Beispiel #1
0
def test_decimate():
    x = np.random.randn(16000, 3)
    y = decimate(x)
Beispiel #2
0
def run(raw_data=None, experiment=None, prm=None, probe=None,
        _debug=False, convert_only=False):
    """This main function takes raw data (either as a RawReader, or a path
    to a filename, or an array) and executes the main algorithm (filtering,
    spike detection, extraction...)."""
    assert experiment is not None, ("An Experiment instance needs to be "
        "provided in order to write the output.")

    # Create file logger for the experiment.
    LOGGER_FILE = create_file_logger(experiment.gen_filename('log'))

    # Get parameters from the PRM dictionary.
    chunk_size = prm.get('chunk_size', None)
    chunk_overlap = prm.get('chunk_overlap', 0)
    nchannels = prm.get('nchannels', None)

    # Ensure a RawDataReader is instantiated.
    if raw_data is not None:
        if not isinstance(raw_data, BaseRawDataReader):
            raw_data = read_raw(raw_data, nchannels=nchannels)
    else:
        raw_data = read_raw(experiment)

    # Log.
    if convert_only:
        info("Starting file conversion only. Klusta version {1:s}, on {0:s}".format((str(raw_data)), spikedetekt2.__version__))
        info("Running spike detection on a single chunk of spikes only, so as to have some information")
        first_chunk_detected = False # horrible hack - detects spikes on one chunk only so KV doesn't complain
    else:
        info("Starting SpikeDetekt version {1:s} on {0:s}".format((str(raw_data)), spikedetekt2.__version__))
    debug("Parameters: \n" + (display_params(prm)))

    # Get the bandpass filter.
    filter = bandpass_filter(**prm)

    if not (convert_only and first_chunk_detected):
        # Compute the strong threshold across excerpts uniformly scattered across the
        # whole recording.
        threshold = get_threshold(raw_data, filter=filter,
                                  channels=probe.channels, **prm)
        assert not np.isnan(threshold.weak).any()
        assert not np.isnan(threshold.strong).any()
        debug("Threshold: " + str(threshold))

        # Debug module.
        diagnostics_path = prm.get('diagnostics_path', None)
        if diagnostics_path:
            diagnostics_mod = _import_module(diagnostics_path)
            if not hasattr(diagnostics_mod, 'diagnostics'):
                raise ValueError("The diagnostics module must implement a "
                                 "'diagnostics()' function.")
            diagnostics_fun = diagnostics_mod.diagnostics
        else:
            diagnostics_fun = None


    # Progress bar.
    progress_bar = ProgressReporter(period=30.)
    nspikes = 0

    # Loop through all chunks with overlap.
    for chunk in raw_data.chunks(chunk_size=chunk_size,
                                 chunk_overlap=chunk_overlap,):
        # Log.
        debug("Processing chunk {0:s}...".format(chunk))

        nsamples = chunk.nsamples
        rec = chunk.recording
        nrecs = chunk.nrecordings
        s_end = chunk.s_end

        # Filter the (full) chunk.
        chunk_raw = chunk.data_chunk_full  # shape: (nsamples, nchannels)
        chunk_fil = apply_filter(chunk_raw, filter=filter)

        i = chunk.keep_start - chunk.s_start
        j = chunk.keep_end - chunk.s_start

        # Add the data to the KWD files.
        if prm.get('save_raw', False):
            # Do not append the raw data to the .kwd file if we're already reading
            # from the .kwd file.
            if not isinstance(raw_data, (KwdRawDataReader, ExperimentRawDataReader)):
                # Save raw data.
                experiment.recordings[chunk.recording].raw.append(convert_dtype(chunk.data_chunk_keep, np.int16))

        if prm.get('save_high', False):
            # Save high-pass filtered data: need to remove the overlapping
            # sections.
            chunk_fil_keep = chunk_fil[i:j,:]
            experiment.recordings[chunk.recording].high.append(convert_dtype(chunk_fil_keep, np.int16))

        if prm.get('save_low', True):
            # Save LFP.
            chunk_low = decimate(chunk_raw)
            chunk_low_keep = chunk_low[i//16:j//16,:]
            experiment.recordings[chunk.recording].low.append(convert_dtype(chunk_low_keep, np.int16))

        if not (convert_only and first_chunk_detected):
            # Apply thresholds.
            chunk_detect, chunk_threshold = apply_threshold(chunk_fil,
                threshold=threshold, **prm)

            # Remove dead channels.
            dead = np.setdiff1d(np.arange(nchannels), probe.channels)
            chunk_detect[:,dead] = 0
            chunk_threshold.strong[:,dead] = 0
            chunk_threshold.weak[:,dead] = 0

            # Find connected component (strong threshold). Return list of
            # Component instances.
            components = connected_components(
                chunk_strong=chunk_threshold.strong,
                chunk_weak=chunk_threshold.weak,
                probe_adjacency_list=probe.adjacency_list,
                chunk=chunk, **prm)

            # Now we extract the spike in each component.
            waveforms = extract_waveforms(chunk_detect=chunk_detect,
                threshold=threshold, chunk_fil=chunk_fil, chunk_raw=chunk_raw,
                probe=probe, components=components, **prm)

            # DEBUG module.
            # Execute the debug script.
            if diagnostics_fun:
                try:
                    diagnostics_fun(**locals())
                except Exception as e:
                    warn("The diagnostics module failed: " + e.message)

            # Log number of spikes in the chunk.
            nspikes += len(waveforms)

            # We sort waveforms by increasing order of fractional time.
            [add_waveform(experiment, waveform) for waveform in sorted(waveforms)]

            first_chunk_detected = True

        # Update the progress bar.
        progress_bar.update(rec/float(nrecs) + (float(s_end) / (nsamples*nrecs)),
            '%d spikes found.' % (nspikes))

        # DEBUG: keep only the first shank.
        if _debug:
            break

    # Feature extraction.
    save_features(experiment, **prm)

    close_file_logger(LOGGER_FILE)
    progress_bar.finish()
Beispiel #3
0
def run(raw_data=None, experiment=None, prm=None, probe=None,
        _debug=False, convert_only=False):
    """This main function takes raw data (either as a RawReader, or a path
    to a filename, or an array) and executes the main algorithm (filtering,
    spike detection, extraction...)."""
    assert experiment is not None, ("An Experiment instance needs to be "
        "provided in order to write the output.")

    # Create file logger for the experiment.
    LOGGER_FILE = create_file_logger(experiment.gen_filename('log'))

    # Get parameters from the PRM dictionary.
    chunk_size = prm.get('chunk_size', None)
    chunk_overlap = prm.get('chunk_overlap', 0)
    nchannels = prm.get('nchannels', None)

    # Ensure a RawDataReader is instantiated.
    if raw_data is not None:
        if not isinstance(raw_data, BaseRawDataReader):
            raw_data = read_raw(raw_data, nchannels=nchannels)
    else:
        raw_data = read_raw(experiment)

    # Log.
    if convert_only:
        info("Starting file conversion only. Klusta version {1:s}, on {0:s}".format((str(raw_data)), spikedetekt2.__version__))
        info("Running spike detection on a single chunk of spikes only, so as to have some information")
        first_chunk_detected = False # horrible hack - detects spikes on one chunk only so KV doesn't complain
    else:
        info("Starting SpikeDetekt version {1:s} on {0:s}".format((str(raw_data)), spikedetekt2.__version__))
    debug("Parameters: \n" + (display_params(prm)))

    # Get the bandpass filter.
    filter = bandpass_filter(**prm)

    if not (convert_only and first_chunk_detected):
        # Compute the strong threshold across excerpts uniformly scattered across the
        # whole recording.
        threshold = get_threshold(raw_data, filter=filter,
                                  channels=probe.channels, **prm)
        assert not np.isnan(threshold.weak).any()
        assert not np.isnan(threshold.strong).any()
        debug("Threshold: " + str(threshold))

        # Debug module.
        diagnostics_path = prm.get('diagnostics_path', None)
        if diagnostics_path:
            diagnostics_mod = _import_module(diagnostics_path)
            if not hasattr(diagnostics_mod, 'diagnostics'):
                raise ValueError("The diagnostics module must implement a "
                                 "'diagnostics()' function.")
            diagnostics_fun = diagnostics_mod.diagnostics
        else:
            diagnostics_fun = None


    # Progress bar.
    progress_bar = ProgressReporter(period=30.)
    nspikes = 0

    # Loop through all chunks with overlap.
    for chunk in raw_data.chunks(chunk_size=chunk_size,
                                 chunk_overlap=chunk_overlap,):
        # Log.
        debug("Processing chunk {0:s}...".format(chunk))

        nsamples = chunk.nsamples
        rec = chunk.recording
        nrecs = chunk.nrecordings
        s_end = chunk.s_end

        # Filter the (full) chunk.
        chunk_raw = chunk.data_chunk_full  # shape: (nsamples, nchannels)
        chunk_fil = apply_filter(chunk_raw, filter=filter)

        i = chunk.keep_start - chunk.s_start
        j = chunk.keep_end - chunk.s_start

        # Add the data to the KWD files.
        if prm.get('save_raw', False):
            # Do not append the raw data to the .kwd file if we're already reading
            # from the .kwd file.
            if not isinstance(raw_data, (KwdRawDataReader, ExperimentRawDataReader)):
                # Save raw data.
                experiment.recordings[chunk.recording].raw.append(convert_dtype(chunk.data_chunk_keep, np.int16))

        if prm.get('save_high', False):
            # Save high-pass filtered data: need to remove the overlapping
            # sections.
            chunk_fil_keep = chunk_fil[i:j,:]
            experiment.recordings[chunk.recording].high.append(convert_dtype(chunk_fil_keep, np.int16))

        if prm.get('save_low', True):
            # Save LFP.
            chunk_low = decimate(chunk_raw)
            chunk_low_keep = chunk_low[i//16:j//16,:]
            experiment.recordings[chunk.recording].low.append(convert_dtype(chunk_low_keep, np.int16))

        if not (convert_only and first_chunk_detected):
            # Apply thresholds.
            chunk_detect, chunk_threshold = apply_threshold(chunk_fil,
                threshold=threshold, **prm)

            # Remove dead channels.
            dead = np.setdiff1d(np.arange(nchannels), probe.channels)
            chunk_detect[:,dead] = 0
            chunk_threshold.strong[:,dead] = 0
            chunk_threshold.weak[:,dead] = 0

            # Find connected component (strong threshold). Return list of
            # Component instances.
            components = connected_components(
                chunk_strong=chunk_threshold.strong,
                chunk_weak=chunk_threshold.weak,
                probe_adjacency_list=probe.adjacency_list,
                chunk=chunk, **prm)

            # Now we extract the spike in each component.
            waveforms = extract_waveforms(chunk_detect=chunk_detect,
                threshold=threshold, chunk_fil=chunk_fil, chunk_raw=chunk_raw,
                probe=probe, components=components, **prm)

            # DEBUG module.
            # Execute the debug script.
            if diagnostics_fun:
                try:
                    diagnostics_fun(**locals())
                except Exception as e:
                    warn("The diagnostics module failed: " + e.message)

            # Log number of spikes in the chunk.
            nspikes += len(waveforms)

            # We sort waveforms by increasing order of fractional time.
            [add_waveform(experiment, waveform) for waveform in sorted(waveforms)]

            first_chunk_detected = True

        # Update the progress bar.
        progress_bar.update(rec/float(nrecs) + (float(s_end) / (nsamples*nrecs)),
            '%d spikes found.' % (nspikes))

        # DEBUG: keep only the first shank.
        if _debug:
            break

    # Feature extraction.
    save_features(experiment, **prm)

    close_file_logger(LOGGER_FILE)
    progress_bar.finish()
def test_decimate():
    x = np.random.randn(16000, 3)
    y = decimate(x)