def lstm(X, encoder): layers = [ (InputLayer, {}), (EmbeddingLayer, { 'output_size': 32 }), (LSTMLayer, { 'grad_clipping': 5., 'num_units': 100 }), (LSTMLayer, { 'grad_clipping': 5., 'num_units': 100 }), (RNNDenseLayer, { 'nonlinearity': identity }), ] rnn = RNN( layers=layers, encoder=encoder, verbose=1, improvement_threshold=1., updater=partial(rmsprop, learning_rate=1e-2), ) rnn.initialize() return rnn
def clf(self, encoder): clf = RNN(encoder=encoder, **rnn_kwargs()) clf.initialize() clf.fit(self.X, num_epochs=1) return clf
def test_init_raises_when_patience_and_no_eval(self): with pytest.raises(ValueError): RNN(layers=[], encoder=Mock(), patience=3, eval_size=0)