Beispiel #1
0
 def test_13(self):
     Nr = 32
     Nc = 31
     Nd = 5
     M = 4
     D = np.random.randn(Nd, Nd, M).astype(np.float32)
     s = np.random.randn(Nr, Nc).astype(np.float32)
     frc = 0.5
     msk = su.rndmask(s.shape, frc, dtype=np.float32)
     s *= msk
     lmbda = 1e-1
     mu = 1e-2
     Wl1 = np.random.randn(1, 1, M).astype(np.float32)
     Wl1i = np.concatenate((Wl1, np.ones(Wl1.shape[0:-1] + (1,))),
                           axis=-1)
     Wgrdi = np.hstack((np.ones(M,), np.zeros((1,))))
     opt = cbpdn.ConvBPDNGradReg.Options({'Verbose': False,
             'MaxMainIter': 50, 'AutoRho': {'Enabled': False}})
     opt['L1Weight'] = Wl1i
     opt['GradWeight'] = Wgrdi
     b = cbpdn.AddMaskSim(cbpdn.ConvBPDNGradReg, D, s, msk, lmbda, mu, opt)
     X1 = b.solve()
     opt['L1Weight'] = Wl1
     opt['GradWeight'] = 1.0
     X2 = cucbpdn.cbpdngrdmsk(D, s, msk, lmbda, mu, opt)
     assert(sm.mse(X1, X2) < 1e-10)
Beispiel #2
0
 def test_12(self):
     Nr = 32
     Nc = 31
     Nd = 5
     M = 4
     D = np.random.randn(Nd, Nd, M).astype(np.float32)
     s = np.random.randn(Nr, Nc).astype(np.float32)
     frc = 0.5
     msk = su.rndmask(s.shape, frc, dtype=np.float32)
     s *= msk
     lmbda = 1e-1
     mu = 1e-2
     # Since cucbpdn.cbpdngrdmsk automatically ensures that the ℓ2 of
     # gradient term is not applied to the AMS impulse filter, while
     # cbpdn.AddMaskSim does not, we have to pass a GradWeight array
     # with a zero entry corresponding to the AMS impulse filter to
     # cbpdn.AddMaskSim
     Wgrdi = np.hstack((np.ones(M,), np.zeros((1,))))
     opt = cbpdn.ConvBPDNGradReg.Options({'Verbose': False,
             'MaxMainIter': 50, 'AutoRho': {'Enabled': False}})
     opt['GradWeight'] = Wgrdi
     b = cbpdn.AddMaskSim(cbpdn.ConvBPDNGradReg, D, s, msk, lmbda, mu, opt)
     X1 = b.solve()
     opt['GradWeight'] = 1.0
     X2 = cucbpdn.cbpdngrdmsk(D, s, msk, lmbda, mu, opt)
     assert(sm.mse(X1, X2) < 1e-10)
Beispiel #3
0
 def test_14(self):
     Nr = 32
     Nc = 31
     Nd = 5
     M = 4
     D = np.random.randn(Nd, Nd, M).astype(np.float32)
     s = np.random.randn(Nr, Nc).astype(np.float32)
     frc = 0.5
     msk = su.rndmask(s.shape, frc, dtype=np.float32)
     s *= msk
     lmbda = 1e-1
     mu = 1e-2
     # Create a random ℓ2 of gradient term weighting array. There is no
     # need to extend this array to account for the AMS impulse filter
     # since this is taken care of automatically by cucbpdn.cbpdngrdmsk
     Wgrd = np.random.randn(M).astype(np.float32)
     # Append a zero entry to the GradWeight array, corresponding to
     # the impulse filter appended to the dictionary by cbpdn.AddMaskSim,
     # since this is not done automatically by cbpdn.AddMaskSim
     Wgrdi = np.hstack((Wgrd, np.zeros((1,))))
     opt = cbpdn.ConvBPDNGradReg.Options({'Verbose': False,
             'MaxMainIter': 50, 'AutoRho': {'Enabled': False}})
     opt['GradWeight'] = Wgrdi
     b = cbpdn.AddMaskSim(cbpdn.ConvBPDNGradReg, D, s, msk, lmbda, mu, opt)
     X1 = b.solve()
     opt['GradWeight'] = Wgrd
     X2 = cucbpdn.cbpdngrdmsk(D, s, msk, lmbda, mu, opt)
     assert(sm.mse(X1, X2) < 1e-10)
Beispiel #4
0
 def test_13(self):
     Nr = 32
     Nc = 31
     Nd = 5
     M = 4
     D = np.random.randn(Nd, Nd, M).astype(np.float32)
     s = np.random.randn(Nr, Nc).astype(np.float32)
     frc = 0.5
     msk = su.rndmask(s.shape, frc, dtype=np.float32)
     s *= msk
     lmbda = 1e-1
     mu = 1e-2
     # Create a random ℓ1 term weighting array. There is no need to
     # extend this array to account for the AMS impulse filter since
     # this is taken care of automatically by cucbpdn.cbpdngrdmsk
     Wl1 = np.random.randn(1, 1, M).astype(np.float32)
     # Append a zero entry to the L1Weight array, corresponding to
     # the impulse filter appended to the dictionary by cbpdn.AddMaskSim,
     # since this is not done automatically by cbpdn.AddMaskSim
     Wl1i = np.concatenate((Wl1, np.zeros(Wl1.shape[0:-1] + (1, ))),
                           axis=-1)
     # Since cucbpdn.cbpdngrdmsk automatically ensures that the ℓ2 of
     # gradient term is not applied to the AMS impulse filter, while
     # cbpdn.AddMaskSim does not, we have to pass a GradWeight array
     # with a zero entry corresponding to the AMS impulse filter to
     # cbpdn.AddMaskSim
     Wgrdi = np.hstack((np.ones(M, ), np.zeros((1, ))))
     opt = cbpdn.ConvBPDNGradReg.Options({
         'Verbose': False,
         'MaxMainIter': 50,
         'AutoRho': {
             'Enabled': False
         }
     })
     opt['L1Weight'] = Wl1i
     opt['GradWeight'] = Wgrdi
     b = cbpdn.AddMaskSim(cbpdn.ConvBPDNGradReg, D, s, msk, lmbda, mu, opt)
     X1 = b.solve()
     opt['L1Weight'] = Wl1
     opt['GradWeight'] = 1.0
     X2 = cucbpdn.cbpdngrdmsk(D, s, msk, lmbda, mu, opt)
     assert (sm.mse(X1, X2) < 1e-10)
Beispiel #5
0
opt = cbpdn.ConvBPDNGradReg.Options({'Verbose': True, 'MaxMainIter': 20,
                    'HighMemSolve': True, 'LinSolveCheck': False,
                    'RelStopTol': 2e-3, 'AuxVarObj': False,
                    'AutoRho': {'Enabled': False}})


# Initialise and run AddMaskSim/ConvBPDNGradReg object
opt['GradWeight'] = wgrd
b = cbpdn.AddMaskSim(cbpdn.ConvBPDNGradReg, D, shw, msk, lmbda, mu, opt)
X1 = b.solve()
print("AddMaskSim/ConvBPDNGradReg solve time: %.2fs" %
      b.timer.elapsed('solve'))


# Time CUDA AddMaskSim/ConvBPDNGradReg solve
opt['GradWeight'] = 1.0
t = util.Timer()
with util.ContextTimer(t):
    X2 = cucbpdn.cbpdngrdmsk(D, shw, msk, lmbda, mu, opt)
print("GPU AddMaskSim/ConvBPDNGradReg solve time: %.2fs" % t.elapsed())
print("GPU time improvement factor: %.1f" % (b.timer.elapsed('solve') /
                                             t.elapsed()))


# Compare CPU and GPU solutions
print("CPU solution:  min: %.4e  max: %.4e   l1: %.4e" %
          (X1.min(), X1.max(), np.sum(np.abs(X1))))
print("GPU solution:  min: %.4e  max: %.4e   l1: %.4e" %
          (X2.min(), X2.max(), np.sum(np.abs(X2))))
print("CPU/GPU MSE: %.2e  SNR: %.2f dB" % (sm.mse(X1, X2), sm.snr(X1, X2)))