %s\n" %
                    ("The reconstructed var3D is saved as ", options.var3D))
                log_main.add("Var3D reconstruction took %f12.1 [m]" %
                             ((time() - t6) / 60.0))
                log_main.add("Total computation time %f12.1 [m]" %
                             ((time() - t0) / 60.0))
                log_main.add("sx3dvariability finishes")

        if RUNNING_UNDER_MPI:
            sp_global_def.MPI = False

        sp_global_def.BATCH = False
Beispiel #3
0
def main():

    arglist = []
    for arg in sys.argv:
        arglist.append(arg)

    progname = os.path.basename(arglist[0])
    usage = progname + " prj_stack volume fsc_curve <mask> --CTF --snr=signal_noise_ratio --list=file --group=ID --sym=symmetry -verbose=(0|1) --MPI"
    parser = OptionParser(usage, version=SPARXVERSION)

    parser.add_option("--CTF",
                      action="store_true",
                      default=False,
                      help="perform ctf correction")
    parser.add_option("--snr",
                      type="float",
                      default=1.0,
                      help="Signal-to-Noise Ratio in the data")
    parser.add_option("--sym", type="string", default="c1", help="symmetry")
    parser.add_option(
        "--list",
        type="string",
        help="file with list of images to be used in the first column")
    parser.add_option(
        "--group",
        type="int",
        default=-1,
        help=
        "perform reconstruction using images for a given group number (group is attribute in the header)"
    )
    parser.add_option("--MPI",
                      action="store_true",
                      default=False,
                      help="use MPI version ")
    parser.add_option("--npad",
                      type="int",
                      default=2,
                      help="number of times padding (default 2)")
    parser.add_option("--verbose",
                      type="int",
                      default=0,
                      help="verbose level: 0 no, 1 yes")
    (options, args) = parser.parse_args(arglist[1:])

    if len(args) != 3 and len(args) != 4:
        sxprint("Usage: " + usage)
        ERROR(
            "Invalid number of parameters used. Please see usage information above."
        )
        return

    prj_stack = args[0]
    vol_stack = args[1]
    fsc_curve = args[2]

    if len(args) == 3:
        mask = None
    else:
        mask = get_image(args[3])

    if sp_global_def.CACHE_DISABLE:
        from sp_utilities import disable_bdb_cache
        disable_bdb_cache()

    if (options.list and options.group > -1):
        ERROR("Options group and list cannot be used together")
        return

    from sp_applications import recons3d_f

    sp_global_def.BATCH = True
    recons3d_f(prj_stack, vol_stack, fsc_curve, mask, options.CTF, options.snr,
               options.sym, options.list, options.group, options.npad,
               options.verbose, options.MPI)
    sp_global_def.BATCH = False
Beispiel #4
0
def main():
    def params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror):
        # the final ali2d parameters already combine shifts operation first and rotation operation second for parameters converted from 3D
        if mirror:
            m = 1
            alpha, sx, sy, scalen = sp_utilities.compose_transform2(
                0, s2x, s2y, 1.0, 540.0 - psi, 0, 0, 1.0)
        else:
            m = 0
            alpha, sx, sy, scalen = sp_utilities.compose_transform2(
                0, s2x, s2y, 1.0, 360.0 - psi, 0, 0, 1.0)
        return alpha, sx, sy, m

    progname = optparse.os.path.basename(sys.argv[0])
    usage = (
        progname +
        " prj_stack  --ave2D= --var2D=  --ave3D= --var3D= --img_per_grp= --fl=  --aa=   --sym=symmetry --CTF"
    )
    parser = optparse.OptionParser(usage, version=sp_global_def.SPARXVERSION)

    parser.add_option("--output_dir",
                      type="string",
                      default="./",
                      help="Output directory")
    parser.add_option(
        "--ave2D",
        type="string",
        default=False,
        help="Write to the disk a stack of 2D averages",
    )
    parser.add_option(
        "--var2D",
        type="string",
        default=False,
        help="Write to the disk a stack of 2D variances",
    )
    parser.add_option(
        "--ave3D",
        type="string",
        default=False,
        help="Write to the disk reconstructed 3D average",
    )
    parser.add_option(
        "--var3D",
        type="string",
        default=False,
        help="Compute 3D variability (time consuming!)",
    )
    parser.add_option(
        "--img_per_grp",
        type="int",
        default=100,
        help="Number of neighbouring projections.(Default is 100)",
    )
    parser.add_option(
        "--no_norm",
        action="store_true",
        default=False,
        help="Do not use normalization.(Default is to apply normalization)",
    )
    # parser.add_option("--radius", 	    type="int"         ,	default=-1   ,				help="radius for 3D variability" )
    parser.add_option(
        "--npad",
        type="int",
        default=2,
        help=
        "Number of time to pad the original images.(Default is 2 times padding)",
    )
    parser.add_option("--sym",
                      type="string",
                      default="c1",
                      help="Symmetry. (Default is no symmetry)")
    parser.add_option(
        "--fl",
        type="float",
        default=0.0,
        help=
        "Low pass filter cutoff in absolute frequency (0.0 - 0.5) and is applied to decimated images. (Default - no filtration)",
    )
    parser.add_option(
        "--aa",
        type="float",
        default=0.02,
        help=
        "Fall off of the filter. Use default value if user has no clue about falloff (Default value is 0.02)",
    )
    parser.add_option(
        "--CTF",
        action="store_true",
        default=False,
        help="Use CFT correction.(Default is no CTF correction)",
    )
    # parser.add_option("--MPI" , 		action="store_true",	default=False,				help="use MPI version")
    # parser.add_option("--radiuspca", 	type="int"         ,	default=-1   ,				help="radius for PCA" )
    # parser.add_option("--iter", 		type="int"         ,	default=40   ,				help="maximum number of iterations (stop criterion of reconstruction process)" )
    # parser.add_option("--abs", 		type="float"   ,        default=0.0  ,				help="minimum average absolute change of voxels' values (stop criterion of reconstruction process)" )
    # parser.add_option("--squ", 		type="float"   ,	    default=0.0  ,				help="minimum average squared change of voxels' values (stop criterion of reconstruction process)" )
    parser.add_option(
        "--VAR",
        action="store_true",
        default=False,
        help="Stack of input consists of 2D variances (Default False)",
    )
    parser.add_option(
        "--decimate",
        type="float",
        default=0.25,
        help="Image decimate rate, a number less than 1. (Default is 0.25)",
    )
    parser.add_option(
        "--window",
        type="int",
        default=0,
        help=
        "Target image size relative to original image size. (Default value is zero.)",
    )
    # parser.add_option("--SND",			action="store_true",	default=False,				help="compute squared normalized differences (Default False)")
    # parser.add_option("--nvec",			type="int"         ,	default=0    ,				help="Number of eigenvectors, (Default = 0 meaning no PCA calculated)")
    parser.add_option(
        "--symmetrize",
        action="store_true",
        default=False,
        help="Prepare input stack for handling symmetry (Default False)",
    )
    parser.add_option("--overhead",
                      type="float",
                      default=0.5,
                      help="python overhead per CPU.")

    (options, args) = parser.parse_args()
    #####
    # from mpi import *

    #  This is code for handling symmetries by the above program.  To be incorporated. PAP 01/27/2015

    # Set up global variables related to bdb cache
    if sp_global_def.CACHE_DISABLE:
        sp_utilities.disable_bdb_cache()

    # Set up global variables related to ERROR function
    sp_global_def.BATCH = True

    # detect if program is running under MPI
    RUNNING_UNDER_MPI = "OMPI_COMM_WORLD_SIZE" in optparse.os.environ
    if RUNNING_UNDER_MPI:
        sp_global_def.MPI = True
    if options.output_dir == "./":
        current_output_dir = optparse.os.path.abspath(options.output_dir)
    else:
        current_output_dir = options.output_dir
    if options.symmetrize:

        if mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) > 1:
            sp_global_def.ERROR(
                "Cannot use more than one CPU for symmetry preparation")

        if not optparse.os.path.exists(current_output_dir):
            optparse.os.makedirs(current_output_dir)
            sp_global_def.write_command(current_output_dir)

        if optparse.os.path.exists(
                optparse.os.path.join(current_output_dir, "log.txt")):
            optparse.os.remove(
                optparse.os.path.join(current_output_dir, "log.txt"))
        log_main = sp_logger.Logger(sp_logger.BaseLogger_Files())
        log_main.prefix = optparse.os.path.join(current_output_dir, "./")

        instack = args[0]
        sym = options.sym.lower()
        if sym == "c1":
            sp_global_def.ERROR(
                "There is no need to symmetrize stack for C1 symmetry")

        line = ""
        for a in sys.argv:
            line += " " + a
        log_main.add(line)

        if instack[:4] != "bdb:":
            # if output_dir =="./": stack = "bdb:data"
            stack = "bdb:" + current_output_dir + "/data"
            sp_utilities.delete_bdb(stack)
            junk = sp_utilities.cmdexecute("sp_cpy.py  " + instack + "  " +
                                           stack)
        else:
            stack = instack

        qt = EMAN2_cppwrap.EMUtil.get_all_attributes(stack, "xform.projection")

        na = len(qt)
        ts = sp_utilities.get_symt(sym)
        ks = len(ts)
        angsa = [None] * na

        for k in range(ks):
            # Qfile = "Q%1d"%k
            # if options.output_dir!="./": Qfile = os.path.join(options.output_dir,"Q%1d"%k)
            Qfile = optparse.os.path.join(current_output_dir, "Q%1d" % k)
            # delete_bdb("bdb:Q%1d"%k)
            sp_utilities.delete_bdb("bdb:" + Qfile)
            # junk = cmdexecute("e2bdb.py  "+stack+"  --makevstack=bdb:Q%1d"%k)
            junk = sp_utilities.cmdexecute("e2bdb.py  " + stack +
                                           "  --makevstack=bdb:" + Qfile)
            # DB = db_open_dict("bdb:Q%1d"%k)
            DB = EMAN2db.db_open_dict("bdb:" + Qfile)
            for i in range(na):
                ut = qt[i] * ts[k]
                DB.set_attr(i, "xform.projection", ut)
                # bt = ut.get_params("spider")
                # angsa[i] = [round(bt["phi"],3)%360.0, round(bt["theta"],3)%360.0, bt["psi"], -bt["tx"], -bt["ty"]]
            # write_text_row(angsa, 'ptsma%1d.txt'%k)
            # junk = cmdexecute("e2bdb.py  "+stack+"  --makevstack=bdb:Q%1d"%k)
            # junk = cmdexecute("sxheader.py  bdb:Q%1d  --params=xform.projection  --import=ptsma%1d.txt"%(k,k))
            DB.close()
        # if options.output_dir =="./": delete_bdb("bdb:sdata")
        sp_utilities.delete_bdb("bdb:" + current_output_dir + "/" + "sdata")
        # junk = cmdexecute("e2bdb.py . --makevstack=bdb:sdata --filt=Q")
        sdata = "bdb:" + current_output_dir + "/" + "sdata"
        sp_global_def.sxprint(sdata)
        junk = sp_utilities.cmdexecute("e2bdb.py   " + current_output_dir +
                                       "  --makevstack=" + sdata + " --filt=Q")
        # junk = cmdexecute("ls  EMAN2DB/sdata*")
        # a = get_im("bdb:sdata")
        a = sp_utilities.get_im(sdata)
        a.set_attr("variabilitysymmetry", sym)
        # a.write_image("bdb:sdata")
        a.write_image(sdata)

    else:

        myid = mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD)
        number_of_proc = mpi.mpi_comm_size(mpi.MPI_COMM_WORLD)
        main_node = 0
        shared_comm = mpi.mpi_comm_split_type(mpi.MPI_COMM_WORLD,
                                              mpi.MPI_COMM_TYPE_SHARED, 0,
                                              mpi.MPI_INFO_NULL)
        myid_on_node = mpi.mpi_comm_rank(shared_comm)
        no_of_processes_per_group = mpi.mpi_comm_size(shared_comm)
        masters_from_groups_vs_everything_else_comm = mpi.mpi_comm_split(
            mpi.MPI_COMM_WORLD, main_node == myid_on_node, myid_on_node)
        color, no_of_groups, balanced_processor_load_on_nodes = sp_utilities.get_colors_and_subsets(
            main_node,
            mpi.MPI_COMM_WORLD,
            myid,
            shared_comm,
            myid_on_node,
            masters_from_groups_vs_everything_else_comm,
        )
        overhead_loading = options.overhead * number_of_proc
        # memory_per_node  = options.memory_per_node
        # if memory_per_node == -1.: memory_per_node = 2.*no_of_processes_per_group
        keepgoing = 1

        current_window = options.window
        current_decimate = options.decimate

        if len(args) == 1:
            stack = args[0]
        else:
            sp_global_def.sxprint("Usage: " + usage)
            sp_global_def.sxprint("Please run '" + progname +
                                  " -h' for detailed options")
            sp_global_def.ERROR(
                "Invalid number of parameters used. Please see usage information above."
            )
            return

        t0 = time.time()
        # obsolete flags
        options.MPI = True
        # options.nvec = 0
        options.radiuspca = -1
        options.iter = 40
        options.abs = 0.0
        options.squ = 0.0

        if options.fl > 0.0 and options.aa == 0.0:
            sp_global_def.ERROR(
                "Fall off has to be given for the low-pass filter", myid=myid)

        # if options.VAR and options.SND:
        # 	ERROR( "Only one of var and SND can be set!",myid=myid )

        if options.VAR and (options.ave2D or options.ave3D or options.var2D):
            sp_global_def.ERROR(
                "When VAR is set, the program cannot output ave2D, ave3D or var2D",
                myid=myid,
            )

        # if options.SND and (options.ave2D or options.ave3D):
        # 	ERROR( "When SND is set, the program cannot output ave2D or ave3D", myid=myid )

        # if options.nvec > 0 :
        # 	ERROR( "PCA option not implemented", myid=myid )

        # if options.nvec > 0 and options.ave3D == None:
        # 	ERROR( "When doing PCA analysis, one must set ave3D", myid=myid )

        if current_decimate > 1.0 or current_decimate < 0.0:
            sp_global_def.ERROR(
                "Decimate rate should be a value between 0.0 and 1.0",
                myid=myid)

        if current_window < 0.0:
            sp_global_def.ERROR(
                "Target window size should be always larger than zero",
                myid=myid)

        if myid == main_node:
            img = sp_utilities.get_image(stack, 0)
            nx = img.get_xsize()
            ny = img.get_ysize()
            if min(nx, ny) < current_window:
                keepgoing = 0
        keepgoing = sp_utilities.bcast_number_to_all(keepgoing, main_node,
                                                     mpi.MPI_COMM_WORLD)
        if keepgoing == 0:
            sp_global_def.ERROR(
                "The target window size cannot be larger than the size of decimated image",
                myid=myid,
            )

        options.sym = options.sym.lower()
        # if global_def.CACHE_DISABLE:
        # 	from utilities import disable_bdb_cache
        # 	disable_bdb_cache()
        # global_def.BATCH = True

        if myid == main_node:
            if not optparse.os.path.exists(current_output_dir):
                optparse.os.makedirs(
                    current_output_dir
                )  # Never delete output_dir in the program!

        img_per_grp = options.img_per_grp
        # nvec        = options.nvec
        radiuspca = options.radiuspca
        # if os.path.exists(os.path.join(options.output_dir, "log.txt")): os.remove(os.path.join(options.output_dir, "log.txt"))
        log_main = sp_logger.Logger(sp_logger.BaseLogger_Files())
        log_main.prefix = optparse.os.path.join(current_output_dir, "./")

        if myid == main_node:
            line = ""
            for a in sys.argv:
                line += " " + a
            log_main.add(line)
            log_main.add("-------->>>Settings given by all options<<<-------")
            log_main.add("Symmetry             : %s" % options.sym)
            log_main.add("Input stack          : %s" % stack)
            log_main.add("Output_dir           : %s" % current_output_dir)

            if options.ave3D:
                log_main.add("Ave3d                : %s" % options.ave3D)
            if options.var3D:
                log_main.add("Var3d                : %s" % options.var3D)
            if options.ave2D:
                log_main.add("Ave2D                : %s" % options.ave2D)
            if options.var2D:
                log_main.add("Var2D                : %s" % options.var2D)
            if options.VAR:
                log_main.add("VAR                  : True")
            else:
                log_main.add("VAR                  : False")
            if options.CTF:
                log_main.add("CTF correction       : True  ")
            else:
                log_main.add("CTF correction       : False ")

            log_main.add("Image per group      : %5d" % options.img_per_grp)
            log_main.add("Image decimate rate  : %4.3f" % current_decimate)
            log_main.add("Low pass filter      : %4.3f" % options.fl)
            current_fl = options.fl
            if current_fl == 0.0:
                current_fl = 0.5
            log_main.add(
                "Current low pass filter is equivalent to cutoff frequency %4.3f for original image size"
                % round((current_fl * current_decimate), 3))
            log_main.add("Window size          : %5d " % current_window)
            log_main.add("sx3dvariability begins")

        symbaselen = 0
        if myid == main_node:
            nima = EMAN2_cppwrap.EMUtil.get_image_count(stack)
            img = sp_utilities.get_image(stack)
            nx = img.get_xsize()
            ny = img.get_ysize()
            nnxo = nx
            nnyo = ny
            if options.sym != "c1":
                imgdata = sp_utilities.get_im(stack)
                try:
                    i = imgdata.get_attr("variabilitysymmetry").lower()
                    if i != options.sym:
                        sp_global_def.ERROR(
                            "The symmetry provided does not agree with the symmetry of the input stack",
                            myid=myid,
                        )
                except:
                    sp_global_def.ERROR(
                        "Input stack is not prepared for symmetry, please follow instructions",
                        myid=myid,
                    )
                i = len(sp_utilities.get_symt(options.sym))
                if (old_div(nima, i)) * i != nima:
                    sp_global_def.ERROR(
                        "The length of the input stack is incorrect for symmetry processing",
                        myid=myid,
                    )
                symbaselen = old_div(nima, i)
            else:
                symbaselen = nima
        else:
            nima = 0
            nx = 0
            ny = 0
            nnxo = 0
            nnyo = 0
        nima = sp_utilities.bcast_number_to_all(nima)
        nx = sp_utilities.bcast_number_to_all(nx)
        ny = sp_utilities.bcast_number_to_all(ny)
        nnxo = sp_utilities.bcast_number_to_all(nnxo)
        nnyo = sp_utilities.bcast_number_to_all(nnyo)
        if current_window > max(nx, ny):
            sp_global_def.ERROR(
                "Window size is larger than the original image size")

        if current_decimate == 1.0:
            if current_window != 0:
                nx = current_window
                ny = current_window
        else:
            if current_window == 0:
                nx = int(nx * current_decimate + 0.5)
                ny = int(ny * current_decimate + 0.5)
            else:
                nx = int(current_window * current_decimate + 0.5)
                ny = nx
        symbaselen = sp_utilities.bcast_number_to_all(symbaselen)

        # check FFT prime number
        is_fft_friendly = nx == sp_fundamentals.smallprime(nx)

        if not is_fft_friendly:
            if myid == main_node:
                log_main.add(
                    "The target image size is not a product of small prime numbers"
                )
                log_main.add("Program adjusts the input settings!")
            ### two cases
            if current_decimate == 1.0:
                nx = sp_fundamentals.smallprime(nx)
                ny = nx
                current_window = nx  # update
                if myid == main_node:
                    log_main.add("The window size is updated to %d." %
                                 current_window)
            else:
                if current_window == 0:
                    nx = sp_fundamentals.smallprime(
                        int(nx * current_decimate + 0.5))
                    current_decimate = old_div(float(nx), nnxo)
                    ny = nx
                    if myid == main_node:
                        log_main.add("The decimate rate is updated to %f." %
                                     current_decimate)
                else:
                    nx = sp_fundamentals.smallprime(
                        int(current_window * current_decimate + 0.5))
                    ny = nx
                    current_window = int(old_div(nx, current_decimate) + 0.5)
                    if myid == main_node:
                        log_main.add("The window size is updated to %d." %
                                     current_window)

        if myid == main_node:
            log_main.add("The target image size is %d" % nx)

        if radiuspca == -1:
            radiuspca = old_div(nx, 2) - 2
        if myid == main_node:
            log_main.add("%-70s:  %d\n" % ("Number of projection", nima))
        img_begin, img_end = sp_applications.MPI_start_end(
            nima, number_of_proc, myid)
        """Multiline Comment0"""
        """
        Comments from adnan, replace index_of_proj to index_of_particle, index_of_proj was not defined
        also varList is not defined not made an empty list there
        """

        if options.VAR:  # 2D variance images have no shifts
            varList = []
            # varList   = EMData.read_images(stack, range(img_begin, img_end))
            for index_of_particle in range(img_begin, img_end):
                image = sp_utilities.get_im(stack, index_of_particle)
                if current_window > 0:
                    varList.append(
                        sp_fundamentals.fdecimate(
                            sp_fundamentals.window2d(image, current_window,
                                                     current_window),
                            nx,
                            ny,
                        ))
                else:
                    varList.append(sp_fundamentals.fdecimate(image, nx, ny))

        else:
            if myid == main_node:
                t1 = time.time()
                proj_angles = []
                aveList = []
                tab = EMAN2_cppwrap.EMUtil.get_all_attributes(
                    stack, "xform.projection")
                for i in range(nima):
                    t = tab[i].get_params("spider")
                    phi = t["phi"]
                    theta = t["theta"]
                    psi = t["psi"]
                    x = theta
                    if x > 90.0:
                        x = 180.0 - x
                    x = x * 10000 + psi
                    proj_angles.append([x, t["phi"], t["theta"], t["psi"], i])
                t2 = time.time()
                log_main.add(
                    "%-70s:  %d\n" %
                    ("Number of neighboring projections", img_per_grp))
                log_main.add("...... Finding neighboring projections\n")
                log_main.add("Number of images per group: %d" % img_per_grp)
                log_main.add("Now grouping projections")
                proj_angles.sort()
                proj_angles_list = numpy.full((nima, 4),
                                              0.0,
                                              dtype=numpy.float32)
                for i in range(nima):
                    proj_angles_list[i][0] = proj_angles[i][1]
                    proj_angles_list[i][1] = proj_angles[i][2]
                    proj_angles_list[i][2] = proj_angles[i][3]
                    proj_angles_list[i][3] = proj_angles[i][4]
            else:
                proj_angles_list = 0
            proj_angles_list = sp_utilities.wrap_mpi_bcast(
                proj_angles_list, main_node, mpi.MPI_COMM_WORLD)
            proj_angles = []
            for i in range(nima):
                proj_angles.append([
                    proj_angles_list[i][0],
                    proj_angles_list[i][1],
                    proj_angles_list[i][2],
                    int(proj_angles_list[i][3]),
                ])
            del proj_angles_list
            proj_list, mirror_list = sp_utilities.nearest_proj(
                proj_angles, img_per_grp, range(img_begin, img_end))
            all_proj = []
            for im in proj_list:
                for jm in im:
                    all_proj.append(proj_angles[jm][3])
            all_proj = list(set(all_proj))
            index = {}
            for i in range(len(all_proj)):
                index[all_proj[i]] = i
            mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
            if myid == main_node:
                log_main.add("%-70s:  %.2f\n" %
                             ("Finding neighboring projections lasted [s]",
                              time.time() - t2))
                log_main.add("%-70s:  %d\n" %
                             ("Number of groups processed on the main node",
                              len(proj_list)))
                log_main.add("Grouping projections took:  %12.1f [m]" %
                             (old_div((time.time() - t2), 60.0)))
                log_main.add("Number of groups on main node: ", len(proj_list))
            mpi.mpi_barrier(mpi.MPI_COMM_WORLD)

            if myid == main_node:
                log_main.add("...... Calculating the stack of 2D variances \n")
            # Memory estimation. There are two memory consumption peaks
            # peak 1. Compute ave, var;
            # peak 2. Var volume reconstruction;
            # proj_params = [0.0]*(nima*5)
            aveList = []
            varList = []
            # if nvec > 0: eigList = [[] for i in range(nvec)]
            dnumber = len(
                all_proj)  # all neighborhood set for assigned to myid
            pnumber = len(proj_list) * 2.0 + img_per_grp  # aveList and varList
            tnumber = dnumber + pnumber
            vol_size2 = old_div(nx**3 * 4.0 * 8, 1.0e9)
            vol_size1 = old_div(2.0 * nnxo**3 * 4.0 * 8, 1.0e9)
            proj_size = old_div(nnxo * nnyo * len(proj_list) * 4.0 * 2.0,
                                1.0e9)  # both aveList and varList
            orig_data_size = old_div(nnxo * nnyo * 4.0 * tnumber, 1.0e9)
            reduced_data_size = old_div(nx * nx * 4.0 * tnumber, 1.0e9)
            full_data = numpy.full((number_of_proc, 2),
                                   -1.0,
                                   dtype=numpy.float16)
            full_data[myid] = orig_data_size, reduced_data_size
            if myid != main_node:
                sp_utilities.wrap_mpi_send(full_data, main_node,
                                           mpi.MPI_COMM_WORLD)
            if myid == main_node:
                for iproc in range(number_of_proc):
                    if iproc != main_node:
                        dummy = sp_utilities.wrap_mpi_recv(
                            iproc, mpi.MPI_COMM_WORLD)
                        full_data[numpy.where(dummy > -1)] = dummy[numpy.where(
                            dummy > -1)]
                del dummy
            mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
            full_data = sp_utilities.wrap_mpi_bcast(full_data, main_node,
                                                    mpi.MPI_COMM_WORLD)
            # find the CPU with heaviest load
            minindx = numpy.argsort(full_data, 0)
            heavy_load_myid = minindx[-1][1]
            total_mem = sum(full_data)
            if myid == main_node:
                if current_window == 0:
                    log_main.add(
                        "Nx:   current image size = %d. Decimated by %f from %d"
                        % (nx, current_decimate, nnxo))
                else:
                    log_main.add(
                        "Nx:   current image size = %d. Windowed to %d, and decimated by %f from %d"
                        % (nx, current_window, current_decimate, nnxo))
                log_main.add("Nproj:       number of particle images.")
                log_main.add("Navg:        number of 2D average images.")
                log_main.add("Nvar:        number of 2D variance images.")
                log_main.add(
                    "Img_per_grp: user defined image per group for averaging = %d"
                    % img_per_grp)
                log_main.add(
                    "Overhead:    total python overhead memory consumption   = %f"
                    % overhead_loading)
                log_main.add(
                    "Total memory) = 4.0*nx^2*(nproj + navg +nvar+ img_per_grp)/1.0e9 + overhead: %12.3f [GB]"
                    % (total_mem[1] + overhead_loading))
            del full_data
            mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
            if myid == heavy_load_myid:
                log_main.add(
                    "Begin reading and preprocessing images on processor. Wait... "
                )
                ttt = time.time()
            # imgdata = EMData.read_images(stack, all_proj)
            imgdata = [None for im in range(len(all_proj))]
            for index_of_proj in range(len(all_proj)):
                # image = get_im(stack, all_proj[index_of_proj])
                if current_window > 0:
                    imgdata[index_of_proj] = sp_fundamentals.fdecimate(
                        sp_fundamentals.window2d(
                            sp_utilities.get_im(stack,
                                                all_proj[index_of_proj]),
                            current_window,
                            current_window,
                        ),
                        nx,
                        ny,
                    )
                else:
                    imgdata[index_of_proj] = sp_fundamentals.fdecimate(
                        sp_utilities.get_im(stack, all_proj[index_of_proj]),
                        nx, ny)

                if current_decimate > 0.0 and options.CTF:
                    ctf = imgdata[index_of_proj].get_attr("ctf")
                    ctf.apix = old_div(ctf.apix, current_decimate)
                    imgdata[index_of_proj].set_attr("ctf", ctf)

                if myid == heavy_load_myid and index_of_proj % 100 == 0:
                    log_main.add(
                        " ...... %6.2f%% " %
                        (old_div(index_of_proj, float(len(all_proj))) * 100.0))
            mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
            if myid == heavy_load_myid:
                log_main.add("All_proj preprocessing cost %7.2f m" % (old_div(
                    (time.time() - ttt), 60.0)))
                log_main.add("Wait untill reading on all CPUs done...")
            """Multiline Comment1"""
            if not options.no_norm:
                mask = sp_utilities.model_circle(old_div(nx, 2) - 2, nx, nx)
            if myid == heavy_load_myid:
                log_main.add("Start computing 2D aveList and varList. Wait...")
                ttt = time.time()
            inner = old_div(nx, 2) - 4
            outer = inner + 2
            xform_proj_for_2D = [None for i in range(len(proj_list))]
            for i in range(len(proj_list)):
                ki = proj_angles[proj_list[i][0]][3]
                if ki >= symbaselen:
                    continue
                mi = index[ki]
                dpar = EMAN2_cppwrap.Util.get_transform_params(
                    imgdata[mi], "xform.projection", "spider")
                phiM, thetaM, psiM, s2xM, s2yM = (
                    dpar["phi"],
                    dpar["theta"],
                    dpar["psi"],
                    -dpar["tx"] * current_decimate,
                    -dpar["ty"] * current_decimate,
                )
                grp_imgdata = []
                for j in range(img_per_grp):
                    mj = index[proj_angles[proj_list[i][j]][3]]
                    cpar = EMAN2_cppwrap.Util.get_transform_params(
                        imgdata[mj], "xform.projection", "spider")
                    alpha, sx, sy, mirror = params_3D_2D_NEW(
                        cpar["phi"],
                        cpar["theta"],
                        cpar["psi"],
                        -cpar["tx"] * current_decimate,
                        -cpar["ty"] * current_decimate,
                        mirror_list[i][j],
                    )
                    if thetaM <= 90:
                        if mirror == 0:
                            alpha, sx, sy, scale = sp_utilities.compose_transform2(
                                alpha, sx, sy, 1.0, phiM - cpar["phi"], 0.0,
                                0.0, 1.0)
                        else:
                            alpha, sx, sy, scale = sp_utilities.compose_transform2(
                                alpha,
                                sx,
                                sy,
                                1.0,
                                180 - (phiM - cpar["phi"]),
                                0.0,
                                0.0,
                                1.0,
                            )
                    else:
                        if mirror == 0:
                            alpha, sx, sy, scale = sp_utilities.compose_transform2(
                                alpha, sx, sy, 1.0, -(phiM - cpar["phi"]), 0.0,
                                0.0, 1.0)
                        else:
                            alpha, sx, sy, scale = sp_utilities.compose_transform2(
                                alpha,
                                sx,
                                sy,
                                1.0,
                                -(180 - (phiM - cpar["phi"])),
                                0.0,
                                0.0,
                                1.0,
                            )
                    imgdata[mj].set_attr(
                        "xform.align2d",
                        EMAN2_cppwrap.Transform({
                            "type": "2D",
                            "alpha": alpha,
                            "tx": sx,
                            "ty": sy,
                            "mirror": mirror,
                            "scale": 1.0,
                        }),
                    )
                    grp_imgdata.append(imgdata[mj])
                if not options.no_norm:
                    for k in range(img_per_grp):
                        ave, std, minn, maxx = EMAN2_cppwrap.Util.infomask(
                            grp_imgdata[k], mask, False)
                        grp_imgdata[k] -= ave
                        grp_imgdata[k] = old_div(grp_imgdata[k], std)
                if options.fl > 0.0:
                    for k in range(img_per_grp):
                        grp_imgdata[k] = sp_filter.filt_tanl(
                            grp_imgdata[k], options.fl, options.aa)

                #  Because of background issues, only linear option works.
                if options.CTF:
                    ave, var = sp_statistics.aves_wiener(
                        grp_imgdata, SNR=1.0e5, interpolation_method="linear")
                else:
                    ave, var = sp_statistics.ave_var(grp_imgdata)
                # Switch to std dev
                # threshold is not really needed,it is just in case due to numerical accuracy something turns out negative.
                var = sp_morphology.square_root(sp_morphology.threshold(var))

                sp_utilities.set_params_proj(ave,
                                             [phiM, thetaM, 0.0, 0.0, 0.0])
                sp_utilities.set_params_proj(var,
                                             [phiM, thetaM, 0.0, 0.0, 0.0])

                aveList.append(ave)
                varList.append(var)
                xform_proj_for_2D[i] = [phiM, thetaM, 0.0, 0.0, 0.0]
                """Multiline Comment2"""
                if (myid == heavy_load_myid) and (i % 100 == 0):
                    log_main.add(" ......%6.2f%%  " %
                                 (old_div(i, float(len(proj_list))) * 100.0))
            del imgdata, grp_imgdata, cpar, dpar, all_proj, proj_angles, index
            if not options.no_norm:
                del mask
            if myid == main_node:
                del tab
            #  At this point, all averages and variances are computed
            mpi.mpi_barrier(mpi.MPI_COMM_WORLD)

            if myid == heavy_load_myid:
                log_main.add("Computing aveList and varList took %12.1f [m]" %
                             (old_div((time.time() - ttt), 60.0)))

            xform_proj_for_2D = sp_utilities.wrap_mpi_gatherv(
                xform_proj_for_2D, main_node, mpi.MPI_COMM_WORLD)
            if myid == main_node:
                sp_utilities.write_text_row(
                    [str(entry) for entry in xform_proj_for_2D],
                    optparse.os.path.join(current_output_dir, "params.txt"),
                )
            del xform_proj_for_2D
            mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
            if options.ave2D:
                if myid == main_node:
                    log_main.add("Compute ave2D ... ")
                    km = 0
                    for i in range(number_of_proc):
                        if i == main_node:
                            for im in range(len(aveList)):
                                aveList[im].write_image(
                                    optparse.os.path.join(
                                        current_output_dir, options.ave2D),
                                    km,
                                )
                                km += 1
                        else:
                            nl = mpi.mpi_recv(
                                1,
                                mpi.MPI_INT,
                                i,
                                sp_global_def.SPARX_MPI_TAG_UNIVERSAL,
                                mpi.MPI_COMM_WORLD,
                            )
                            nl = int(nl[0])
                            for im in range(nl):
                                ave = sp_utilities.recv_EMData(
                                    i, im + i + 70000)
                                """Multiline Comment3"""
                                tmpvol = sp_fundamentals.fpol(ave, nx, nx, 1)
                                tmpvol.write_image(
                                    optparse.os.path.join(
                                        current_output_dir, options.ave2D),
                                    km,
                                )
                                km += 1
                else:
                    mpi.mpi_send(
                        len(aveList),
                        1,
                        mpi.MPI_INT,
                        main_node,
                        sp_global_def.SPARX_MPI_TAG_UNIVERSAL,
                        mpi.MPI_COMM_WORLD,
                    )
                    for im in range(len(aveList)):
                        sp_utilities.send_EMData(aveList[im], main_node,
                                                 im + myid + 70000)
                        """Multiline Comment4"""
                if myid == main_node:
                    sp_applications.header(
                        optparse.os.path.join(current_output_dir,
                                              options.ave2D),
                        params="xform.projection",
                        fimport=optparse.os.path.join(current_output_dir,
                                                      "params.txt"),
                    )
                mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
            if options.ave3D:
                t5 = time.time()
                if myid == main_node:
                    log_main.add("Reconstruct ave3D ... ")
                ave3D = sp_reconstruction.recons3d_4nn_MPI(
                    myid, aveList, symmetry=options.sym, npad=options.npad)
                sp_utilities.bcast_EMData_to_all(ave3D, myid)
                if myid == main_node:
                    if current_decimate != 1.0:
                        ave3D = sp_fundamentals.resample(
                            ave3D, old_div(1.0, current_decimate))
                    ave3D = sp_fundamentals.fpol(
                        ave3D, nnxo, nnxo,
                        nnxo)  # always to the orignal image size
                    sp_utilities.set_pixel_size(ave3D, 1.0)
                    ave3D.write_image(
                        optparse.os.path.join(current_output_dir,
                                              options.ave3D))
                    log_main.add("Ave3D reconstruction took %12.1f [m]" %
                                 (old_div((time.time() - t5), 60.0)))
                    log_main.add("%-70s:  %s\n" %
                                 ("The reconstructed ave3D is saved as ",
                                  options.ave3D))

            mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
            del ave, var, proj_list, stack, alpha, sx, sy, mirror, aveList
            """Multiline Comment5"""

            if options.ave3D:
                del ave3D
            if options.var2D:
                if myid == main_node:
                    log_main.add("Compute var2D...")
                    km = 0
                    for i in range(number_of_proc):
                        if i == main_node:
                            for im in range(len(varList)):
                                tmpvol = sp_fundamentals.fpol(
                                    varList[im], nx, nx, 1)
                                tmpvol.write_image(
                                    optparse.os.path.join(
                                        current_output_dir, options.var2D),
                                    km,
                                )
                                km += 1
                        else:
                            nl = mpi.mpi_recv(
                                1,
                                mpi.MPI_INT,
                                i,
                                sp_global_def.SPARX_MPI_TAG_UNIVERSAL,
                                mpi.MPI_COMM_WORLD,
                            )
                            nl = int(nl[0])
                            for im in range(nl):
                                ave = sp_utilities.recv_EMData(
                                    i, im + i + 70000)
                                tmpvol = sp_fundamentals.fpol(ave, nx, nx, 1)
                                tmpvol.write_image(
                                    optparse.os.path.join(
                                        current_output_dir, options.var2D),
                                    km,
                                )
                                km += 1
                else:
                    mpi.mpi_send(
                        len(varList),
                        1,
                        mpi.MPI_INT,
                        main_node,
                        sp_global_def.SPARX_MPI_TAG_UNIVERSAL,
                        mpi.MPI_COMM_WORLD,
                    )
                    for im in range(len(varList)):
                        sp_utilities.send_EMData(
                            varList[im], main_node,
                            im + myid + 70000)  # What with the attributes??
                mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
                if myid == main_node:
                    sp_applications.header(
                        optparse.os.path.join(current_output_dir,
                                              options.var2D),
                        params="xform.projection",
                        fimport=optparse.os.path.join(current_output_dir,
                                                      "params.txt"),
                    )
                mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
        if options.var3D:
            if myid == main_node:
                log_main.add("Reconstruct var3D ...")
            t6 = time.time()
            # radiusvar = options.radius
            # if( radiusvar < 0 ):  radiusvar = nx//2 -3
            res = sp_reconstruction.recons3d_4nn_MPI(myid,
                                                     varList,
                                                     symmetry=options.sym,
                                                     npad=options.npad)
            # res = recons3d_em_MPI(varList, vol_stack, options.iter, radiusvar, options.abs, True, options.sym, options.squ)
            if myid == main_node:
                if current_decimate != 1.0:
                    res = sp_fundamentals.resample(
                        res, old_div(1.0, current_decimate))
                res = sp_fundamentals.fpol(res, nnxo, nnxo, nnxo)
                sp_utilities.set_pixel_size(res, 1.0)
                res.write_image(os.path.join(current_output_dir,
                                             options.var3D))
                log_main.add(
                    "%-70s:  %s\n" %
                    ("The reconstructed var3D is saved as ", options.var3D))
                log_main.add("Var3D reconstruction took %f12.1 [m]" % (old_div(
                    (time.time() - t6), 60.0)))
                log_main.add("Total computation time %f12.1 [m]" % (old_div(
                    (time.time() - t0), 60.0)))
                log_main.add("sx3dvariability finishes")

        if RUNNING_UNDER_MPI:
            sp_global_def.MPI = False

        sp_global_def.BATCH = False
Beispiel #5
0
def mref_ali2d_MPI(stack,
                   refim,
                   outdir,
                   maskfile=None,
                   ir=1,
                   ou=-1,
                   rs=1,
                   xrng=0,
                   yrng=0,
                   step=1,
                   center=1,
                   maxit=10,
                   CTF=False,
                   snr=1.0,
                   user_func_name="ref_ali2d",
                   rand_seed=1000):
    # 2D multi-reference alignment using rotational ccf in polar coordinates and quadratic interpolation

    from sp_utilities import model_circle, combine_params2, inverse_transform2, drop_image, get_image, get_im
    from sp_utilities import reduce_EMData_to_root, bcast_EMData_to_all, bcast_number_to_all
    from sp_utilities import send_attr_dict
    from sp_utilities import center_2D
    from sp_statistics import fsc_mask
    from sp_alignment import Numrinit, ringwe, search_range
    from sp_fundamentals import rot_shift2D, fshift
    from sp_utilities import get_params2D, set_params2D
    from random import seed, randint
    from sp_morphology import ctf_2
    from sp_filter import filt_btwl, filt_params
    from numpy import reshape, shape
    from sp_utilities import print_msg, print_begin_msg, print_end_msg
    import os
    import sys
    import shutil
    from sp_applications import MPI_start_end
    from mpi import mpi_comm_size, mpi_comm_rank, MPI_COMM_WORLD
    from mpi import mpi_reduce, mpi_bcast, mpi_barrier, mpi_recv, mpi_send
    from mpi import MPI_SUM, MPI_FLOAT, MPI_INT

    number_of_proc = mpi_comm_size(MPI_COMM_WORLD)
    myid = mpi_comm_rank(MPI_COMM_WORLD)
    main_node = 0

    # create the output directory, if it does not exist

    if os.path.exists(outdir):
        ERROR(
            'Output directory exists, please change the name and restart the program',
            "mref_ali2d_MPI ", 1, myid)
    mpi_barrier(MPI_COMM_WORLD)

    import sp_global_def
    if myid == main_node:
        os.mkdir(outdir)
        sp_global_def.LOGFILE = os.path.join(outdir, sp_global_def.LOGFILE)
        print_begin_msg("mref_ali2d_MPI")

    nima = EMUtil.get_image_count(stack)

    image_start, image_end = MPI_start_end(nima, number_of_proc, myid)

    nima = EMUtil.get_image_count(stack)
    ima = EMData()
    ima.read_image(stack, image_start)

    first_ring = int(ir)
    last_ring = int(ou)
    rstep = int(rs)
    max_iter = int(maxit)

    if max_iter == 0:
        max_iter = 10
        auto_stop = True
    else:
        auto_stop = False

    if myid == main_node:
        print_msg("Input stack                 : %s\n" % (stack))
        print_msg("Reference stack             : %s\n" % (refim))
        print_msg("Output directory            : %s\n" % (outdir))
        print_msg("Maskfile                    : %s\n" % (maskfile))
        print_msg("Inner radius                : %i\n" % (first_ring))

    nx = ima.get_xsize()
    # default value for the last ring
    if last_ring == -1: last_ring = nx / 2 - 2

    if myid == main_node:
        print_msg("Outer radius                : %i\n" % (last_ring))
        print_msg("Ring step                   : %i\n" % (rstep))
        print_msg("X search range              : %f\n" % (xrng))
        print_msg("Y search range              : %f\n" % (yrng))
        print_msg("Translational step          : %f\n" % (step))
        print_msg("Center type                 : %i\n" % (center))
        print_msg("Maximum iteration           : %i\n" % (max_iter))
        print_msg("CTF correction              : %s\n" % (CTF))
        print_msg("Signal-to-Noise Ratio       : %f\n" % (snr))
        print_msg("Random seed                 : %i\n\n" % (rand_seed))
        print_msg("User function               : %s\n" % (user_func_name))
    import sp_user_functions
    user_func = sp_user_functions.factory[user_func_name]

    if maskfile:
        import types
        if type(maskfile) is bytes: mask = get_image(maskfile)
        else: mask = maskfile
    else: mask = model_circle(last_ring, nx, nx)
    #  references, do them on all processors...
    refi = []
    numref = EMUtil.get_image_count(refim)

    # IMAGES ARE SQUARES! center is in SPIDER convention
    cnx = nx / 2 + 1
    cny = cnx

    mode = "F"
    #precalculate rings
    numr = Numrinit(first_ring, last_ring, rstep, mode)
    wr = ringwe(numr, mode)

    # prepare reference images on all nodes
    ima.to_zero()
    for j in range(numref):
        #  even, odd, numer of even, number of images.  After frc, totav
        refi.append([get_im(refim, j), ima.copy(), 0])
    #  for each node read its share of data
    data = EMData.read_images(stack, list(range(image_start, image_end)))
    for im in range(image_start, image_end):
        data[im - image_start].set_attr('ID', im)

    if myid == main_node: seed(rand_seed)

    a0 = -1.0
    again = True
    Iter = 0

    ref_data = [mask, center, None, None]

    while Iter < max_iter and again:
        ringref = []
        mashi = cnx - last_ring - 2
        for j in range(numref):
            refi[j][0].process_inplace("normalize.mask", {
                "mask": mask,
                "no_sigma": 1
            })  # normalize reference images to N(0,1)
            cimage = Util.Polar2Dm(refi[j][0], cnx, cny, numr, mode)
            Util.Frngs(cimage, numr)
            Util.Applyws(cimage, numr, wr)
            ringref.append(cimage)
            # zero refi
            refi[j][0].to_zero()
            refi[j][1].to_zero()
            refi[j][2] = 0

        assign = [[] for i in range(numref)]
        # begin MPI section
        for im in range(image_start, image_end):
            alpha, sx, sy, mirror, scale = get_params2D(data[im - image_start])
            #  Why inverse?  07/11/2015 PAP
            alphai, sxi, syi, scalei = inverse_transform2(alpha, sx, sy)
            # normalize
            data[im - image_start].process_inplace("normalize.mask", {
                "mask": mask,
                "no_sigma": 0
            })  # subtract average under the mask
            # If shifts are outside of the permissible range, reset them
            if (abs(sxi) > mashi or abs(syi) > mashi):
                sxi = 0.0
                syi = 0.0
                set_params2D(data[im - image_start], [0.0, 0.0, 0.0, 0, 1.0])
            ny = nx
            txrng = search_range(nx, last_ring, sxi, xrng, "mref_ali2d_MPI")
            txrng = [txrng[1], txrng[0]]
            tyrng = search_range(ny, last_ring, syi, yrng, "mref_ali2d_MPI")
            tyrng = [tyrng[1], tyrng[0]]
            # align current image to the reference
            [angt, sxst, syst, mirrort, xiref,
             peakt] = Util.multiref_polar_ali_2d(data[im - image_start],
                                                 ringref, txrng, tyrng, step,
                                                 mode, numr, cnx + sxi,
                                                 cny + syi)

            iref = int(xiref)
            # combine parameters and set them to the header, ignore previous angle and mirror
            [alphan, sxn, syn,
             mn] = combine_params2(0.0, -sxi, -syi, 0, angt, sxst, syst,
                                   (int)(mirrort))
            set_params2D(data[im - image_start],
                         [alphan, sxn, syn, int(mn), scale])
            data[im - image_start].set_attr('assign', iref)
            # apply current parameters and add to the average
            temp = rot_shift2D(data[im - image_start], alphan, sxn, syn, mn)
            it = im % 2
            Util.add_img(refi[iref][it], temp)
            assign[iref].append(im)
            #assign[im] = iref
            refi[iref][2] += 1.0
        del ringref
        # end MPI section, bring partial things together, calculate new reference images, broadcast them back

        for j in range(numref):
            reduce_EMData_to_root(refi[j][0], myid, main_node)
            reduce_EMData_to_root(refi[j][1], myid, main_node)
            refi[j][2] = mpi_reduce(refi[j][2], 1, MPI_FLOAT, MPI_SUM,
                                    main_node, MPI_COMM_WORLD)
            if (myid == main_node): refi[j][2] = int(refi[j][2][0])
        # gather assignements
        for j in range(numref):
            if myid == main_node:
                for n in range(number_of_proc):
                    if n != main_node:
                        import sp_global_def
                        ln = mpi_recv(1, MPI_INT, n,
                                      sp_global_def.SPARX_MPI_TAG_UNIVERSAL,
                                      MPI_COMM_WORLD)
                        lis = mpi_recv(ln[0], MPI_INT, n,
                                       sp_global_def.SPARX_MPI_TAG_UNIVERSAL,
                                       MPI_COMM_WORLD)
                        for l in range(ln[0]):
                            assign[j].append(int(lis[l]))
            else:
                import sp_global_def
                mpi_send(len(assign[j]), 1, MPI_INT, main_node,
                         sp_global_def.SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
                mpi_send(assign[j], len(assign[j]), MPI_INT, main_node,
                         sp_global_def.SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)

        if myid == main_node:
            # replace the name of the stack with reference with the current one
            refim = os.path.join(outdir, "aqm%03d.hdf" % Iter)
            a1 = 0.0
            ave_fsc = []
            for j in range(numref):
                if refi[j][2] < 4:
                    #ERROR("One of the references vanished","mref_ali2d_MPI",1)
                    #  if vanished, put a random image (only from main node!) there
                    assign[j] = []
                    assign[j].append(
                        randint(image_start, image_end - 1) - image_start)
                    refi[j][0] = data[assign[j][0]].copy()
                    #print 'ERROR', j
                else:
                    #frsc = fsc_mask(refi[j][0], refi[j][1], mask, 1.0, os.path.join(outdir,"drm%03d%04d"%(Iter, j)))
                    from sp_statistics import fsc
                    frsc = fsc(
                        refi[j][0], refi[j][1], 1.0,
                        os.path.join(outdir, "drm%03d%04d.txt" % (Iter, j)))
                    Util.add_img(refi[j][0], refi[j][1])
                    Util.mul_scalar(refi[j][0], 1.0 / float(refi[j][2]))

                    if ave_fsc == []:
                        for i in range(len(frsc[1])):
                            ave_fsc.append(frsc[1][i])
                        c_fsc = 1
                    else:
                        for i in range(len(frsc[1])):
                            ave_fsc[i] += frsc[1][i]
                        c_fsc += 1
                    #print 'OK', j, len(frsc[1]), frsc[1][0:5], ave_fsc[0:5]

            #print 'sum', sum(ave_fsc)
            if sum(ave_fsc) != 0:
                for i in range(len(ave_fsc)):
                    ave_fsc[i] /= float(c_fsc)
                    frsc[1][i] = ave_fsc[i]

            for j in range(numref):
                ref_data[2] = refi[j][0]
                ref_data[3] = frsc
                refi[j][0], cs = user_func(ref_data)

                # write the current average
                TMP = []
                for i_tmp in range(len(assign[j])):
                    TMP.append(float(assign[j][i_tmp]))
                TMP.sort()
                refi[j][0].set_attr_dict({'ave_n': refi[j][2], 'members': TMP})
                del TMP
                refi[j][0].process_inplace("normalize.mask", {
                    "mask": mask,
                    "no_sigma": 1
                })
                refi[j][0].write_image(refim, j)

            Iter += 1
            msg = "ITERATION #%3d        %d\n\n" % (Iter, again)
            print_msg(msg)
            for j in range(numref):
                msg = "   group #%3d   number of particles = %7d\n" % (
                    j, refi[j][2])
                print_msg(msg)
        Iter = bcast_number_to_all(Iter, main_node)  # need to tell all
        if again:
            for j in range(numref):
                bcast_EMData_to_all(refi[j][0], myid, main_node)

    #  clean up
    del assign
    # write out headers  and STOP, under MPI writing has to be done sequentially (time-consumming)
    mpi_barrier(MPI_COMM_WORLD)
    if CTF and data_had_ctf == 0:
        for im in range(len(data)):
            data[im].set_attr('ctf_applied', 0)
    par_str = ['xform.align2d', 'assign', 'ID']
    if myid == main_node:
        from sp_utilities import file_type
        if (file_type(stack) == "bdb"):
            from sp_utilities import recv_attr_dict_bdb
            recv_attr_dict_bdb(main_node, stack, data, par_str, image_start,
                               image_end, number_of_proc)
        else:
            from sp_utilities import recv_attr_dict
            recv_attr_dict(main_node, stack, data, par_str, image_start,
                           image_end, number_of_proc)
    else:
        send_attr_dict(main_node, data, par_str, image_start, image_end)
    if myid == main_node:
        print_end_msg("mref_ali2d_MPI")
Beispiel #6
0
def mref_ali2d(stack,
               refim,
               outdir,
               maskfile=None,
               ir=1,
               ou=-1,
               rs=1,
               xrng=0,
               yrng=0,
               step=1,
               center=1,
               maxit=0,
               CTF=False,
               snr=1.0,
               user_func_name="ref_ali2d",
               rand_seed=1000,
               MPI=False):
    """
        Name
            mref_ali2d - Perform 2-D multi-reference alignment of an image series
        Input
            stack: set of 2-D images in a stack file, images have to be squares
            refim: set of initial reference 2-D images in a stack file 
            maskfile: optional maskfile to be used in the alignment
            inner_radius: inner radius for rotational correlation > 0
            outer_radius: outer radius for rotational correlation < nx/2-1
            ring_step: step between rings in rotational correlation >0
            x_range: range for translation search in x direction, search is +/xr 
            y_range: range for translation search in y direction, search is +/yr 
            translation_step: step of translation search in both directions
            center: center the average
            max_iter: maximum number of iterations the program will perform
            CTF: if this flag is set, the program will use CTF information provided in file headers
            snr: signal-to-noise ratio of the data
            rand_seed: the seed used for generating random numbers
            MPI: whether to use MPI version
        Output
            output_directory: directory name into which the output files will be written.
            header: the alignment parameters are stored in the headers of input files as 'xform.align2d'.
    """
    # 2D multi-reference alignment using rotational ccf in polar coordinates and quadratic interpolation
    if MPI:
        mref_ali2d_MPI(stack, refim, outdir, maskfile, ir, ou, rs, xrng, yrng,
                       step, center, maxit, CTF, snr, user_func_name,
                       rand_seed)
        return

    from sp_utilities import model_circle, combine_params2, inverse_transform2, drop_image, get_image
    from sp_utilities import center_2D, get_im, get_params2D, set_params2D
    from sp_statistics import fsc
    from sp_alignment import Numrinit, ringwe, fine_2D_refinement, search_range
    from sp_fundamentals import rot_shift2D, fshift
    from random import seed, randint
    import os
    import sys

    from sp_utilities import print_begin_msg, print_end_msg, print_msg
    import shutil

    # create the output directory, if it does not exist
    if os.path.exists(outdir):
        shutil.rmtree(
            outdir
        )  #ERROR('Output directory exists, please change the name and restart the program', "mref_ali2d", 1)
    os.mkdir(outdir)
    import sp_global_def
    sp_global_def.LOGFILE = os.path.join(outdir, sp_global_def.LOGFILE)

    first_ring = int(ir)
    last_ring = int(ou)
    rstep = int(rs)
    max_iter = int(maxit)

    print_begin_msg("mref_ali2d")

    print_msg("Input stack                 : %s\n" % (stack))
    print_msg("Reference stack             : %s\n" % (refim))
    print_msg("Output directory            : %s\n" % (outdir))
    print_msg("Maskfile                    : %s\n" % (maskfile))
    print_msg("Inner radius                : %i\n" % (first_ring))

    ima = EMData()
    ima.read_image(stack, 0)
    nx = ima.get_xsize()
    # default value for the last ring
    if last_ring == -1: last_ring = nx / 2 - 2

    print_msg("Outer radius                : %i\n" % (last_ring))
    print_msg("Ring step                   : %i\n" % (rstep))
    print_msg("X search range              : %i\n" % (xrng))
    print_msg("Y search range              : %i\n" % (yrng))
    print_msg("Translational step          : %i\n" % (step))
    print_msg("Center type                 : %i\n" % (center))
    print_msg("Maximum iteration           : %i\n" % (max_iter))
    print_msg("CTF correction              : %s\n" % (CTF))
    print_msg("Signal-to-Noise Ratio       : %f\n" % (snr))
    print_msg("Random seed                 : %i\n\n" % (rand_seed))
    print_msg("User function               : %s\n" % (user_func_name))
    output = sys.stdout

    import sp_user_functions
    user_func = sp_user_functions.factory[user_func_name]

    if maskfile:
        import types
        if type(maskfile) is bytes: mask = get_image(maskfile)
        else: mask = maskfile
    else: mask = model_circle(last_ring, nx, nx)
    #  references
    refi = []
    numref = EMUtil.get_image_count(refim)

    # IMAGES ARE SQUARES! center is in SPIDER convention
    cnx = nx / 2 + 1
    cny = cnx

    mode = "F"
    #precalculate rings
    numr = Numrinit(first_ring, last_ring, rstep, mode)
    wr = ringwe(numr, mode)
    # reference images
    params = []
    #read all data
    data = EMData.read_images(stack)
    nima = len(data)
    # prepare the reference
    ima.to_zero()
    for j in range(numref):
        temp = EMData()
        temp.read_image(refim, j)
        #  eve, odd, numer of even, number of images.  After frc, totav
        refi.append([temp, ima.copy(), 0])

    seed(rand_seed)
    again = True

    ref_data = [mask, center, None, None]

    Iter = 0

    while Iter < max_iter and again:
        ringref = []
        #print "numref",numref

        ### Reference ###
        mashi = cnx - last_ring - 2
        for j in range(numref):
            refi[j][0].process_inplace("normalize.mask", {
                "mask": mask,
                "no_sigma": 1
            })
            cimage = Util.Polar2Dm(refi[j][0], cnx, cny, numr, mode)
            Util.Frngs(cimage, numr)
            Util.Applyws(cimage, numr, wr)
            ringref.append(cimage)

        assign = [[] for i in range(numref)]
        sx_sum = [0.0] * numref
        sy_sum = [0.0] * numref
        for im in range(nima):
            alpha, sx, sy, mirror, scale = get_params2D(data[im])
            #  Why inverse?  07/11/2015  PAP
            alphai, sxi, syi, scalei = inverse_transform2(alpha, sx, sy)
            # normalize
            data[im].process_inplace("normalize.mask", {
                "mask": mask,
                "no_sigma": 0
            })
            # If shifts are outside of the permissible range, reset them
            if (abs(sxi) > mashi or abs(syi) > mashi):
                sxi = 0.0
                syi = 0.0
                set_params2D(data[im], [0.0, 0.0, 0.0, 0, 1.0])
            ny = nx
            txrng = search_range(nx, last_ring, sxi, xrng, "mref_ali2d")
            txrng = [txrng[1], txrng[0]]
            tyrng = search_range(ny, last_ring, syi, yrng, "mref_ali2d")
            tyrng = [tyrng[1], tyrng[0]]
            # align current image to the reference
            #[angt, sxst, syst, mirrort, xiref, peakt] = Util.multiref_polar_ali_2d_p(data[im],
            #    ringref, txrng, tyrng, step, mode, numr, cnx+sxi, cny+syi)
            #print(angt, sxst, syst, mirrort, xiref, peakt)
            [angt, sxst, syst, mirrort, xiref,
             peakt] = Util.multiref_polar_ali_2d(data[im], ringref, txrng,
                                                 tyrng, step, mode, numr,
                                                 cnx + sxi, cny + syi)

            iref = int(xiref)
            # combine parameters and set them to the header, ignore previous angle and mirror
            [alphan, sxn, syn, mn] = combine_params2(0.0, -sxi, -syi, 0, angt,
                                                     sxst, syst, int(mirrort))
            set_params2D(data[im], [alphan, sxn, syn, int(mn), scale])
            if mn == 0: sx_sum[iref] += sxn
            else: sx_sum[iref] -= sxn
            sy_sum[iref] += syn
            data[im].set_attr('assign', iref)
            # apply current parameters and add to the average
            temp = rot_shift2D(data[im], alphan, sxn, syn, mn)
            it = im % 2
            Util.add_img(refi[iref][it], temp)

            assign[iref].append(im)
            refi[iref][2] += 1
        del ringref
        if again:
            a1 = 0.0
            for j in range(numref):
                msg = "   group #%3d   number of particles = %7d\n" % (
                    j, refi[j][2])
                print_msg(msg)
                if refi[j][2] < 4:
                    #ERROR("One of the references vanished","mref_ali2d",1)
                    #  if vanished, put a random image there
                    assign[j] = []
                    assign[j].append(randint(0, nima - 1))
                    refi[j][0] = data[assign[j][0]].copy()
                else:
                    max_inter = 0  # switch off fine refi.
                    br = 1.75
                    #  the loop has to
                    for INter in range(max_inter + 1):
                        # Calculate averages at least ones, meaning even if no within group refinement was requested
                        frsc = fsc(
                            refi[j][0], refi[j][1], 1.0,
                            os.path.join(outdir,
                                         "drm_%03d_%04d.txt" % (Iter, j)))
                        Util.add_img(refi[j][0], refi[j][1])
                        Util.mul_scalar(refi[j][0], 1.0 / float(refi[j][2]))

                        ref_data[2] = refi[j][0]
                        ref_data[3] = frsc
                        refi[j][0], cs = user_func(ref_data)
                        if center == -1:
                            cs[0] = sx_sum[j] / len(assign[j])
                            cs[1] = sy_sum[j] / len(assign[j])
                            refi[j][0] = fshift(refi[j][0], -cs[0], -cs[1])
                        for i in range(len(assign[j])):
                            im = assign[j][i]
                            alpha, sx, sy, mirror, scale = get_params2D(
                                data[im])
                            alphan, sxn, syn, mirrorn = combine_params2(
                                alpha, sx, sy, mirror, 0.0, -cs[0], -cs[1], 0)
                            set_params2D(
                                data[im],
                                [alphan, sxn, syn,
                                 int(mirrorn), scale])
                        # refine images within the group
                        #  Do the refinement only if max_inter>0, but skip it for the last iteration.
                        if INter < max_inter:
                            fine_2D_refinement(data, br, mask, refi[j][0], j)
                            #  Calculate updated average
                            refi[j][0].to_zero()
                            refi[j][1].to_zero()
                            for i in range(len(assign[j])):
                                im = assign[j][i]
                                alpha, sx, sy, mirror, scale = get_params2D(
                                    data[im])
                                # apply current parameters and add to the average
                                temp = rot_shift2D(data[im], alpha, sx, sy, mn)
                                it = im % 2
                                Util.add_img(refi[j][it], temp)
                # write the current average
                TMP = []
                for i_tmp in range(len(assign[j])):
                    TMP.append(float(assign[j][i_tmp]))
                TMP.sort()
                refi[j][0].set_attr_dict({'ave_n': refi[j][2], 'members': TMP})
                del TMP
                # replace the name of the stack with reference with the current one
                newrefim = os.path.join(outdir, "aqm%03d.hdf" % Iter)
                refi[j][0].write_image(newrefim, j)
            Iter += 1
            msg = "ITERATION #%3d        \n" % (Iter)
            print_msg(msg)

    newrefim = os.path.join(outdir, "multi_ref.hdf")
    for j in range(numref):
        refi[j][0].write_image(newrefim, j)
    from sp_utilities import write_headers
    write_headers(stack, data, list(range(nima)))
    print_end_msg("mref_ali2d")