Beispiel #1
0
    def exp(self, theta=None, units='rad'):
        """
        Twist3.exp Convert twist to homogeneous transformation

        TW.exp is the homogeneous transformation equivalent to the twist (SE2 or SE3).

        TW.exp(THETA) as above but with a rotation of THETA about the Twist3.

        Notes::
        - For the second form the twist must, if rotational, have a unit rotational component.

        See also Twist3.T, trexp, trexp2.
        """

        if units != 'rad' and self.isprismatic:
            print('Twist3.exp: using degree mode for a prismatic twist')

        if theta is None:
            theta = 1
        else:
            theta = base.getunit(theta, units)

        if base.isscalar(theta):
            return SE2(base.trexp2(self.S * theta))
        else:
            return SE2([base.trexp2(self.S * t) for t in theta])
    def exp(self, theta=None, units='rad'):
        r"""
        Exponentiate a 2D twist

        :param theta: rotation magnitude, defaults to None
        :type theta: float, optional
        :param units: rotational units, defaults to 'rad'
        :type units: str, optional
        :return: SE(2) matrix
        :rtype: SE2 instance

        - ``X.exp()`` is the homogeneous transformation equivalent to the twist,
          :math:`e^{[S]}`
        - ``X.exp(θ) as above but with a rotation of ``θ`` about the twist axis,
          :math:`e^{\theta[S]}`

        Example:
        
        .. runblock:: pycon

            >>> from spatialmath import SE2, Twist2
            >>> T = SE2(1, 2, 0.3)
            >>> S = Twist2(T)
            >>> S.exp(0)
            >>> S.exp(1)

        .. notes::

            - For the second form, the twist must, if rotational, have a unit 
              rotational component.

        :seealso: :func:`spatialmath.base.trexp2`
        """

        if units != 'rad' and self.isprismatic:
            print('Twist3.exp: using degree mode for a prismatic twist')

        if theta is None:
            theta = 1
        else:
            theta = base.getunit(theta, units)

        if base.isscalar(theta):
            return SE2(base.trexp2(self.S * theta))
        else:
            return SE2([base.trexp2(self.S * t) for t in theta])
    def __mul__(left, right):  # lgtm[py/not-named-self] pylint: disable=no-self-argument
        """
        Overloaded ``*`` operator

        :arg left: left multiplicand
        :arg right: right multiplicand
        :return: product
        :raises: ValueError

        - ``X * Y`` compounds the twists ``X`` and ``Y``
        - ``X * s`` performs elementwise multiplication of the elements of ``X`` by ``s``
        - ``s * X`` performs elementwise multiplication of the elements of ``X`` by ``s``

        ========  ====================  ===================  ========================
             Multiplicands                   Product
        ------------------------------  ---------------------------------------------
           left      right                 type                 operation
        ========  ====================  ===================  ========================
        Twist2    Twist2                Twist2               product of exponentials
        Twist2    scalar                Twist2               element-wise product
        scalar    Twist2                Twist2               element-wise product
        Twist2    SE2                   Twist2               exponential x SE2
        ========  ====================  ===================  ========================

        .. note::

            #. scalar x Twist is handled by ``__rmul__``
            #. scalar multiplication is commutative but the result is not a group
            operation so the result will be a matrix
            #. Any other input combinations result in a ValueError.

            For pose composition the ``left`` and ``right`` operands may be a sequence

        =========   ==========   ====  ================================
        len(left)   len(right)   len     operation
        =========   ==========   ====  ================================
         1          1             1    ``prod = left * right``
         1          M             M    ``prod[i] = left * right[i]``
         N          1             M    ``prod[i] = left[i] * right``
         M          M             M    ``prod[i] = left[i] * right[i]``
        =========   ==========   ====  ================================
        """
        if isinstance(right, Twist2):
            # twist composition -> Twist
            return Twist2(
                left.binop(
                    right,
                    lambda x, y: base.trlog2(base.trexp2(x) @ base.trexp2(y),
                                             twist=True)))
        elif isinstance(right, SE2):
            # twist * SE2 -> SE2
            return SE2(left.binop(right, lambda x, y: base.trexp2(x) @ y),
                       check=False)
        elif base.isscalar(right):
            # return Twist(left.S * right)
            return Twist2(left.binop(right, lambda x, y: x * y))
        else:
            raise ValueError('Twist2 *, incorrect right operand')
Beispiel #4
0
    def SE2(self):
        """
        %Twist3.SE Convert twist to SE2 or SE3 object
        %
        TW.SE is an SE2 or SE3 object representing the homogeneous transformation equivalent to the Twist3.
                %
            See also Twist3.T, SE2, SE3.
        """

        return SE2(self.exp())
Beispiel #5
0
    def __init__(self, occ_grid=None, goal=None, inflate=0,
                 reset=False, verbose=None, seed=None,
                 transform=SE2()):
        self._occ_grid_nav = None
        self._start = None
        self._verbose = verbose
        self._seed = seed
        self._spin_count = None
        self._rand_stream = None
        self._seed_0 = None
        self._w2g = None
        self._inflate = inflate
        self._reset = reset
        self._transform = transform
        self._goal = None

        # if occ_grid is not None:
        #     # this is the inverse of the matlab code
        #     if type(occ_grid) is dict:
        #         self._occ_grid = occ_grid["map"]
        #         # self._w2g = self._T  # TODO
        #     else:
        #         self._occ_grid = occ_grid
        #         # self._w2g = SE2(0, 0, 0)
        self._occ_grid = occ_grid

        if inflate > 0:
            # Generate a circular structuring element
            r = inflate
            y, x = np.ogrid[-r: r+1, -r: r+1]
            SE = np.square(x) + np.square(y) <= np.square(r)
            SE = SE.astype(int)

            # do the inflation using SciPy
            self._occ_grid_nav = binary_dilation(self._occ_grid, SE)
        else:
            self._occ_grid_nav = self._occ_grid

        if goal is not None:
            self._goal = np.transpose(goal)

        # Simplification of matlab code
        self._privaterandom = np.random.default_rng(seed=seed)

        rs = np.random.RandomState()
        if seed is not None:
            rs = np.random.RandomState(seed)

        self._seed_0 = rs.get_state()
        self._rand_stream = rs
        self._w2g = transform
        self._spin_count = 0
    def SE2(self):
        """
        Convert 2D twist to SE(2) matrix

        :return: an SE(2) representation
        :rtype: SE3 instance

        ``S.SE2()`` is an SE2 object representing the homogeneous transformation 
        equivalent to the Twist2. This is the exponentiation of the twist vector.

        Example:
        
        .. runblock:: pycon

            >>> from spatialmath import Twist2
            >>> S = Twist2.Prismatic([1,2])
            >>> S.SE2()

        :seealso: :func:`Twist3.exp`
        """

        return SE2(self.exp())