gridspec_kw={ "wspace": 0, "hspace": 0 }) # Loop over the data and plot them for path, gauss, axs_here in zip(files, gauss_all, axs): # Loop over the Bayer RGBG2 channels for j, (ax, D, c) in enumerate(zip(axs_here, gauss, plot.rgbg2)): # Plot the image img = ax.imshow(D, cmap=plot.cmaps[c + "r"], vmin=vmin, vmax=vmax) # Remove the x- and y-axes ax.set_xticks([]) ax.set_yticks([]) # For the lowest row only, add a colorbar if ax is axs[-1, j]: colorbar_here = plot.colorbar(img) if ax is axs_here[1]: colorbar_here.set_label(colorbar_label) colorbar_here.locator = plot.ticker.MaxNLocator(nbins=3) colorbar_here.update_ticks() # Save the figure fig.savefig(save_to) plt.close() print(f"Saved figure to '{save_to}'")
# Plot parameters ax.set_xticks([]) ax.set_yticks([]) ax.set_title(label) # Include a colorbar # Left-most map has a colorbar on the left if ax is axs[0]: loc = "left" # Right-most map has a colorbar on the right elif ax is axs[-1]: loc = "right" # Any other maps have a colorbar on the bottom else: loc = "bottom" cbar = plot.colorbar(im, location=loc, label="Gain (ADU/e$^-$)") # Print the range of gain values found in this map percentile_low, percentile_high = analyse.symmetric_percentiles( data_RGBG) print(label) print(f"{c_label:>2}: {percentile_low:.2f} -- {percentile_high:.2f}") # Save the figure save_to_map_c = save_folder / f"gain_map_{c_label}.pdf" fig.savefig(save_to_map_c) plt.close() print(f"Saved gain map for the {c_label} channel to '{save_to_map_c}'") # Plot a histogram fig, axs = plt.subplots(ncols=len(files),