Beispiel #1
0
def main():
  # Testing the get points
  num_splines = 10
  num_dados = 1000
  x_min = 0
  x_max = 10
  lmbda = 100

  # Generate a random spline to get samples from it
  weights = np.random.rand(num_splines)
  spl = spline(weights, x_min=x_min, x_max=x_max)

  # Get samples with noise
  t, x_t, spl_t = get_points(num_dados, num_splines, spl, x_min, x_max)

  if num_dados < 1000:
    plt.scatter(t, x_t, label="Simulated with noise", color=np.random.rand(3,))
  plt.plot(t, spl_t, label="Original data")
  plt.xlabel("t")
  plt.ylabel("spl(t)")
  plt.title("Dados")

  # Interpolate the samples
  res = interpolate(t, x_t, num_splines, lmbda)
  new_spline = spline(res, x_min=x_min, x_max=x_max)

  plt.plot(t, new_spline(t), label="Simulated curve")
  plt.legend(loc="upper right")
  plt.show()
Beispiel #2
0
def interpolate(x, y, num_splines, lmbda):
  default_spl = spline(np.ones(num_splines), x_min=x[0], x_max=x[-1])
  mu = np.zeros((len(x), num_splines))
  for i in range(len(x)):
      for j in range(num_splines):
          mu[i][j] = default_spl.beta_j(j, x[i])
  m_1 = mu.T@mu
  b = [email protected]
  m_2 = matrix_m2(num_splines)
  M = m_1 + lmbda*m_2
  res = np.linalg.solve(M, b)
  return res
Beispiel #3
0
def points_random_noise(timeline, n_data_points, n_splines, x_min, x_max):
    # Gera pesos aleatórios e cria uma spline a partir deles
    rand_weights = np.array(np.random.rand(n_splines))
    rand_spline = spl.spline(rand_weights,
                             x_min=timeline[0],
                             x_max=timeline[-1])(timeline)

    # Adiciona ruído aos pontos da spline gerada
    sigma = np.std(rand_spline) / 5
    noise = np.array(np.random.normal(0, sigma, n_data_points))
    points_generated = rand_spline + noise
    return points_generated
Beispiel #4
0
def main(n_data_points=350, n_splines=14, lmb=0.1, x_min=0, x_max=50):
    timeline = np.linspace(x_min, x_max, n_data_points)
    points = points_random_noise(timeline, n_data_points, n_splines, x_min,
                                 x_max)

    adjusted = adjust_spline(timeline, points, n_splines, lmb)

    points_with_noise = plt.scatter(timeline, points, s=3.0, color="green")

    generated_spline = plt.plot(timeline,
                                spl.spline(adjusted, timeline[0],
                                           timeline[-1])(timeline),
                                color='red')
    plt.show()
Beispiel #5
0
def adjust_spline(timeline, x_t, num_splines, lmb):
    # Cria uma spline "base", com coeficientes iguais a 1 para usar os beta_j's
    base_spline = spl.spline(np.ones(num_splines),
                             x_min=timeline[0],
                             x_max=timeline[-1])

    mu_aux = []
    for j in range(num_splines):
        mu_aux.append(base_spline.beta_j(j, timeline))
    mu = np.array(mu_aux).T

    m1 = np.dot(mu.T, mu)
    y = np.dot(mu.T, x_t.T)
    m2 = spl.matrix_m2(num_splines)
    M = m1 + lmb * m2

    # Resolve o sistema linear e retorna a solução
    adjusted = np.linalg.solve(M, y)
    return adjusted
Beispiel #6
0
def sphere_best_mobility_known(location, ETA, A):
    '''Best mobility known for a single sphere close to a wall. This function uses the mobilities
  translational-perpendicular: P. Huang and K. S. Breuer PRE 76, 046307 (2007).

  translational-parallel: for distances very close to the wall 
                          A. J. Goldman, R. G. Cox and H. Brenner, Chemical engineering science, 22, 637 (1967).
                          For other distances
                          L. P. Fauxcheux and A. J. Libchaber PRE 49, 5158 (1994).

  rotational-perpendicular:      Cubic spline fit to the mobility of a sphere discretize with 162 markers.
  rotational-parallel:           Cubic spline fit to the mobility of a sphere discretize with 162 markers.
  rotation-translation-coupling: Cubic spline fit to the mobility of a sphere discretize with 162 markers.
  '''

    # Init the function the first time
    try:
        # Check if the spline function has been called
        sphere_best_mobility_known.init += 1e-01
    except:
        # Exception to call the spline function only once per mobility component
        sphere_best_mobility_known.init = 1e-01

        # Create variables to store mobilities:
        # distance to the wall
        sphere_best_mobility_known.mX = []

        # Mobilities
        sphere_best_mobility_known.mRotationRotationParallel = []
        sphere_best_mobility_known.mRotationRotationPerpendicular = []
        sphere_best_mobility_known.mRotationTranslationCoupling = []

        # Read 162-blobs sphere mobility.
        # rotational-roational mobility is normalize by (8*pi*ETA*A**3)
        # rotational-translation mobility is normalize by (6*pi*ETA*A**2)
        f = open('mobility.162-blob.dat', 'r')
        next(f)
        for line in f:
            data = line.split()

            # distance to the wall
            sphere_best_mobility_known.mX.append(float(data[0]))

            # Mobilities
            sphere_best_mobility_known.mRotationRotationParallel.append(
                float(data[3]))
            sphere_best_mobility_known.mRotationRotationPerpendicular.append(
                float(data[4]))
            sphere_best_mobility_known.mRotationTranslationCoupling.append(
                float(data[5]))

        # Create second derivative of mobility finctions
        # Call spline function
        sphere_best_mobility_known.mRotationRotationParallel_y2 = splines.spline(
            sphere_best_mobility_known.mX,
            sphere_best_mobility_known.mRotationRotationParallel,
            len(sphere_best_mobility_known.mX), 1e+30, 1e+30)
        sphere_best_mobility_known.mRotationRotationPerpendicular_y2 = splines.spline(
            sphere_best_mobility_known.mX,
            sphere_best_mobility_known.mRotationRotationPerpendicular,
            len(sphere_best_mobility_known.mX), 1e+30, 1e+30)
        sphere_best_mobility_known.mRotationTranslationCoupling_y2 = splines.spline(
            sphere_best_mobility_known.mX,
            sphere_best_mobility_known.mRotationTranslationCoupling,
            len(sphere_best_mobility_known.mX), 1e+30, 1e+30)

    # Compute mobilities
    # define threshold, at this distance the parallel mobilities
    # of Goldman and Feucheux cross
    threshold = 1.02979 * A

    # distance to the wall
    h = location[2]

    # dimensional factors
    factor_tt = 1.0 / (6.0 * np.pi * ETA * A)
    factor_rr = 1.0 / (8.0 * np.pi * ETA * A**3)
    factor_tr = 1.0 / (6.0 * np.pi * ETA * A**2)

    fluid_mobility = np.zeros([6, 6])

    # translation-translation perpendicular to the wall
    fluid_mobility[2, 2] = factor_tt * Huang.selfMobilityHuang(A, h)[1]

    # translation-translation parallel to the wall
    if (h < threshold):
        mobility = factor_tt * Goldman.selfMobilityGoldman(A, h)[0, 0]
        fluid_mobility[0, 0] = mobility
        fluid_mobility[1, 1] = mobility
    else:
        mobility = factor_tt * Faucheux.selfMobilityFaucheux(A, h)
        fluid_mobility[0, 0] = mobility
        fluid_mobility[1, 1] = mobility

    # Rescale distance to the wall, splines are for a sphere of radius 1
    h = h / A

    # rotation-rotation parallel to the wall
    mobility = factor_rr * splines.splint(
        sphere_best_mobility_known.mX,
        sphere_best_mobility_known.mRotationRotationParallel,
        sphere_best_mobility_known.mRotationRotationParallel_y2,
        len(sphere_best_mobility_known.mX), h)
    fluid_mobility[3, 3] = mobility
    fluid_mobility[4, 4] = mobility

    # rotation-rotation perpendicular to the wall
    mobility = factor_rr * splines.splint(
        sphere_best_mobility_known.mX,
        sphere_best_mobility_known.mRotationRotationPerpendicular,
        sphere_best_mobility_known.mRotationRotationPerpendicular_y2,
        len(sphere_best_mobility_known.mX), h)
    fluid_mobility[5, 5] = mobility

    # rotation-translation coupling
    mobility = factor_tr * splines.splint(
        sphere_best_mobility_known.mX,
        sphere_best_mobility_known.mRotationTranslationCoupling,
        sphere_best_mobility_known.mRotationTranslationCoupling_y2,
        len(sphere_best_mobility_known.mX), h)
    fluid_mobility[0, 4] = mobility
    fluid_mobility[1, 3] = mobility
    fluid_mobility[3, 1] = mobility
    fluid_mobility[4, 0] = mobility

    return fluid_mobility
def sphere_best_mobility_known(location, ETA, A):
  '''Best mobility known for a single sphere close to a wall. This function uses the mobilities
  translational-perpendicular: P. Huang and K. S. Breuer PRE 76, 046307 (2007).

  translational-parallel: for distances very close to the wall 
                          A. J. Goldman, R. G. Cox and H. Brenner, Chemical engineering science, 22, 637 (1967).
                          For other distances
                          L. P. Fauxcheux and A. J. Libchaber PRE 49, 5158 (1994).

  rotational-perpendicular:      Cubic spline fit to the mobility of a sphere discretize with 162 markers.
  rotational-parallel:           Cubic spline fit to the mobility of a sphere discretize with 162 markers.
  rotation-translation-coupling: Cubic spline fit to the mobility of a sphere discretize with 162 markers.
  '''
  
  # Init the function the first time
  try:
    # Check if the spline function has been called
    sphere_best_mobility_known.init += 1e-01
  except:
    # Exception to call the spline function only once per mobility component
    sphere_best_mobility_known.init = 1e-01 

    # Create variables to store mobilities:
    # distance to the wall
    sphere_best_mobility_known.mX = []

    # Mobilities
    sphere_best_mobility_known.mRotationRotationParallel = []
    sphere_best_mobility_known.mRotationRotationPerpendicular = []
    sphere_best_mobility_known.mRotationTranslationCoupling = []

    # Read 162-blobs sphere mobility.
    # rotational-roational mobility is normalize by (8*pi*ETA*A**3)
    # rotational-translation mobility is normalize by (6*pi*ETA*A**2)
    f = open('mobility.162-blob.dat', 'r')
    next(f)
    for line in f:
      data = line.split()

      # distance to the wall
      sphere_best_mobility_known.mX.append(float(data[0]))
      
      # Mobilities
      sphere_best_mobility_known.mRotationRotationParallel.append(float(data[3]))
      sphere_best_mobility_known.mRotationRotationPerpendicular.append(float(data[4]))
      sphere_best_mobility_known.mRotationTranslationCoupling.append(float(data[5]))
      
      
      
    # Create second derivative of mobility finctions 
    # Call spline function 
    sphere_best_mobility_known.mRotationRotationParallel_y2 = splines.spline(sphere_best_mobility_known.mX, 
                                                                             sphere_best_mobility_known.mRotationRotationParallel, 
                                                                             len(sphere_best_mobility_known.mX), 
                                                                             1e+30, 
                                                                             1e+30) 
    sphere_best_mobility_known.mRotationRotationPerpendicular_y2 = splines.spline(sphere_best_mobility_known.mX, 
                                                                                  sphere_best_mobility_known.mRotationRotationPerpendicular, 
                                                                                  len(sphere_best_mobility_known.mX), 
                                                                                  1e+30, 
                                                                                  1e+30) 
    sphere_best_mobility_known.mRotationTranslationCoupling_y2 = splines.spline(sphere_best_mobility_known.mX, 
                                                                                sphere_best_mobility_known.mRotationTranslationCoupling, 
                                                                                len(sphere_best_mobility_known.mX), 
                                                                                1e+30, 
                                                                                1e+30) 
    


  # Compute mobilities 
  # define threshold, at this distance the parallel mobilities
  # of Goldman and Feucheux cross
  threshold = 1.02979 * A
  
  # distance to the wall
  h = location[2]

  # dimensional factors
  factor_tt = 1.0 / (6.0*np.pi*ETA*A)
  factor_rr = 1.0 / (8.0*np.pi*ETA*A**3)
  factor_tr = 1.0 / (6.0*np.pi*ETA*A**2)

  fluid_mobility = np.zeros( [6, 6] )
  
  # translation-translation perpendicular to the wall
  fluid_mobility[2,2] = factor_tt * Huang.selfMobilityHuang(A,h)[1]

  # translation-translation parallel to the wall
  if(h < threshold):
    mobility = factor_tt * Goldman.selfMobilityGoldman(A, h)[0,0]
    fluid_mobility[0,0] = mobility
    fluid_mobility[1,1] = mobility
  else:
    mobility = factor_tt * Faucheux.selfMobilityFaucheux(A, h)
    fluid_mobility[0,0] = mobility
    fluid_mobility[1,1] = mobility

  # Rescale distance to the wall, splines are for a sphere of radius 1
  h = h / A

  # rotation-rotation parallel to the wall
  mobility = factor_rr * splines.splint(sphere_best_mobility_known.mX, 
                                        sphere_best_mobility_known.mRotationRotationParallel, 
                                        sphere_best_mobility_known.mRotationRotationParallel_y2, 
                                        len(sphere_best_mobility_known.mX), 
                                        h)
  fluid_mobility[3,3] = mobility
  fluid_mobility[4,4] = mobility

  # rotation-rotation perpendicular to the wall
  mobility = factor_rr * splines.splint(sphere_best_mobility_known.mX, 
                                        sphere_best_mobility_known.mRotationRotationPerpendicular, 
                                        sphere_best_mobility_known.mRotationRotationPerpendicular_y2, 
                                        len(sphere_best_mobility_known.mX), 
                                        h)
  fluid_mobility[5,5] = mobility

  # rotation-translation coupling
  mobility = factor_tr * splines.splint(sphere_best_mobility_known.mX, 
                                        sphere_best_mobility_known.mRotationTranslationCoupling, 
                                        sphere_best_mobility_known.mRotationTranslationCoupling_y2, 
                                        len(sphere_best_mobility_known.mX), 
                                        h)
  fluid_mobility[0,4] = mobility
  fluid_mobility[1,3] = mobility
  fluid_mobility[3,1] = mobility
  fluid_mobility[4,0] = mobility


  
  return fluid_mobility
Beispiel #8
0
import splines as sp
import numpy as np
import matplotlib.pyplot as plt

# a função original
n_weights = 10
w = np.random.randn(n_weights)
x = np.arange(0, 15.01, 0.01)
s = sp.spline(w, x.min(), x.max())
y = s(x)
label1, = plt.plot(x, y, c='g')

# criação de amostras com ruídos
x = np.arange(0, 15.5, 0.5)
n_samples = x.shape[0]
noise = np.random.normal(loc=0.0, scale=20, size=n_samples)
y = s(x) + noise
label2 = plt.scatter(x, y, c='r', marker='x')

# matriz B
B = np.zeros((n_samples, n_weights))
for i in range(n_samples):
    for j in range(n_weights):
        B[i, j] = s.beta_j(j, x[i])

# suavizador
M2 = sp.matrix_m2(n_weights)

b = B.T.dot(y)
M1 = B.T.dot(B)