class Stator(): """ Create a sprite for a stator """ def __init__(self, sprites, path, name, x, y, w, h, svg_engine=None, calculate=None, result=None): if svg_engine is None: self.spr = Sprite(sprites, x, y, file_to_pixbuf(path, name, w, h)) else: self.spr = Sprite(sprites, x, y, svg_str_to_pixbuf(svg_engine().svg)) self.spr.type = name self.name = name self.calculate = calculate self.result = result def draw(self, layer=1000): self.spr.set_layer(layer) def match(self, sprite): if self.spr == sprite: return True return False def move(self, dx, dy): self.spr.move((dx, dy)) def move_relative(self, dx, dy): self.spr.move_relative((dx, dy)) def hide(self): self.spr.hide()
class Slide(Stator): """ Create a sprite for a slide """ def __init__(self, sprites, path, name, x, y, w, h, svg_engine=None, function=None): if svg_engine is None: self.spr = Sprite(sprites, x, y, file_to_pixbuf(path, name, w, h)) else: self.spr = Sprite(sprites, x, y, svg_str_to_pixbuf(svg_engine().svg)) self.tab_dx = [0, SWIDTH - TABWIDTH] self.tab_dy = [2 * SHEIGHT, 2 * SHEIGHT] self.tabs = [] self.tabs.append(Tab(sprites, path, 'tab', x + self.tab_dx[0], y + self.tab_dy[0], TABWIDTH, SHEIGHT)) self.tabs.append(Tab(sprites, path, 'tab', x + self.tab_dx[1], y + self.tab_dy[1], TABWIDTH, SHEIGHT)) self.calculate = function self.name = name def add_textview(self, textview, i=0): self.tabs[i].textview = textview self.tabs[i].textbuffer = textview.get_buffer() def set_fixed(self, fixed): for tab in self.tabs: tab.fixed = fixed def match(self, sprite): if sprite == self.spr or sprite == self.tabs[0].spr or \ sprite == self.tabs[1].spr: return True return False def draw(self, layer=1000): self.spr.set_layer(layer) self.spr.draw() for tab in self.tabs: tab.draw() def move(self, dx, dy): self.spr.move((dx, dy)) for i, tab in enumerate(self.tabs): tab.move(dx + self.tab_dx[i], dy + self.tab_dy[i]) def move_relative(self, dx, dy): self.spr.move_relative((dx, dy)) for i, tab in enumerate(self.tabs): tab.move_relative(dx, dy) def hide(self): self.spr.hide() for tab in self.tabs: tab.hide() def label(self, label, i=0): self.tabs[i].label(label)
class Card: ''' Individual cards ''' def __init__(self, scale=1.0): ''' Create the card and store its attributes ''' self.spr = None self.index = None # Calculated index self._scale = scale def create(self, string, attributes=None, sprites=None, file_path=None): if attributes is None: if self.spr is None: self.spr = Sprite(sprites, 0, 0, svg_str_to_pixbuf(string)) else: self.spr.set_image(svg_str_to_pixbuf(string)) self.index = None else: self.shape = attributes[0] self.color = attributes[1] self.num = attributes[2] self.fill = attributes[3] self.index = self.shape * COLORS * NUMBER * FILLS + \ self.color * NUMBER * FILLS + \ self.num * FILLS + \ self.fill if self.spr is None: self.spr = Sprite(sprites, 0, 0, svg_str_to_pixbuf(string)) else: self.spr.set_image(svg_str_to_pixbuf(string, True)) if file_path is not None: self.spr.set_image(load_image(file_path, self._scale), i=1, dx=int(self._scale * CARD_WIDTH * .125), dy=int(self._scale * CARD_HEIGHT * .125)) self.spr.set_label_attributes(self._scale * 24) self.spr.set_label('') def show_card(self, layer=2000): ''' Show the card ''' if self.spr is not None: self.spr.set_layer(layer) self.spr.draw() def hide_card(self): ''' Hide a card ''' if self.spr is not None: self.spr.hide()
class Card: ''' Individual cards ''' def __init__(self, scale=1.0): ''' Create the card and store its attributes ''' self.spr = None self.index = None # Calculated index self._scale = scale def create(self, string, attributes=None, sprites=None, file_path=None): if attributes is None: if self.spr is None: self.spr = Sprite(sprites, 0, 0, svg_str_to_pixbuf(string)) else: self.spr.set_image(svg_str_to_pixbuf(string)) self.index = None else: self.shape = attributes[0] self.color = attributes[1] self.num = attributes[2] self.fill = attributes[3] self.index = self.shape * COLORS * NUMBER * FILLS + \ self.color * NUMBER * FILLS + \ self.num * FILLS + \ self.fill if self.spr is None: self.spr = Sprite(sprites, 0, 0, svg_str_to_pixbuf(string)) else: self.spr.set_image(svg_str_to_pixbuf(string)) if file_path is not None: self.spr.set_image(load_image(file_path, self._scale), i=1, dx=int(self._scale * CARD_WIDTH * .125), dy=int(self._scale * CARD_HEIGHT * .125)) self.spr.set_label_attributes(self._scale * 24) self.spr.set_label('') def show_card(self, layer=2000): ''' Show the card ''' if self.spr is not None: self.spr.set_layer(layer) self.spr.draw() def hide_card(self): ''' Hide a card ''' if self.spr is not None: self.spr.hide()
class Tab(): """ Create tabs for the slide; include a TextView for OSK input """ def __init__(self, sprites, path, name, x, y, w, h): self.spr = Sprite(sprites, x, y, file_to_pixbuf(path, name, w, h)) self.spr.label = "1.0" self.spr.type = name self.name = name self.width = w self.textview = None self.textbuffer = None self.fixed = None self.textview_y_offset = 0 def label(self, label): if self.textbuffer is not None: self.textbuffer.set_text(label) def _move_textview(self, x, y): y += self.textview_y_offset if self.textview is not None: if x > 0 and x < Gdk.Screen.width() - self.width and y > 0: self.fixed.move(self.textview, x, y) self.textview.show() else: self.textview.hide() def move(self, x, y): self.spr.move((x, y)) self._move_textview(x, y) def move_relative(self, dx, dy): self.spr.move_relative((dx, dy)) x, y = self.spr.get_xy() self._move_textview(x, y) def draw(self, layer=100): self.spr.set_layer(layer) self.spr.draw() x, y = self.spr.get_xy() self._move_textview(x, y) def hide(self): self.spr.hide()
class Selector(): ''' Selector class abstraction ''' def __init__(self, turtle_window, n): '''This class handles the display of palette selectors (Only relevant to GNOME version and very old versions of Sugar). ''' self.shapes = [] self.spr = None self._turtle_window = turtle_window self._index = n if not n < len(palette_names): # Shouldn't happen, but hey... debug_output('palette index %d is out of range' % n, self._turtle_window.running_sugar) self._name = 'extras' else: self._name = palette_names[n] icon_pathname = None for path in self._turtle_window.icon_paths: if os.path.exists(os.path.join(path, '%soff.svg' % (self._name))): icon_pathname = os.path.join(path, '%soff.svg' % (self._name)) break if icon_pathname is not None: off_shape = svg_str_to_pixbuf(svg_from_file(icon_pathname)) else: off_shape = svg_str_to_pixbuf(svg_from_file(os.path.join( self._turtle_window.icon_paths[0], 'extrasoff.svg'))) error_output('Unable to open %soff.svg' % (self._name), self._turtle_window.running_sugar) icon_pathname = None for path in self._turtle_window.icon_paths: if os.path.exists(os.path.join(path, '%son.svg' % (self._name))): icon_pathname = os.path.join(path, '%son.svg' % (self._name)) break if icon_pathname is not None: on_shape = svg_str_to_pixbuf(svg_from_file(icon_pathname)) else: on_shape = svg_str_to_pixbuf(svg_from_file(os.path.join( self._turtle_window.icon_paths[0], 'extrason.svg'))) error_output('Unable to open %son.svg' % (self._name), self._turtle_window.running_sugar) self.shapes.append(off_shape) self.shapes.append(on_shape) x = int(ICON_SIZE * self._index) self.spr = Sprite(self._turtle_window.sprite_list, x, 0, off_shape) self.spr.type = 'selector' self.spr.name = self._name self.set_layer() def set_shape(self, i): if self.spr is not None and i in [0, 1]: self.spr.set_shape(self.shapes[i]) def set_layer(self, layer=TAB_LAYER): if self.spr is not None: self.spr.set_layer(layer) def hide(self): if self.spr is not None: self.spr.hide()
class Game(): def __init__(self, canvas, parent=None, path=None): self._canvas = canvas self._parent = parent self._parent.show_all() self._path = path self._canvas.add_events(Gdk.EventMask.BUTTON_PRESS_MASK) self._canvas.connect("draw", self.__draw_cb) self._canvas.connect("button-press-event", self._button_press_cb) self._width = Gdk.Screen.width() self._height = Gdk.Screen.height() self._scale = self._width / 1200. self._target = 0 self._tries = 0 self.level = 0 self._picture_cards = [] self._small_picture_cards = [] self.food_cards = [] self._group_cards = [] self._quantity_cards = [] self._balance_cards = [] self._last_twenty = [] self._background = None # Generate the sprites we'll need... self._sprites = Sprites(self._canvas) self._background = Sprite( self._sprites, 0, 0, GdkPixbuf.Pixbuf.new_from_file_at_size( os.path.join(self._path, 'images','background.png'), self._width, self._height)) self._background.set_layer(0) self._background.type = None self._background.hide() self.pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_size( os.path.join(self._path, 'images', 'word-box.png'), int(350 * self._scale), int(100 * self._scale)) for i in range(len(FOOD_DATA) / 4): FOOD.append([FOOD_DATA[i * 4 + NAME], FOOD_DATA[i * 4 + CALS], FOOD_DATA[i * 4 + GROUP], FOOD_DATA[i * 4 + IMAGE]]) self.food_cards.append(None) self._picture_cards.append(None) for j in range(6): self._small_picture_cards.append(None) self.allocate_food(0) x = 10 dx, dy = self.food_cards[0].get_dimensions() y = 10 for i in range(len(MYPLATE)): self.word_card_append(self._group_cards, self.pixbuf) self._group_cards[-1].type = i self._group_cards[-1].set_label(MYPLATE[i][0]) self._group_cards[-1].move((x, y)) y += int(dy * 1.25) y = 10 for i in range(len(QUANTITIES)): self.word_card_append(self._quantity_cards, self.pixbuf) self._quantity_cards[-1].type = i self._quantity_cards[-1].set_label(QUANTITIES[i]) self._quantity_cards[-1].move((x, y)) y += int(dy * 1.25) y = 10 for i in range(len(BALANCE)): self.word_card_append(self._balance_cards, self.pixbuf) self._balance_cards[-1].type = i self._balance_cards[-1].set_label(BALANCE[i]) self._balance_cards[-1].move((x, y)) y += int(dy * 1.25) self._smile = Sprite(self._sprites, int(self._width / 4), int(self._height / 4), GdkPixbuf.Pixbuf.new_from_file_at_size( os.path.join(self._path, 'images', 'correct.png'), int(self._width / 2), int(self._height / 2))) self._smile.set_label_attributes(36) self._smile.set_margins(10, 0, 10, 0) self._frown = Sprite(self._sprites, int(self._width / 4), int(self._height / 4), GdkPixbuf.Pixbuf.new_from_file_at_size( os.path.join(self._path, 'images', 'wrong.png'), int(self._width / 2), int(self._height / 2))) self._frown.set_label_attributes(36) self._frown.set_margins(10, 0, 10, 0) self.build_food_groups() self._all_clear() def allocate_food(self, i): self.picture_append(os.path.join(self._path, 'images', FOOD_DATA[i * 4 + IMAGE]), i) self.small_picture_append(os.path.join(self._path, 'images', FOOD_DATA[i * 4 + IMAGE]), i) self.word_card_append(self.food_cards, self.pixbuf, i) self.food_cards[i].type = i self.food_cards[i].set_label(FOOD_DATA[i * 4 + NAME]) def word_card_append(self, card_list, pixbuf, i=-1): if i == -1: card_list.append(Sprite(self._sprites, 10, 10, pixbuf)) else: card_list[i] = Sprite(self._sprites, 10, 10, pixbuf) card_list[i].set_label_attributes(36) card_list[i].set_margins(10, 0, 10, 0) card_list[i].hide() def picture_append(self, path, i=-1): spr = Sprite( self._sprites, int(self._width / 2.), int(self._height / 4.), GdkPixbuf.Pixbuf.new_from_file_at_size( path, int(self._width / 3.), int(9 * self._width / 12.))) if i == -1: self._picture_cards.append(spr) else: self._picture_cards[i] = spr self._picture_cards[i].type = 'picture' self._picture_cards[i].hide() def small_picture_append(self, path, i=-1): x = int(self._width / 3.) y = int(self._height / 6.) pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_size( path, int(self._width / 6.), int(3 * self._width / 8.)) for j in range(6): # up to 6 of each card if i == -1: self._small_picture_cards.append(Sprite( self._sprites, x, y, pixbuf)) self._small_picture_cards[-1].type = 'picture' self._small_picture_cards[-1].hide() else: self._small_picture_cards[i * 6 + j] = Sprite( self._sprites, x, y, pixbuf) self._small_picture_cards[i * 6 + j].type = 'picture' self._small_picture_cards[i * 6 + j].hide() x += int(self._width / 6.) if j == 2: x = int(self._width / 3.) y += int(3 * self._width / 16.) def _all_clear(self): ''' Things to reinitialize when starting up a new game. ''' for p in self._picture_cards: if p is not None: p.hide() for p in self._small_picture_cards: if p is not None: p.hide() for i, w in enumerate(self.food_cards): if w is not None: w.set_label_color('black') w.set_label(FOOD[i][NAME]) w.hide() for i, w in enumerate(self._group_cards): w.set_label_color('black') w.set_label(MYPLATE[i][0]) w.hide() for i, w in enumerate(self._quantity_cards): w.set_label_color('black') w.set_label(QUANTITIES[i]) w.hide() for i, w in enumerate(self._balance_cards): w.set_label_color('black') w.set_label(BALANCE[i]) w.hide() self._smile.hide() self._frown.hide() self._background.set_layer(1) def build_food_groups(self): self._my_plate = [[], [], [], []] for i, food in enumerate(FOOD): self._my_plate[MYPLATE[food[GROUP]][QUANT]].append(i) def new_game(self): ''' Start a new game. ''' games = {0: self._name_that_food, 1: self._name_that_food_group, 2: self._compare_calories, 3: self._how_much_to_eat, 4: self._balanced_meal} self._all_clear() games[self.level]() self._frown.set_label('') self._smile.set_label('') self._tries = 0 def _name_that_food(self): ''' Choose food cards and one matching food picture ''' x = 10 y = 10 dx, dy = self.food_cards[0].get_dimensions() # Select some cards word_list = [] for i in range(NCARDS): j = int(uniform(0, len(FOOD))) while j in word_list: j = int(uniform(0, len(FOOD))) word_list.append(j) # Show the word cards from the list for i in word_list: if self.food_cards[i] is None: self.allocate_food(i) self.food_cards[i].set_layer(100) self.food_cards[i].move((x, y)) y += int(dy * 1.25) # Choose a random food image from the list and show it. self._target = self.food_cards[ word_list[int(uniform(0, NCARDS))]].type while self._target in self._last_twenty: self._target = self.food_cards[ word_list[int(uniform(0, NCARDS))]].type self._last_twenty.append(self._target) if len(self._last_twenty) > 20: self._last_twenty.remove(self._last_twenty[0]) self._picture_cards[self._target].set_layer(100) def _name_that_food_group(self): ''' Show group cards and one food picture ''' for i in range(len(MYPLATE)): self._group_cards[i].set_layer(100) # Choose a random food image and show it. self._target = int(uniform(0, len(FOOD))) if self.food_cards[self._target] is None: self.allocate_food(self._target) self._picture_cards[self._target].set_layer(100) def _compare_calories(self): ''' Choose food cards and compare the calories ''' x = 10 y = 10 dx, dy = self.food_cards[0].get_dimensions() # Select some cards word_list = [] for i in range(6): j = int(uniform(0, len(FOOD))) while j in word_list: j = int(uniform(0, len(FOOD))) word_list.append(j) if self.food_cards[j] is None: self.allocate_food(j) # Show the word cards from the list for i in word_list: self.food_cards[i].set_layer(100) self.food_cards[i].move((x, y)) y += int(dy * 1.25) # Show food images self._target = word_list[0] for i in range(5): if FOOD[word_list[i + 1]][CALS] > FOOD[self._target][CALS]: self._target = word_list[i + 1] self._small_picture_cards[word_list[0] * 6].set_layer(100) self._small_picture_cards[word_list[1] * 6 + 1].set_layer(100) self._small_picture_cards[word_list[2] * 6 + 2].set_layer(100) self._small_picture_cards[word_list[3] * 6 + 3].set_layer(100) self._small_picture_cards[word_list[4] * 6 + 4].set_layer(100) self._small_picture_cards[word_list[5] * 6 + 5].set_layer(100) def _how_much_to_eat(self): ''' Show quantity cards and one food picture ''' for i in range(len(QUANTITIES)): self._quantity_cards[i].set_layer(100) # Choose a random image from the list and show it. self._target = int(uniform(0, len(FOOD))) if self.food_cards[self._target] is None: self.allocate_food(self._target) self._picture_cards[self._target].set_layer(100) def _balanced_meal(self): ''' A well-balanced meal ''' for i in range(2): self._balance_cards[i].set_layer(100) # Determine how many foods from each group n = [0, 0, 0, 0] n[0] = int(uniform(0, 2.5)) n[1] = int(uniform(0, 3 - n[0])) n[2] = 3 - n[0] - n[1] n[3] = 6 - n[0] - n[1] - n[2] # Fill a plate with foods from different groups meal = [] for i in range(n[0]): # Sweets j = int(uniform(0, len(self._my_plate[0]))) meal.append(self._my_plate[0][j]) for i in range(n[1]): # Dairy j = int(uniform(0, len(self._my_plate[1]))) meal.append(self._my_plate[1][j]) for i in range(n[2]): # Protein and Fruits j = int(uniform(0, len(self._my_plate[2]))) meal.append(self._my_plate[2][j]) for i in range(n[3]): # Veggies and Grains j = int(uniform(0, len(self._my_plate[3]))) meal.append(self._my_plate[3][j]) if n[0] < 2 and n[1] < 2 and n[2] < n[3]: self._target = 0 # Balanced meal else: self._target = 1 for i in range(6): if self.food_cards[meal[i]] is None: self.allocate_food(meal[i]) # Randomly position small cards self._small_picture_cards[meal[3] * 6].set_layer(100) self._small_picture_cards[meal[4] * 6 + 1].set_layer(100) self._small_picture_cards[meal[1] * 6 + 2].set_layer(100) self._small_picture_cards[meal[2] * 6 + 3].set_layer(100) self._small_picture_cards[meal[5] * 6 + 4].set_layer(100) self._small_picture_cards[meal[0] * 6 + 5].set_layer(100) def _button_press_cb(self, win, event): win.grab_focus() x, y = map(int, event.get_coords()) spr = self._sprites.find_sprite((x, y)) if spr == None: return # We only care about clicks on word cards if type(spr.type) != int: return # Which card was clicked? Set its label to red. spr.set_label_color('red') label = spr.labels[0] spr.set_label(label) if self.level == 0: if spr.type == self._target: self._smile.set_layer(200) self._tries = 3 else: self._frown.set_layer(200) self._tries += 1 if self._tries == 3: self.food_cards[self._target].set_label_color('blue') label = self.food_cards[self._target].labels[0] self.food_cards[self._target].set_label(label) elif self.level == 1: i = FOOD[self._target][GROUP] if spr.type == i: self._smile.set_layer(200) self._tries = 3 else: self._frown.set_layer(200) self._tries += 1 if self._tries == 3: self._group_cards[i].set_label_color('blue') label = self._group_cards[i].labels[0] self._group_cards[i].set_label(label) elif self.level == 2: if spr.type == self._target: self._smile.set_layer(200) self._tries = 3 else: self._frown.set_layer(200) self._tries += 1 if self._tries == 3: self.food_cards[self._target].set_label_color('blue') label = self.food_cards[self._target].labels[0] self.food_cards[self._target].set_label(label) elif self.level == 3: i = MYPLATE[FOOD[self._target][GROUP]][QUANT] if spr.type == i: self._smile.set_layer(200) self._tries = 3 else: self._frown.set_layer(200) self._tries += 1 if self._tries == 3: self._quantity_cards[i].set_label_color('blue') label = self._quantity_cards[i].labels[0] self._quantity_cards[i].set_label(label) elif self.level == 4: if self._target == spr.type: self._smile.set_layer(200) self._tries = 3 else: self._frown.set_layer(200) self._tries += 1 if self._tries == 3: self._balance_cards[self._target].set_label_color('blue') label = self._balance_cards[self._target].labels[0] self._balance_cards[self._target].set_label(label) else: _logger.debug('unknown play level %d' % (self.level)) # Play again if self._tries == 3: GObject.timeout_add(2000, self.new_game) else: GObject.timeout_add(1000, self._reset_game) return True def _reset_game(self): self._frown.hide() if self.level in [0, 2]: for i, w in enumerate(self.food_cards): w.set_label_color('black') w.set_label(FOOD[i][NAME]) elif self.level == 1: for i, w in enumerate(self._group_cards): w.set_label_color('black') w.set_label(MYPLATE[i][0]) elif self.level == 3: for i, w in enumerate(self._quantity_cards): w.set_label_color('black') w.set_label(QUANTITIES[i]) elif self.level == 4: for i, w in enumerate(self._balance_cards): w.set_label_color('black') w.set_label(BALANCE[i]) def __draw_cb(self, canvas, cr): self._sprites.redraw_sprites(cr=cr) def do_expose_event(self, event): ''' Handle the expose-event by drawing ''' # Restrict Cairo to the exposed area cr = self._canvas.window.cairo_create() cr.rectangle(event.area.x, event.area.y, event.area.width, event.area.height) cr.clip() # Refresh sprite list self._sprites.redraw_sprites(cr=cr) def _destroy_cb(self, win, event): Gtk.main_quit()
class AbacusGeneric(): """ A generic abacus: a frame, rods, and beads. """ def __init__(self, abacus): """ Specify parameters that define the abacus """ self.abacus = abacus self.set_parameters() self.create() def set_parameters(self): """ Define the physical paramters. """ self.name = "suanpan" self.num_rods = 15 self.bot_beads = 5 self.top_beads = 2 self.base = 10 self.top_factor = 5 def create(self): """ Create and position the sprites that compose the abacus """ # Width is a function of the number of rods self.frame_width = self.num_rods*(BWIDTH+BOFFSET)+FSTROKE*2 # Height is a function of the number of beads if self.top_beads > 0: self.frame_height = (self.bot_beads+self.top_beads+5)*BHEIGHT +\ FSTROKE*2 else: self.frame_height = (self.bot_beads+2)*BHEIGHT + FSTROKE*2 # Draw the frame... x = (self.abacus.width-(self.frame_width*self.abacus.scale))/2 y = (self.abacus.height-(self.frame_height*self.abacus.scale))/2 _frame = _svg_header(self.frame_width, self.frame_height, self.abacus.scale) +\ _svg_rect(self.frame_width, self.frame_height, FSTROKE/2, FSTROKE/2, 0, 0, "#000000", "#000000") +\ _svg_rect(self.frame_width-(FSTROKE*2), self.frame_height-(FSTROKE*2), 0, 0, FSTROKE, FSTROKE, "#808080", "#000000") +\ _svg_footer() self.frame = Sprite(self.abacus.sprites, x, y, _svg_str_to_pixbuf(_frame)) self.frame.type = 'frame' # and then the rods and beads. self.rods = [] self.beads = [] x += FSTROKE*self.abacus.scale y += FSTROKE*self.abacus.scale self.draw_rods_and_beads(x, y) # Draw the dividing bar... _bar = _svg_header(self.frame_width-(FSTROKE*2), BHEIGHT, self.abacus.scale) +\ _svg_rect(self.frame_width-(FSTROKE*2), BHEIGHT, 0, 0, 0, 0, "#000000", "#000000") +\ _svg_footer() if self.top_beads > 0: self.bar = Sprite(self.abacus.sprites, x, y+(self.top_beads+2)*BHEIGHT*self.abacus.scale, _svg_str_to_pixbuf(_bar)) else: self.bar = Sprite(self.abacus.sprites, x, y-FSTROKE*self.abacus.scale, _svg_str_to_pixbuf(_bar)) self.bar.type = 'frame' self.bar.set_label_color('white') # and finally, the mark. _mark = _svg_header(20, 15, self.abacus.scale) +\ _svg_indicator() +\ _svg_footer() dx = (BWIDTH+BOFFSET)*self.abacus.scale self.mark = Sprite(self.abacus.sprites, x+(self.num_rods-1)*dx, y-((FSTROKE/2)*self.abacus.scale), _svg_str_to_pixbuf(_mark)) self.mark.type = 'mark' def draw_rods_and_beads(self, x, y): """ Draw the rods and beads """ _white = _svg_header(BWIDTH, BHEIGHT, self.abacus.scale) +\ _svg_bead("#ffffff", "#000000") +\ _svg_footer() _yellow1 = _svg_header(BWIDTH, BHEIGHT, self.abacus.scale) +\ _svg_bead("#ffffcc", "#000000") +\ _svg_footer() _yellow2 = _svg_header(BWIDTH, BHEIGHT, self.abacus.scale) +\ _svg_bead("#ffff88", "#000000") +\ _svg_footer() _yellow3 = _svg_header(BWIDTH, BHEIGHT, self.abacus.scale) +\ _svg_bead("#ffff00", "#000000") +\ _svg_footer() self.colors = [_svg_str_to_pixbuf(_white), _svg_str_to_pixbuf(_yellow1), _svg_str_to_pixbuf(_yellow2), _svg_str_to_pixbuf(_yellow3)] dx = (BWIDTH+BOFFSET)*self.abacus.scale bo = (BWIDTH-BOFFSET)*self.abacus.scale/4 ro = (BWIDTH+5)*self.abacus.scale/2 for i in range(self.num_rods): _rod = _svg_header(10, self.frame_height-(FSTROKE*2), self.abacus.scale) +\ _svg_rect(10, self.frame_height-(FSTROKE*2), 0, 0, 0, 0, ROD_COLORS[i%len(ROD_COLORS)], "#404040") +\ _svg_footer() self.rods.append(Sprite(self.abacus.sprites, x+i*dx+ro, y, _svg_str_to_pixbuf(_rod))) for b in range(self.top_beads): self.beads.append(Bead(Sprite(self.abacus.sprites, x+i*dx+bo, y+b*BHEIGHT*self.abacus.scale, self.colors[0]), 2*BHEIGHT*self.abacus.scale, self.top_factor*(pow(self.base, self.num_rods-i-1)))) for b in range(self.bot_beads): if self.top_beads > 0: self.beads.append(Bead(Sprite(self.abacus.sprites, x+i*dx+bo, y+(self.top_beads+5+b)*\ BHEIGHT*self.abacus.scale, self.colors[0]), 2*BHEIGHT*self.abacus.scale, pow(self.base,self.num_rods-i-1))) else: self.beads.append(Bead(Sprite(self.abacus.sprites, x+i*dx+bo, y+(2+b)*BHEIGHT\ *self.abacus.scale, self.colors[0]), 2*BHEIGHT*self.abacus.scale, pow(self.base,self.num_rods-i-1))) for rod in self.rods: rod.type = "frame" def hide(self): """ Hide the rod, beads, mark, and frame. """ for rod in self.rods: rod.hide() for bead in self.beads: bead.hide() self.bar.hide() self.frame.hide() self.mark.hide() def show(self): """ Show the rod, beads, mark, and frame. """ self.frame.set_layer(FRAME_LAYER) for rod in self.rods: rod.set_layer(ROD_LAYER) for bead in self.beads: bead.show() self.bar.set_layer(BAR_LAYER) self.mark.set_layer(MARK_LAYER) def set_value(self, string): """ Set abacus to value in string """ _logger.debug("restoring %s: %s" % (self.name, string)) # String has two bytes per column. v = [] for r in range(self.num_rods): v.append(0) # Convert string to column values. if len(string) == 2*self.num_rods: for i in range(self.num_rods): v[self.num_rods-i-1] = int( string[2*self.num_rods-i*2-1:2*self.num_rods-i*2]) else: _logger.debug("bad saved string %s (%d != 2*%d)" % (string, len(string), self.num_rods)) # Move the beads to correspond to column values. for r in range(self.num_rods): self.set_rod_value(r, v[r]) def set_rod_value(self, r, v): """ Move beads on rod r to represent value v """ bot = v % self.top_factor top = (v-bot)/self.top_factor top_bead_index = r*(self.top_beads+self.bot_beads) bot_bead_index = r*(self.top_beads+self.bot_beads)+self.top_beads # Clear the top. for i in range(self.top_beads): if self.beads[top_bead_index+i].get_state() == 1: self.beads[top_bead_index+i].move_up() # Clear the bottom. for i in range(self.bot_beads): if self.beads[bot_bead_index+i].get_state() == 1: self.beads[bot_bead_index+i].move_down() # Set the top. for i in range(top): self.beads[top_bead_index+self.top_beads-i-1].move_down() # Set the bottom for i in range(bot): self.beads[bot_bead_index+i].move_up() def value(self, count_beads=False): """ Return a string representing the value of each rod. """ string = '' v = [] for r in range(self.num_rods+1): # +1 for overflow v.append(0) # Tally the values on each rod. for i, bead in enumerate(self.beads): r = i/(self.top_beads+self.bot_beads) j = i % (self.top_beads+self.bot_beads) if bead.get_state() == 1: if j < self.top_beads: v[r+1] += self.top_factor else: v[r+1] += 1 if count_beads: # Save the value associated with each rod as a 2-byte integer. for j in v[1:]: string += "%2d" % (j) else: sum = 0 for bead in self.beads: sum += bead.get_value() string = str(sum) return(string) def label(self, string): """ Label the crossbar with the string. (Used with self.value) """ self.bar.set_label(string) def move_mark(self, dx): """ Move indicator horizontally across the top of the frame. """ self.mark.move_relative((dx, 0)) def fade_colors(self): """ Reduce the saturation level of every bead. """ for bead in self.beads: if bead.get_level() > 0: bead.set_color(self.colors[bead.get_level()-1]) bead.set_level(bead.get_level()-1) def move_bead(self, sprite, dy): """ Move a bead (or beads) up or down a rod. """ # find the bead associated with the sprite i = -1 for bead in self.beads: if sprite == bead.spr: i = self.beads.index(bead) break if i == -1: print "bead not found" return b = i % (self.top_beads+self.bot_beads) if b < self.top_beads: if dy > 0 and bead.get_state() == 0: self.fade_colors() bead.set_color(self.colors[3]) bead.move_down() # Make sure beads below this bead are also moved. for ii in range(self.top_beads-b): if self.beads[i+ii].state == 0: self.beads[i+ii].set_color(self.colors[3]) self.beads[i+ii].move_down() elif dy < 0 and bead.state == 1: self.fade_colors() bead.set_color(self.colors[3]) bead.move_up() # Make sure beads above this bead are also moved. for ii in range(b+1): if self.beads[i-ii].state == 1: self.beads[i-ii].set_color(self.colors[3]) self.beads[i-ii].move_up() else: if dy < 0 and bead.state == 0: self.fade_colors() bead.set_color(self.colors[3]) bead.move_up() # Make sure beads above this bead are also moved. for ii in range(b-self.top_beads+1): if self.beads[i-ii].state == 0: self.beads[i-ii].set_color(self.colors[3]) self.beads[i-ii].move_up() elif dy > 0 and bead.state == 1: self.fade_colors() bead.set_color(self.colors[3]) bead.move_down() # Make sure beads below this bead are also moved. for ii in range(self.top_beads+self.bot_beads-b): if self.beads[i+ii].state == 1: self.beads[i+ii].set_color(self.colors[3]) self.beads[i+ii].move_down()
class Game(): def __init__(self, canvas, parent=None, path=None): self._canvas = canvas self._parent = parent self._parent.show_all() self._path = path self._canvas.add_events(Gdk.EventMask.BUTTON_PRESS_MASK) self._canvas.connect("draw", self.__draw_cb) self._canvas.connect("button-press-event", self._button_press_cb) self._width = Gdk.Screen.width() self._height = Gdk.Screen.height() self._scale = self._width / 1200. self._target = 0 self._tries = 0 self.level = 0 self._picture_cards = [] self._small_picture_cards = [] self.food_cards = [] self._group_cards = [] self._quantity_cards = [] self._balance_cards = [] self._last_twenty = [] self._background = None # Generate the sprites we'll need... self._sprites = Sprites(self._canvas) self._background = Sprite( self._sprites, 0, 0, GdkPixbuf.Pixbuf.new_from_file_at_size( os.path.join(self._path, 'images', 'background.png'), self._width, self._height)) self._background.set_layer(0) self._background.type = None self._background.hide() self.pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_size( os.path.join(self._path, 'images', 'word-box.png'), int(350 * self._scale), int(100 * self._scale)) for i in range(len(FOOD_DATA) / 4): FOOD.append([ FOOD_DATA[i * 4 + NAME], FOOD_DATA[i * 4 + CALS], FOOD_DATA[i * 4 + GROUP], FOOD_DATA[i * 4 + IMAGE] ]) self.food_cards.append(None) self._picture_cards.append(None) for j in range(6): self._small_picture_cards.append(None) self.allocate_food(0) x = 10 dx, dy = self.food_cards[0].get_dimensions() y = 10 for i in range(len(MYPLATE)): self.word_card_append(self._group_cards, self.pixbuf) self._group_cards[-1].type = i self._group_cards[-1].set_label(MYPLATE[i][0]) self._group_cards[-1].move((x, y)) y += int(dy * 1.25) y = 10 for i in range(len(QUANTITIES)): self.word_card_append(self._quantity_cards, self.pixbuf) self._quantity_cards[-1].type = i self._quantity_cards[-1].set_label(QUANTITIES[i]) self._quantity_cards[-1].move((x, y)) y += int(dy * 1.25) y = 10 for i in range(len(BALANCE)): self.word_card_append(self._balance_cards, self.pixbuf) self._balance_cards[-1].type = i self._balance_cards[-1].set_label(BALANCE[i]) self._balance_cards[-1].move((x, y)) y += int(dy * 1.25) self._smile = Sprite( self._sprites, int(self._width / 4), int(self._height / 4), GdkPixbuf.Pixbuf.new_from_file_at_size( os.path.join(self._path, 'images', 'correct.png'), int(self._width / 2), int(self._height / 2))) self._smile.set_label_attributes(36) self._smile.set_margins(10, 0, 10, 0) self._frown = Sprite( self._sprites, int(self._width / 4), int(self._height / 4), GdkPixbuf.Pixbuf.new_from_file_at_size( os.path.join(self._path, 'images', 'wrong.png'), int(self._width / 2), int(self._height / 2))) self._frown.set_label_attributes(36) self._frown.set_margins(10, 0, 10, 0) self.build_food_groups() self._all_clear() def allocate_food(self, i): self.picture_append( os.path.join(self._path, 'images', FOOD_DATA[i * 4 + IMAGE]), i) self.small_picture_append( os.path.join(self._path, 'images', FOOD_DATA[i * 4 + IMAGE]), i) self.word_card_append(self.food_cards, self.pixbuf, i) self.food_cards[i].type = i self.food_cards[i].set_label(FOOD_DATA[i * 4 + NAME]) def word_card_append(self, card_list, pixbuf, i=-1): if i == -1: card_list.append(Sprite(self._sprites, 10, 10, pixbuf)) else: card_list[i] = Sprite(self._sprites, 10, 10, pixbuf) card_list[i].set_label_attributes(36) card_list[i].set_margins(10, 0, 10, 0) card_list[i].hide() def picture_append(self, path, i=-1): spr = Sprite( self._sprites, int(self._width / 2.), int(self._height / 4.), GdkPixbuf.Pixbuf.new_from_file_at_size(path, int(self._width / 3.), int(9 * self._width / 12.))) if i == -1: self._picture_cards.append(spr) else: self._picture_cards[i] = spr self._picture_cards[i].type = 'picture' self._picture_cards[i].hide() def small_picture_append(self, path, i=-1): x = int(self._width / 3.) y = int(self._height / 6.) pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_size( path, int(self._width / 6.), int(3 * self._width / 8.)) for j in range(6): # up to 6 of each card if i == -1: self._small_picture_cards.append( Sprite(self._sprites, x, y, pixbuf)) self._small_picture_cards[-1].type = 'picture' self._small_picture_cards[-1].hide() else: self._small_picture_cards[i * 6 + j] = Sprite( self._sprites, x, y, pixbuf) self._small_picture_cards[i * 6 + j].type = 'picture' self._small_picture_cards[i * 6 + j].hide() x += int(self._width / 6.) if j == 2: x = int(self._width / 3.) y += int(3 * self._width / 16.) def _all_clear(self): ''' Things to reinitialize when starting up a new game. ''' for p in self._picture_cards: if p is not None: p.hide() for p in self._small_picture_cards: if p is not None: p.hide() for i, w in enumerate(self.food_cards): if w is not None: w.set_label_color('black') w.set_label(FOOD[i][NAME]) w.hide() for i, w in enumerate(self._group_cards): w.set_label_color('black') w.set_label(MYPLATE[i][0]) w.hide() for i, w in enumerate(self._quantity_cards): w.set_label_color('black') w.set_label(QUANTITIES[i]) w.hide() for i, w in enumerate(self._balance_cards): w.set_label_color('black') w.set_label(BALANCE[i]) w.hide() self._smile.hide() self._frown.hide() self._background.set_layer(1) def build_food_groups(self): self._my_plate = [[], [], [], []] for i, food in enumerate(FOOD): self._my_plate[MYPLATE[food[GROUP]][QUANT]].append(i) def new_game(self): ''' Start a new game. ''' games = { 0: self._name_that_food, 1: self._name_that_food_group, 2: self._compare_calories, 3: self._how_much_to_eat, 4: self._balanced_meal } self._all_clear() games[self.level]() self._frown.set_label('') self._smile.set_label('') self._tries = 0 def _name_that_food(self): ''' Choose food cards and one matching food picture ''' x = 10 y = 10 dx, dy = self.food_cards[0].get_dimensions() # Select some cards word_list = [] for i in range(NCARDS): j = int(uniform(0, len(FOOD))) while j in word_list: j = int(uniform(0, len(FOOD))) word_list.append(j) # Show the word cards from the list for i in word_list: if self.food_cards[i] is None: self.allocate_food(i) self.food_cards[i].set_layer(100) self.food_cards[i].move((x, y)) y += int(dy * 1.25) # Choose a random food image from the list and show it. self._target = self.food_cards[word_list[int(uniform(0, NCARDS))]].type while self._target in self._last_twenty: self._target = self.food_cards[word_list[int(uniform( 0, NCARDS))]].type self._last_twenty.append(self._target) if len(self._last_twenty) > 20: self._last_twenty.remove(self._last_twenty[0]) self._picture_cards[self._target].set_layer(100) def _name_that_food_group(self): ''' Show group cards and one food picture ''' for i in range(len(MYPLATE)): self._group_cards[i].set_layer(100) # Choose a random food image and show it. self._target = int(uniform(0, len(FOOD))) if self.food_cards[self._target] is None: self.allocate_food(self._target) self._picture_cards[self._target].set_layer(100) def _compare_calories(self): ''' Choose food cards and compare the calories ''' x = 10 y = 10 dx, dy = self.food_cards[0].get_dimensions() # Select some cards word_list = [] for i in range(6): j = int(uniform(0, len(FOOD))) while j in word_list: j = int(uniform(0, len(FOOD))) word_list.append(j) if self.food_cards[j] is None: self.allocate_food(j) # Show the word cards from the list for i in word_list: self.food_cards[i].set_layer(100) self.food_cards[i].move((x, y)) y += int(dy * 1.25) # Show food images self._target = word_list[0] for i in range(5): if FOOD[word_list[i + 1]][CALS] > FOOD[self._target][CALS]: self._target = word_list[i + 1] self._small_picture_cards[word_list[0] * 6].set_layer(100) self._small_picture_cards[word_list[1] * 6 + 1].set_layer(100) self._small_picture_cards[word_list[2] * 6 + 2].set_layer(100) self._small_picture_cards[word_list[3] * 6 + 3].set_layer(100) self._small_picture_cards[word_list[4] * 6 + 4].set_layer(100) self._small_picture_cards[word_list[5] * 6 + 5].set_layer(100) def _how_much_to_eat(self): ''' Show quantity cards and one food picture ''' for i in range(len(QUANTITIES)): self._quantity_cards[i].set_layer(100) # Choose a random image from the list and show it. self._target = int(uniform(0, len(FOOD))) if self.food_cards[self._target] is None: self.allocate_food(self._target) self._picture_cards[self._target].set_layer(100) def _balanced_meal(self): ''' A well-balanced meal ''' for i in range(2): self._balance_cards[i].set_layer(100) # Determine how many foods from each group n = [0, 0, 0, 0] n[0] = int(uniform(0, 2.5)) n[1] = int(uniform(0, 3 - n[0])) n[2] = 3 - n[0] - n[1] n[3] = 6 - n[0] - n[1] - n[2] # Fill a plate with foods from different groups meal = [] for i in range(n[0]): # Sweets j = int(uniform(0, len(self._my_plate[0]))) meal.append(self._my_plate[0][j]) for i in range(n[1]): # Dairy j = int(uniform(0, len(self._my_plate[1]))) meal.append(self._my_plate[1][j]) for i in range(n[2]): # Protein and Fruits j = int(uniform(0, len(self._my_plate[2]))) meal.append(self._my_plate[2][j]) for i in range(n[3]): # Veggies and Grains j = int(uniform(0, len(self._my_plate[3]))) meal.append(self._my_plate[3][j]) if n[0] < 2 and n[1] < 2 and n[2] < n[3]: self._target = 0 # Balanced meal else: self._target = 1 for i in range(6): if self.food_cards[meal[i]] is None: self.allocate_food(meal[i]) # Randomly position small cards self._small_picture_cards[meal[3] * 6].set_layer(100) self._small_picture_cards[meal[4] * 6 + 1].set_layer(100) self._small_picture_cards[meal[1] * 6 + 2].set_layer(100) self._small_picture_cards[meal[2] * 6 + 3].set_layer(100) self._small_picture_cards[meal[5] * 6 + 4].set_layer(100) self._small_picture_cards[meal[0] * 6 + 5].set_layer(100) def _button_press_cb(self, win, event): win.grab_focus() x, y = list(map(int, event.get_coords())) spr = self._sprites.find_sprite((x, y)) if spr == None: return # We only care about clicks on word cards if type(spr.type) != int: return # Which card was clicked? Set its label to red. spr.set_label_color('red') label = spr.labels[0] spr.set_label(label) if self.level == 0: if spr.type == self._target: self._smile.set_layer(200) self._tries = 3 else: self._frown.set_layer(200) self._tries += 1 if self._tries == 3: self.food_cards[self._target].set_label_color('blue') label = self.food_cards[self._target].labels[0] self.food_cards[self._target].set_label(label) elif self.level == 1: i = FOOD[self._target][GROUP] if spr.type == i: self._smile.set_layer(200) self._tries = 3 else: self._frown.set_layer(200) self._tries += 1 if self._tries == 3: self._group_cards[i].set_label_color('blue') label = self._group_cards[i].labels[0] self._group_cards[i].set_label(label) elif self.level == 2: if spr.type == self._target: self._smile.set_layer(200) self._tries = 3 else: self._frown.set_layer(200) self._tries += 1 if self._tries == 3: self.food_cards[self._target].set_label_color('blue') label = self.food_cards[self._target].labels[0] self.food_cards[self._target].set_label(label) elif self.level == 3: i = MYPLATE[FOOD[self._target][GROUP]][QUANT] if spr.type == i: self._smile.set_layer(200) self._tries = 3 else: self._frown.set_layer(200) self._tries += 1 if self._tries == 3: self._quantity_cards[i].set_label_color('blue') label = self._quantity_cards[i].labels[0] self._quantity_cards[i].set_label(label) elif self.level == 4: if self._target == spr.type: self._smile.set_layer(200) self._tries = 3 else: self._frown.set_layer(200) self._tries += 1 if self._tries == 3: self._balance_cards[self._target].set_label_color('blue') label = self._balance_cards[self._target].labels[0] self._balance_cards[self._target].set_label(label) else: _logger.debug('unknown play level %d' % (self.level)) # Play again if self._tries == 3: GObject.timeout_add(2000, self.new_game) else: GObject.timeout_add(1000, self._reset_game) return True def _reset_game(self): self._frown.hide() if self.level in [0, 2]: for i, w in enumerate(self.food_cards): w.set_label_color('black') w.set_label(FOOD[i][NAME]) elif self.level == 1: for i, w in enumerate(self._group_cards): w.set_label_color('black') w.set_label(MYPLATE[i][0]) elif self.level == 3: for i, w in enumerate(self._quantity_cards): w.set_label_color('black') w.set_label(QUANTITIES[i]) elif self.level == 4: for i, w in enumerate(self._balance_cards): w.set_label_color('black') w.set_label(BALANCE[i]) def __draw_cb(self, canvas, cr): self._sprites.redraw_sprites(cr=cr) def do_expose_event(self, event): ''' Handle the expose-event by drawing ''' # Restrict Cairo to the exposed area cr = self._canvas.window.cairo_create() cr.rectangle(event.area.x, event.area.y, event.area.width, event.area.height) cr.clip() # Refresh sprite list self._sprites.redraw_sprites(cr=cr) def _destroy_cb(self, win, event): Gtk.main_quit()
class Game(): def __init__(self, canvas, parent=None, colors=['#A0FFA0', '#FF8080']): self._activity = parent self._colors = colors self._canvas = canvas parent.show_all() self._canvas.add_events(Gdk.EventMask.BUTTON_PRESS_MASK) self._canvas.connect("draw", self.__draw_cb) self._canvas.connect("button-press-event", self._button_press_cb) self._width = Gdk.Screen.width() self._height = Gdk.Screen.height() - (GRID_CELL_SIZE * 1.5) self._scale = self._height / (14.0 * DOT_SIZE * 1.2) self._scale_gameover = self._height / (4.0 * DOT_SIZE_GAMEOVER * 1.2) self._dot_size = int(DOT_SIZE * self._scale) self._dot_size_gameover = int(DOT_SIZE_GAMEOVER * self._scale) self._turtle_offset = 0 self._space = int(self._dot_size / 5.) self._space_gameover = int(self._dot_size_gameover / 5.) self._orientation = 0 self.level = 0 self.custom_strategy = None self.strategies = [ BEGINNER_STRATEGY, INTERMEDIATE_STRATEGY, EXPERT_STRATEGY, self.custom_strategy ] self.strategy = self.strategies[self.level] self._timeout_id = None self.best_time = self.load_best_time() # Generate the sprites we'll need... self._sprites = Sprites(self._canvas) self._dots = [] self._gameover = [] self._your_time = [] self._best_time = [] self._win_lose = [] for y in range(THIRTEEN): for x in range(THIRTEEN): offset_x = int((self._width - THIRTEEN * (self._dot_size + \ self._space) - self._space) / 2.) if y % 2 == 1: offset_x += int((self._dot_size + self._space) / 2.) if x == 0 or y == 0 or x == THIRTEEN - 1 or y == THIRTEEN - 1: self._dots.append( Sprite(self._sprites, offset_x + x * (self._dot_size + self._space), y * (self._dot_size + self._space), self._new_dot('#B0B0B0', self._dot_size))) else: self._dots.append( Sprite( self._sprites, offset_x + x * (self._dot_size + self._space), y * (self._dot_size + self._space), self._new_dot(self._colors[FILL], self._dot_size))) self._dots[-1].type = False # not set # Put a turtle at the center of the screen... self._turtle_images = [] self._rotate_turtle(self._new_turtle()) self._turtle = Sprite(self._sprites, 0, 0, self._turtle_images[0]) self._move_turtle(self._dots[int(THIRTEEN * THIRTEEN / 2)].get_xy()) # ...and initialize. self._all_clear() def _move_turtle(self, pos): ''' Move turtle and add its offset ''' self._turtle.move(pos) self._turtle.move_relative( (-self._turtle_offset, -self._turtle_offset)) def _all_clear(self): ''' Things to reinitialize when starting up a new game. ''' # Clear dots for gameover_shape in self._gameover: gameover_shape.hide() for win_lose_shape in self._win_lose: win_lose_shape.hide() for your_time_shape in self._your_time: your_time_shape.hide() for highscore_shape in self._best_time: highscore_shape.hide() for dot in self._dots: if dot.type: dot.type = False dot.set_shape(self._new_dot(self._colors[FILL], self._dot_size)) dot.set_label('') dot.set_layer(100) self._turtle.set_layer(100) # Recenter the turtle self._move_turtle(self._dots[int(THIRTEEN * THIRTEEN / 2)].get_xy()) self._turtle.set_shape(self._turtle_images[0]) self._set_label('') if self._timeout_id is not None: GLib.source_remove(self._timeout_id) self._timeout_id = None def new_game(self, saved_state=None): ''' Start a new game. ''' self.gameover_flag = False self.game_lost = False self._all_clear() # Fill in a few dots to start for i in range(15): n = int(uniform(0, THIRTEEN * THIRTEEN)) if self._dots[n].type is not None: self._dots[n].type = True self._dots[n].set_shape( self._new_dot(self._colors[STROKE], self._dot_size)) # Calculate the distances to the edge self._initialize_weights() self.game_start_time = time.time() self.strategy = self.strategies[self.level] self._timeout_id = None def _set_label(self, string): ''' Set the label in the toolbar or the window frame. ''' self._activity.status.set_label(string) def _button_press_cb(self, win, event): win.grab_focus() x, y = list(map(int, event.get_coords())) spr = self._sprites.find_sprite((x, y), inverse=True) if spr == None: return if spr.type is not None and not spr.type: spr.type = True spr.set_shape(self._new_dot(self._colors[STROKE], self._dot_size)) self._weights[self._dots.index(spr)] = 1000 self._test_game_over(self._move_the_turtle()) return True def _find_the_turtle(self): turtle_pos = self._turtle.get_xy() turtle_dot = None for dot in self._dots: pos = dot.get_xy() # Turtle is offset if pos[0] == turtle_pos[0] + self._turtle_offset and \ pos[1] == turtle_pos[1] + self._turtle_offset: turtle_dot = self._dots.index(dot) break if turtle_dot is None: _logger.debug('Cannot find the turtle...') return None return turtle_dot def _move_the_turtle(self): ''' Move the turtle after each click ''' self._turtle_dot = self._find_the_turtle() if self._turtle_dot is None: return # Given the col and row of the turtle, do something new_dot = self._grid_to_dot( self._my_strategy_import(self.strategy, self._dot_to_grid(self._turtle_dot))) self._move_turtle(self._dots[new_dot].get_xy()) # And set the orientation self._turtle.set_shape(self._turtle_images[self._orientation]) return new_dot def _test_game_over(self, new_dot): ''' Check to see if game is over ''' if new_dot is None: return if self._dots[new_dot].type is None: # Game-over feedback self._once_around = False self.game_stop_time = time.time() self.gameover_flag = True self._happy_turtle_dance() self._timeout_id = GLib.timeout_add(10000, self._game_over) return True c = int(self._turtle_dot / THIRTEEN) % 2 if self._dots[ new_dot + CIRCLE[c][0][0] + THIRTEEN * CIRCLE[c][0][1]].type and \ self._dots[ new_dot + CIRCLE[c][1][0] + THIRTEEN * CIRCLE[c][1][1]].type and \ self._dots[ new_dot + CIRCLE[c][2][0] + THIRTEEN * CIRCLE[c][2][1]].type and \ self._dots[ new_dot + CIRCLE[c][3][0] + THIRTEEN * CIRCLE[c][3][1]].type and \ self._dots[ new_dot + CIRCLE[c][4][0] + THIRTEEN * CIRCLE[c][4][1]].type and \ self._dots[ new_dot + CIRCLE[c][5][0] + THIRTEEN * CIRCLE[c][5][1]].type: # Game-over feedback for dot in self._dots: dot.set_label(':)') self.game_stop_time = time.time() self.gameover_flag = True self._timeout_id = GLib.timeout_add(4000, self._game_over) return True return False def _game_over(self): best_seconds = self.best_time % 60 best_minutes = self.best_time // 60 self.elapsed_time = int(self.game_stop_time - self.game_start_time) second = self.elapsed_time % 60 minute = self.elapsed_time // 60 for dot in self._dots: dot.hide() self._turtle.hide() offset_y = int(self._space_gameover / 4.) offset_x = int((self._width - 6 * self._dot_size_gameover - 5 * self._space_gameover) / 2.) y = 1.5 for x in range(2, 6): self._gameover.append( Sprite( self._sprites, offset_x + (x - 0.50) * self._dot_size_gameover, y * (self._dot_size + self._space) + offset_y, self._new_dot(self._colors[FILL], self._dot_size_gameover))) self._gameover[-1].type = -1 # No image self._gameover[-1].set_label_attributes(72) text = ["☻", " Game ", " Over ", "☻"] self.rings(len(text), text, self._gameover) y = 4.5 for x in range(2, 6): self._win_lose.append( Sprite( self._sprites, offset_x + (x - 0.50) * self._dot_size_gameover, y * (self._dot_size + self._space) + offset_y, self._new_dot(self._colors[FILL], self._dot_size_gameover))) self._win_lose[-1].type = -1 # No image self._win_lose[-1].set_label_attributes(72) text_win_best_time = ["☻", " YOU ", " WON ", "☻"] text_lose = ["☹", " YOU ", " LOST ", "☹"] text_win = ["☻", " GOOD ", " JOB ", "☻"] if self.game_lost: self.rings(len(text_lose), text_lose, self._win_lose) elif self.elapsed_time <= self.best_time: self.rings(len(text_win_best_time), text_win_best_time, self._win_lose) else: self.rings(len(text_win), text_win, self._win_lose) y = 7.5 for x in range(2, 5): self._your_time.append( Sprite( self._sprites, offset_x + x * self._dot_size_gameover, y * (self._dot_size + self._space), self._new_dot(self._colors[FILL], self._dot_size_gameover))) self._your_time[-1].type = -1 # No image self._your_time[-1].set_label_attributes(72) text = [ " your ", " time: ", (' {:02d}:{:02d} '.format(minute, second)) ] self.rings(len(text), text, self._your_time) y = 10.5 for x in range(2, 5): self._best_time.append( Sprite( self._sprites, offset_x + x * self._dot_size_gameover, y * (self._dot_size + self._space), self._new_dot(self._colors[FILL], self._dot_size_gameover))) self._best_time[-1].type = -1 # No image self._best_time[-1].set_label_attributes(72) if self.elapsed_time <= self.best_time and not self.game_lost: self.best_time = self.elapsed_time best_seconds = second best_minutes = minute text = [ " best ", " time: ", (' {:02d}:{:02d} '.format(best_minutes, best_seconds)) ] self.rings(len(text), text, self._best_time) self.save_best_time() self._timeout_id = GLib.timeout_add(7000, self.new_game) def rings(self, num, text, shape): i = 0 for x in range(num): shape[x].type = -1 shape[x].set_shape( self._new_dot(self._colors[FILL], self._dot_size_gameover)) shape[x].set_label(text[i]) shape[x].set_layer(100) i += 1 def _grid_to_dot(self, pos): ''' calculate the dot index from a column and row in the grid ''' return pos[0] + pos[1] * THIRTEEN def _dot_to_grid(self, dot): ''' calculate the grid column and row for a dot ''' return [dot % THIRTEEN, int(dot / THIRTEEN)] def _happy_turtle_dance(self): ''' Turtle dances along the edge ''' self.game_lost = True i = self._find_the_turtle() if i == 0: if self._once_around: return else: self._once_around = True _logger.debug(i) x, y = self._dot_to_grid(i) if y == 0: x += 1 if x == 0: y -= 1 if x == THIRTEEN - 1: y += 1 if y == THIRTEEN - 1: x -= 1 i = self._grid_to_dot((x, y)) self._dots[i].set_label(':)') self._move_turtle(self._dots[i].get_xy()) self._orientation += 1 self._orientation %= 6 self._turtle.set_shape(self._turtle_images[self._orientation]) self._timeout_id = GLib.timeout_add(250, self._happy_turtle_dance) def _ordered_weights(self, pos): ''' Returns the list of surrounding points sorted by their distance to the edge ''' dots = self._surrounding_dots(pos) dots_and_weights = [] for dot in dots: dots_and_weights.append((dot, self._weights[dot])) sorted_dots = sorted(dots_and_weights, key=lambda foo: foo[1]) for i in range(6): dots[i] = sorted_dots[i][0] return dots def _daylight_ahead(self, pos): ''' Returns true if there is a straight path to the edge from the current position/orientation ''' dots = self._surrounding_dots(pos) while True: dot_type = self._dots[dots[self._orientation]].type if dot_type is None: return True elif dot_type: return False else: # keep looking pos = self._dot_to_grid(dots[self._orientation]) dots = self._surrounding_dots(pos) def _surrounding_dots(self, pos): ''' Returns dots surrounding a position in the grid ''' dots = [] evenodd = pos[1] % 2 for i in range(6): col = pos[0] + CIRCLE[evenodd][i][0] row = pos[1] + CIRCLE[evenodd][i][1] dots.append(self._grid_to_dot((col, row))) return dots def _initialize_weights(self): ''' How many steps to an edge? ''' self._weights = [] for d, dot in enumerate(self._dots): if dot.type is None: self._weights.append(0) elif dot.type: self._weights.append(1000) else: pos = self._dot_to_grid(d) pos2 = (THIRTEEN - pos[0], THIRTEEN - pos[1]) self._weights.append( min(min(pos[0], pos2[0]), min(pos[1], pos2[1]))) def _my_strategy_import(self, f, arg): ''' Run Python code passed as argument ''' userdefined = {} try: exec(f, globals(), userdefined) return userdefined['_turtle_strategy'](self, arg) except ZeroDivisionError as e: self._set_label('Python zero-divide error: {}'.format(e)) except ValueError as e: self._set_label('Python value error: {}'.format(e)) except SyntaxError as e: self._set_label('Python syntax error: {}'.format(e)) except NameError as e: self._set_label('Python name error: {}'.format(e)) except OverflowError as e: self._set_label('Python overflow error: {}'.format(e)) except TypeError as e: self._set_label('Python type error: {}'.format(e)) except: self._set_label('Python error') traceback.print_exc() return None def __draw_cb(self, canvas, cr): self._sprites.redraw_sprites(cr=cr) def do_expose_event(self, event): ''' Handle the expose-event by drawing ''' # Restrict Cairo to the exposed area cr = self._canvas.window.cairo_create() cr.rectangle(event.area.x, event.area.y, event.area.width, event.area.height) cr.clip() # Refresh sprite list self._sprites.redraw_sprites(cr=cr) def _destroy_cb(self, win, event): Gtk.main_quit() def _new_dot(self, color, dot_size): ''' generate a dot of a color color ''' self._stroke = color self._fill = color self._svg_width = dot_size self._svg_height = dot_size return svg_str_to_pixbuf( self._header() + \ self._circle(dot_size / 2., dot_size / 2., dot_size / 2.) + \ self._footer()) def _new_turtle(self): ''' generate a turtle ''' self._svg_width = self._dot_size * 2 self._svg_height = self._dot_size * 2 self._stroke = '#101010' self._fill = '#404040' return svg_str_to_pixbuf( self._header() + \ self._turtle() + \ self._footer()) def _rotate_turtle(self, image): w, h = image.get_width(), image.get_height() nw = nh = int(sqrt(w * w + h * h)) for i in range(6): surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, nw, nh) context = cairo.Context(surface) context.translate(w / 2., h / 2.) context.rotate((30 + i * 60) * pi / 180.) context.translate(-w / 2., -h / 2.) Gdk.cairo_set_source_pixbuf(context, image, 0, 0) context.rectangle(0, 0, nw, nh) context.fill() self._turtle_images.append(surface) self._turtle_offset = int(self._dot_size / 2.) def _header(self): return '<svg\n' + 'xmlns:svg="http://www.w3.org/2000/svg"\n' + \ 'xmlns="http://www.w3.org/2000/svg"\n' + \ 'xmlns:xlink="http://www.w3.org/1999/xlink"\n' + \ 'version="1.1"\n' + 'width="' + str(self._svg_width) + '"\n' + \ 'height="' + str(self._svg_height) + '">\n' def _circle(self, r, cx, cy): return '<circle style="fill:' + str(self._fill) + ';stroke:' + \ str(self._stroke) + ';" r="' + str(r - 0.5) + '" cx="' + \ str(cx) + '" cy="' + str(cy) + '" />\n' def _footer(self): return '</svg>\n' def _turtle(self): svg = '<g\ntransform="scale(%.1f, %.1f)">\n' % (self._svg_width / 60., self._svg_height / 60.) svg += '%s%s%s%s%s%s%s%s' % ( ' <path d="M 27.5 48.3 ', 'C 26.9 48.3 26.4 48.2 25.9 48.2 L 27.2 50.5 L 28.6 48.2 ', 'C 28.2 48.2 27.9 48.3 27.5 48.3 Z" stroke_width="3.5" ', 'fill="', self._fill, ';" stroke="', self._stroke, '" />\n') svg += '%s%s%s%s%s%s%s%s%s%s' % ( ' <path d="M 40.2 11.7 ', 'C 38.0 11.7 36.2 13.3 35.8 15.3 ', 'C 37.7 16.7 39.3 18.4 40.5 20.5 ', 'C 42.8 20.4 44.6 18.5 44.6 16.2 ', 'C 44.6 13.7 42.6 11.7 40.2 11.7 Z" stroke_width="3.5" ', 'fill="', self._fill, ';" stroke="', self._stroke, '" />\n') svg += '%s%s%s%s%s%s%s%s%s%s' % ( ' <path d="M 40.7 39.9 ', 'C 39.5 42.1 37.9 44.0 35.9 45.4 ', 'C 36.4 47.3 38.1 48.7 40.2 48.7 ', 'C 42.6 48.7 44.6 46.7 44.6 44.3 ', 'C 44.6 42.0 42.9 40.2 40.7 39.9 Z" stroke_width="3.5" ', 'fill="', self._fill, ';" stroke="', self._stroke, '" />\n') svg += '%s%s%s%s%s%s%s%s%s%s' % ( ' <path d="M 14.3 39.9 ', 'C 12.0 40.1 10.2 42.0 10.2 44.3 ', 'C 10.2 46.7 12.2 48.7 14.7 48.7 ', 'C 16.7 48.7 18.5 47.3 18.9 45.4 ', 'C 17.1 43.9 15.5 42.1 14.3 39.9 Z" stroke_width="3.5" ', 'fill="', self._fill, ';" stroke="', self._stroke, '" />\n') svg += '%s%s%s%s%s%s%s%s%s%s' % ( ' <path d="M 19.0 15.4 ', 'C 18.7 13.3 16.9 11.7 14.7 11.7 ', 'C 12.2 11.7 10.2 13.7 10.2 16.2 ', 'C 10.2 18.5 12.1 20.5 14.5 20.6 ', 'C 15.7 18.5 17.2 16.8 19.0 15.4 Z" stroke_width="3.5" ', 'fill="', self._fill, ';" stroke="', self._stroke, '" />\n') svg += '%s%s%s%s%s%s%s%s%s%s%s%s' % ( ' <path d="M 27.5 12.6 ', 'C 29.4 12.6 31.2 13.0 32.9 13.7 ', 'C 33.7 12.6 34.1 11.3 34.1 9.9 ', 'C 34.1 6.2 31.1 3.2 27.4 3.2 ', 'C 23.7 3.2 20.7 6.2 20.7 9.9 ', 'C 20.7 11.3 21.2 12.7 22.0 13.7 ', 'C 23.7 13.0 25.5 12.6 27.5 12.6 Z" stroke_width="3.5" ', 'fill="', self._fill, ';" stroke="', self._stroke, '" />\n') svg += '%s%s%s%s%s%s%s%s%s%s%s%s' % ( ' <path d="M 43.1 30.4 ', 'C 43.1 35.2 41.5 39.7 38.5 43.0 ', 'C 35.6 46.4 31.6 48.3 27.5 48.3 ', 'C 23.4 48.3 19.4 46.4 16.5 43.0 ', 'C 13.5 39.7 11.9 35.2 11.9 30.4 ', 'C 11.9 20.6 18.9 12.6 27.5 12.6 ', 'C 36.1 12.6 43.1 20.6 43.1 30.4 Z" stroke_width="3.5" ', 'fill="', self._fill, ';" stroke="', self._stroke, '" />\n') svg += '%s%s%s%s%s' % ( ' <path d="M 25.9 33.8 L 24.3 29.1 ', 'L 27.5 26.5 L 31.1 29.2 L 29.6 33.8 Z" stroke_width="3.5" ', 'fill="', self._stroke, ';" stroke="none" />\n') svg += '%s%s%s%s%s%s' % ( ' <path d="M 27.5 41.6 ', 'C 23.5 41.4 22.0 39.5 22.0 39.5 L 25.5 35.4 L 30.0 35.5 ', 'L 33.1 39.7 C 33.1 39.7 30.2 41.7 27.5 41.6 Z" ', 'stroke_width="3.5" fill="', self._stroke, ';" stroke="none" />\n') svg += '%s%s%s%s%s%s' % ( ' <path d="M 18.5 33.8 ', 'C 17.6 30.9 18.6 27.0 18.6 27.0 L 22.6 29.1 L 24.1 33.8 ', 'L 20.5 38.0 C 20.5 38.0 19.1 36.0 18.4 33.8 Z" ', 'stroke_width="3.5" fill="', self._stroke, ';" stroke="none" />\n') svg += '%s%s%s%s%s%s' % ( ' <path d="M 19.5 25.1 ', 'C 19.5 25.1 20.0 23.2 22.5 21.3 ', 'C 24.7 19.7 27.0 19.6 27.0 19.6 L 26.9 24.6 L 23.4 27.3 ', 'L 19.5 25.1 Z" stroke_width="3.5" fill="', self._stroke, ';" stroke="none" />\n') svg += '%s%s%s%s%s%s' % ( ' <path d="M 32.1 27.8 L 28.6 25.0 ', 'L 29 19.8 C 29 19.8 30.8 19.7 33.0 21.4 ', 'C 35.2 23.2 36.3 26.4 36.3 26.4 L 32.1 27.8 Z" ', 'stroke_width="3.5" fill="', self._stroke, ';" stroke="none" />\n') svg += '%s%s%s%s%s%s' % ( ' <path d="M 31.3 34.0 L 32.6 29.6 ', 'L 36.8 28.0 C 36.8 28.0 37.5 30.7 36.8 33.7 ', 'C 36.2 36.0 34.7 38.1 34.7 38.1 L 31.3 34.0 Z" ', 'stroke_width="3.5" fill="', self._stroke, ';" stroke="none" />\n') svg += '</g>\n' return svg def save_best_time(self): file_path = os.path.join(get_activity_root(), 'data', 'best-time') best_time = [180] if os.path.exists(file_path): with open(file_path, "r") as fp: best_time = fp.readlines() int_best_time = int(best_time[0]) if not int_best_time <= self.elapsed_time and not self.game_lost: int_best_time = self.elapsed_time with open(file_path, "w") as fp: fp.write(str(int_best_time)) def load_best_time(self): file_path = os.path.join(get_activity_root(), 'data', 'best-time') if os.path.exists(file_path): with open(file_path, "r") as fp: highscore = fp.readlines() try: return int(highscore[0]) except (ValueError, IndexError) as e: logging.exception(e) return 0 return 0
class Turtle: def __init__(self, turtles, turtle_name, turtle_colors=None): ''' The turtle is not a block, just a sprite with an orientation ''' self.spr = None self.label_block = None self._turtles = turtles self._shapes = [] self._custom_shapes = False self._name = turtle_name self._hidden = False self._remote = False self._x = 0.0 self._y = 0.0 self._heading = 0.0 self._half_width = 0 self._half_height = 0 self._drag_radius = None self._pen_shade = 50 self._pen_color = 0 self._pen_gray = 100 if self._turtles.turtle_window.coord_scale == 1: self._pen_size = 5 else: self._pen_size = 1 self._pen_state = True self._pen_fill = False self._poly_points = [] self._prep_shapes(turtle_name, self._turtles, turtle_colors) # Create a sprite for the turtle in interactive mode. if turtles.sprite_list is not None: self.spr = Sprite(self._turtles.sprite_list, 0, 0, self._shapes[0]) self._calculate_sizes() # Choose a random angle from which to attach the turtle # label to be used when sharing. angle = uniform(0, pi * 4 / 3.0) # 240 degrees width = self._shapes[0].get_width() radius = width * 0.67 # Restrict the angle to the sides: 30-150; 210-330 if angle > pi * 2 / 3.0: angle += pi / 2.0 # + 90 self.label_xy = [ int(radius * sin(angle)), int(radius * cos(angle) + width / 2.0) ] else: angle += pi / 6.0 # + 30 self.label_xy = [ int(radius * sin(angle) + width / 2.0), int(radius * cos(angle) + width / 2.0) ] self._turtles.add_to_dict(turtle_name, self) def _calculate_sizes(self): self._half_width = int(self.spr.rect.width / 2.0) self._half_height = int(self.spr.rect.height / 2.0) self._drag_radius = ((self._half_width * self._half_width) + (self._half_height * self._half_height)) / 6 def set_remote(self): self._remote = True def get_remote(self): return self._remote def _prep_shapes(self, name, turtles=None, turtle_colors=None): # If the turtle name is an int, we'll use a palette color as the # turtle color try: int_key = int(name) use_color_table = True except ValueError: use_color_table = False if turtle_colors is not None: self.colors = turtle_colors[:] self._shapes = generate_turtle_pixbufs(self.colors) elif use_color_table: fill = wrap100(int_key) stroke = wrap100(fill + 10) self.colors = [ '#%06x' % (COLOR_TABLE[fill]), '#%06x' % (COLOR_TABLE[stroke]) ] self._shapes = generate_turtle_pixbufs(self.colors) else: if turtles is not None: self.colors = DEFAULT_TURTLE_COLORS self._shapes = turtles.get_pixbufs() def set_turtle_colors(self, turtle_colors): ''' reset the colors of a preloaded turtle ''' if turtle_colors is not None: self.colors = turtle_colors[:] self._shapes = generate_turtle_pixbufs(self.colors) self.set_heading(self._heading, share=False) def set_shapes(self, shapes, i=0): ''' Reskin the turtle ''' n = len(shapes) if n == 1 and i > 0: # set shape[i] if i < len(self._shapes): self._shapes[i] = shapes[0] elif n == SHAPES: # all shapes have been precomputed self._shapes = shapes[:] else: # rotate shapes if n != 1: debug_output("%d images passed to set_shapes: ignoring" % (n), self._turtles.turtle_window.running_sugar) if self._heading == 0.0: # rotate the shapes images = [] w, h = shapes[0].get_width(), shapes[0].get_height() nw = nh = int(sqrt(w * w + h * h)) for i in range(SHAPES): surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, nw, nh) context = cairo.Context(surface) context = gtk.gdk.CairoContext(context) context.translate(nw / 2.0, nh / 2.0) context.rotate(i * 10 * pi / 180.) context.translate(-nw / 2.0, -nh / 2.0) context.set_source_pixbuf(shapes[0], (nw - w) / 2.0, (nh - h) / 2.0) context.rectangle(0, 0, nw, nh) context.fill() images.append(surface) self._shapes = images[:] else: # associate shape with image at current heading j = int(self._heading + 5) % 360 / (360 / SHAPES) self._shapes[j] = shapes[0] self._custom_shapes = True self.show() self._calculate_sizes() def reset_shapes(self): ''' Reset the shapes to the standard turtle ''' if self._custom_shapes: self._shapes = generate_turtle_pixbufs(self.colors) self._custom_shapes = False self._calculate_sizes() def set_heading(self, heading, share=True): ''' Set the turtle heading (one shape per 360/SHAPES degrees) ''' try: self._heading = heading except (TypeError, ValueError): debug_output('bad value sent to %s' % (__name__), self._turtles.turtle_window.running_sugar) return self._heading %= 360 self._update_sprite_heading() if self._turtles.turtle_window.sharing() and share: event = 'r|%s' % (data_to_string( [self._turtles.turtle_window.nick, round_int(self._heading)])) self._turtles.turtle_window.send_event(event) def _update_sprite_heading(self): ''' Update the sprite to reflect the current heading ''' i = (int(self._heading + 5) % 360) / (360 / SHAPES) if not self._hidden and self.spr is not None: try: self.spr.set_shape(self._shapes[i]) except IndexError: self.spr.set_shape(self._shapes[0]) def set_color(self, color=None, share=True): ''' Set the pen color for this turtle. ''' # Special case for color blocks if color is not None and color in COLORDICT: self.set_shade(COLORDICT[color][1], share) self.set_gray(COLORDICT[color][2], share) if COLORDICT[color][0] is not None: self.set_color(COLORDICT[color][0], share) color = COLORDICT[color][0] else: color = self._pen_color elif color is None: color = self._pen_color try: self._pen_color = color except (TypeError, ValueError): debug_output('bad value sent to %s' % (__name__), self._turtles.turtle_window.running_sugar) return self._turtles.turtle_window.canvas.set_fgcolor(shade=self._pen_shade, gray=self._pen_gray, color=self._pen_color) if self._turtles.turtle_window.sharing() and share: event = 'c|%s' % (data_to_string( [self._turtles.turtle_window.nick, round_int(self._pen_color)])) self._turtles.turtle_window.send_event(event) def set_gray(self, gray=None, share=True): ''' Set the pen gray level for this turtle. ''' if gray is not None: try: self._pen_gray = gray except (TypeError, ValueError): debug_output('bad value sent to %s' % (__name__), self._turtles.turtle_window.running_sugar) return if self._pen_gray < 0: self._pen_gray = 0 if self._pen_gray > 100: self._pen_gray = 100 self._turtles.turtle_window.canvas.set_fgcolor(shade=self._pen_shade, gray=self._pen_gray, color=self._pen_color) if self._turtles.turtle_window.sharing() and share: event = 'g|%s' % (data_to_string( [self._turtles.turtle_window.nick, round_int(self._pen_gray)])) self._turtles.turtle_window.send_event(event) def set_shade(self, shade=None, share=True): ''' Set the pen shade for this turtle. ''' if shade is not None: try: self._pen_shade = shade except (TypeError, ValueError): debug_output('bad value sent to %s' % (__name__), self._turtles.turtle_window.running_sugar) return self._turtles.turtle_window.canvas.set_fgcolor(shade=self._pen_shade, gray=self._pen_gray, color=self._pen_color) if self._turtles.turtle_window.sharing() and share: event = 's|%s' % (data_to_string( [self._turtles.turtle_window.nick, round_int(self._pen_shade)])) self._turtles.turtle_window.send_event(event) def set_pen_size(self, pen_size=None, share=True): ''' Set the pen size for this turtle. ''' if pen_size is not None: try: self._pen_size = max(0, pen_size) except (TypeError, ValueError): debug_output('bad value sent to %s' % (__name__), self._turtles.turtle_window.running_sugar) return self._turtles.turtle_window.canvas.set_pen_size( self._pen_size * self._turtles.turtle_window.coord_scale) if self._turtles.turtle_window.sharing() and share: event = 'w|%s' % (data_to_string( [self._turtles.turtle_window.nick, round_int(self._pen_size)])) self._turtles.turtle_window.send_event(event) def set_pen_state(self, pen_state=None, share=True): ''' Set the pen state (down==True) for this turtle. ''' if pen_state is not None: self._pen_state = pen_state if self._turtles.turtle_window.sharing() and share: event = 'p|%s' % (data_to_string( [self._turtles.turtle_window.nick, self._pen_state])) self._turtles.turtle_window.send_event(event) def set_fill(self, state=False): self._pen_fill = state if not self._pen_fill: self._poly_points = [] def set_poly_points(self, poly_points=None): if poly_points is not None: self._poly_points = poly_points[:] def start_fill(self): self._pen_fill = True self._poly_points = [] def stop_fill(self, share=True): self._pen_fill = False if len(self._poly_points) == 0: return self._turtles.turtle_window.canvas.fill_polygon(self._poly_points) if self._turtles.turtle_window.sharing() and share: shared_poly_points = [] for p in self._poly_points: x, y = self._turtles.turtle_to_screen_coordinates((p[1], p[2])) if p[0] in ['move', 'line']: shared_poly_points.append((p[0], x, y)) elif p[0] in ['rarc', 'larc']: shared_poly_points.append((p[0], x, y, p[3], p[4], p[5])) event = 'F|%s' % (data_to_string( [self._turtles.turtle_window.nick, shared_poly_points])) self._turtles.turtle_window.send_event(event) self._poly_points = [] def hide(self): if self.spr is not None: self.spr.hide() if self.label_block is not None: self.label_block.spr.hide() self._hidden = True def show(self): if self.spr is not None: self.spr.set_layer(TURTLE_LAYER) self._hidden = False self.move_turtle_spr((self._x, self._y)) self.set_heading(self._heading, share=False) if self.label_block is not None: self.label_block.spr.set_layer(TURTLE_LAYER + 1) def move_turtle(self, pos=None): ''' Move the turtle's position ''' if pos is None: pos = self.get_xy() self._x, self._y = pos[0], pos[1] if self.spr is not None: self.move_turtle_spr(pos) def move_turtle_spr(self, pos): ''' Move the turtle's sprite ''' pos = self._turtles.turtle_to_screen_coordinates(pos) pos[0] -= self._half_width pos[1] -= self._half_height if not self._hidden and self.spr is not None: self.spr.move(pos) if self.label_block is not None: self.label_block.spr.move( (pos[0] + self.label_xy[0], pos[1] + self.label_xy[1])) def right(self, degrees, share=True): ''' Rotate turtle clockwise ''' try: self._heading += degrees except (TypeError, ValueError): debug_output('bad value sent to %s' % (__name__), self._turtles.turtle_window.running_sugar) return self._heading %= 360 self._update_sprite_heading() if self._turtles.turtle_window.sharing() and share: event = 'r|%s' % (data_to_string( [self._turtles.turtle_window.nick, round_int(self._heading)])) self._turtles.turtle_window.send_event(event) def _draw_line(self, old, new, pendown): if self._pen_state and pendown: self._turtles.turtle_window.canvas.set_source_rgb() pos1 = self._turtles.turtle_to_screen_coordinates(old) pos2 = self._turtles.turtle_to_screen_coordinates(new) self._turtles.turtle_window.canvas.draw_line( pos1[0], pos1[1], pos2[0], pos2[1]) if self._pen_fill: if self._poly_points == []: self._poly_points.append(('move', pos1[0], pos1[1])) self._poly_points.append(('line', pos2[0], pos2[1])) def forward(self, distance, share=True): scaled_distance = distance * self._turtles.turtle_window.coord_scale old = self.get_xy() try: xcor = old[0] + scaled_distance * sin(self._heading * DEGTOR) ycor = old[1] + scaled_distance * cos(self._heading * DEGTOR) except (TypeError, ValueError): debug_output('bad value sent to %s' % (__name__), self._turtles.turtle_window.running_sugar) return self._draw_line(old, (xcor, ycor), True) self.move_turtle((xcor, ycor)) if self._turtles.turtle_window.sharing() and share: event = 'f|%s' % (data_to_string( [self._turtles.turtle_window.nick, int(distance)])) self._turtles.turtle_window.send_event(event) def set_xy(self, x, y, share=True, pendown=True, dragging=False): old = self.get_xy() try: if dragging: xcor = x ycor = y else: xcor = x * self._turtles.turtle_window.coord_scale ycor = y * self._turtles.turtle_window.coord_scale except (TypeError, ValueError): debug_output('bad value sent to %s' % (__name__), self._turtles.turtle_window.running_sugar) return self._draw_line(old, (xcor, ycor), pendown) self.move_turtle((xcor, ycor)) if self._turtles.turtle_window.sharing() and share: event = 'x|%s' % (data_to_string([ self._turtles.turtle_window.nick, [round_int(xcor), round_int(ycor)] ])) self._turtles.turtle_window.send_event(event) def arc(self, a, r, share=True): ''' Draw an arc ''' if self._pen_state: self._turtles.turtle_window.canvas.set_source_rgb() try: if a < 0: pos = self.larc(-a, r) else: pos = self.rarc(a, r) except (TypeError, ValueError): debug_output('bad value sent to %s' % (__name__), self._turtles.turtle_window.running_sugar) return self.move_turtle(pos) if self._turtles.turtle_window.sharing() and share: event = 'a|%s' % (data_to_string([ self._turtles.turtle_window.nick, [round_int(a), round_int(r)] ])) self._turtles.turtle_window.send_event(event) def rarc(self, a, r): ''' draw a clockwise arc ''' r *= self._turtles.turtle_window.coord_scale if r < 0: r = -r a = -a pos = self.get_xy() cx = pos[0] + r * cos(self._heading * DEGTOR) cy = pos[1] - r * sin(self._heading * DEGTOR) if self._pen_state: npos = self._turtles.turtle_to_screen_coordinates((cx, cy)) self._turtles.turtle_window.canvas.rarc(npos[0], npos[1], r, a, self._heading) if self._pen_fill: if self._poly_points == []: self._poly_points.append(('move', npos[0], npos[1])) self._poly_points.append( ('rarc', npos[0], npos[1], r, (self._heading - 180) * DEGTOR, (self._heading - 180 + a) * DEGTOR)) self.right(a, False) return [ cx - r * cos(self._heading * DEGTOR), cy + r * sin(self._heading * DEGTOR) ] def larc(self, a, r): ''' draw a counter-clockwise arc ''' r *= self._turtles.turtle_window.coord_scale if r < 0: r = -r a = -a pos = self.get_xy() cx = pos[0] - r * cos(self._heading * DEGTOR) cy = pos[1] + r * sin(self._heading * DEGTOR) if self._pen_state: npos = self._turtles.turtle_to_screen_coordinates((cx, cy)) self._turtles.turtle_window.canvas.larc(npos[0], npos[1], r, a, self._heading) if self._pen_fill: if self._poly_points == []: self._poly_points.append(('move', npos[0], npos[1])) self._poly_points.append( ('larc', npos[0], npos[1], r, (self._heading) * DEGTOR, (self._heading - a) * DEGTOR)) self.right(-a, False) return [ cx + r * cos(self._heading * DEGTOR), cy - r * sin(self._heading * DEGTOR) ] def draw_pixbuf(self, pixbuf, a, b, x, y, w, h, path, share=True): ''' Draw a pixbuf ''' self._turtles.turtle_window.canvas.draw_pixbuf(pixbuf, a, b, x, y, w, h, self._heading) if self._turtles.turtle_window.sharing() and share: if self._turtles.turtle_window.running_sugar: tmp_path = get_path(self._turtles.turtle_window.activity, 'instance') else: tmp_path = '/tmp' tmp_file = os.path.join( get_path(self._turtles.turtle_window.activity, 'instance'), 'tmpfile.png') pixbuf.save(tmp_file, 'png', {'quality': '100'}) data = image_to_base64(tmp_file, tmp_path) height = pixbuf.get_height() width = pixbuf.get_width() pos = self._turtles.screen_to_turtle_coordinates((x, y)) event = 'P|%s' % (data_to_string([ self._turtles.turtle_window.nick, [ round_int(a), round_int(b), round_int(pos[0]), round_int(pos[1]), round_int(w), round_int(h), round_int(width), round_int(height), data ] ])) gobject.idle_add(self._turtles.turtle_window.send_event, event) os.remove(tmp_file) def draw_text(self, label, x, y, size, w, share=True): ''' Draw text ''' self._turtles.turtle_window.canvas.draw_text( label, x, y, size, w, self._heading, self._turtles.turtle_window.coord_scale) if self._turtles.turtle_window.sharing() and share: event = 'W|%s' % (data_to_string([ self._turtles.turtle_window.nick, [ label, round_int(x), round_int(y), round_int(size), round_int(w) ] ])) self._turtles.turtle_window.send_event(event) def get_name(self): return self._name def get_xy(self): return [self._x, self._y] def get_x(self): return self._x def get_y(self): return self._y def get_heading(self): return self._heading def get_color(self): return self._pen_color def get_gray(self): return self._pen_gray def get_shade(self): return self._pen_shade def get_pen_size(self): return self._pen_size def get_pen_state(self): return self._pen_state def get_fill(self): return self._pen_fill def get_poly_points(self): return self._poly_points def get_pixel(self): pos = self._turtles.turtle_to_screen_coordinates(self.get_xy()) return self._turtles.turtle_window.canvas.get_pixel(pos[0], pos[1]) def get_drag_radius(self): if self._drag_radius is None: self._calculate_sizes() return self._drag_radius
class Turtle: def __init__(self, turtles, key, turtle_colors=None): """ The turtle is not a block, just a sprite with an orientation """ self.x = 0 self.y = 0 self.hidden = False self.shapes = [] self.custom_shapes = False self.type = 'turtle' self.name = key self.heading = 0 self.pen_shade = 50 self.pen_color = 0 self.pen_gray = 100 self.pen_size = 5 self.pen_state = True self.label_block = None self._prep_shapes(key, turtles, turtle_colors) # Choose a random angle from which to attach the turtle label if turtles.sprite_list is not None: self.spr = Sprite(turtles.sprite_list, 0, 0, self.shapes[0]) angle = uniform(0, pi * 4 / 3.0) # 240 degrees w = self.shapes[0].get_width() r = w * 0.67 # Restrict angle the the sides 30-150; 210-330 if angle > pi * 2 / 3.0: angle += pi / 2.0 # + 90 self.label_xy = [int(r * sin(angle)), int(r * cos(angle) + w / 2.0)] else: angle += pi / 6.0 # + 30 self.label_xy = [int(r * sin(angle) + w / 2.0), int(r * cos(angle) + w / 2.0)] else: self.spr = None turtles.add_to_dict(key, self) def _prep_shapes(self, name, turtles=None, turtle_colors=None): # If the turtle name is an int, we'll use a palette color as the # turtle color try: int_key = int(name) use_color_table = True except ValueError: use_color_table = False if turtle_colors is not None: self.colors = turtle_colors[:] self.shapes = generate_turtle_pixbufs(self.colors) elif use_color_table: fill = wrap100(int_key) stroke = wrap100(fill + 10) self.colors = ['#%06x' % (COLOR_TABLE[fill]), '#%06x' % (COLOR_TABLE[stroke])] self.shapes = generate_turtle_pixbufs(self.colors) else: if turtles is not None: self.colors = DEFAULT_TURTLE_COLORS self.shapes = turtles.get_pixbufs() def set_turtle_colors(self, turtle_colors): ''' reset the colors of a preloaded turtle ''' if turtle_colors is not None: self.colors = turtle_colors[:] self.shapes = generate_turtle_pixbufs(self.colors) self.set_heading(self.heading) def set_shapes(self, shapes, i=0): """ Reskin the turtle """ n = len(shapes) if n == 1 and i > 0: # set shape[i] if i < len(self.shapes): self.shapes[i] = shapes[0] elif n == SHAPES: # all shapes have been precomputed self.shapes = shapes[:] else: # rotate shapes if n != 1: debug_output("%d images passed to set_shapes: ignoring" % (n), self.tw.running_sugar) if self.heading == 0: # rotate the shapes images = [] w, h = shapes[0].get_width(), shapes[0].get_height() nw = nh = int(sqrt(w * w + h * h)) for i in range(SHAPES): surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, nw, nh) context = cairo.Context(surface) context = gtk.gdk.CairoContext(context) context.translate(nw / 2., nh / 2.) context.rotate(i * 10 * pi / 180.) context.translate(-nw / 2., -nh / 2.) context.set_source_pixbuf(shapes[0], (nw - w) / 2., (nh - h) / 2.) context.rectangle(0, 0, nw, nh) context.fill() images.append(surface) self.shapes = images[:] else: # associate shape with image at current heading j = int(self.heading + 5) % 360 / (360 / SHAPES) self.shapes[j] = shapes[0] self.custom_shapes = True self.show() def reset_shapes(self): """ Reset the shapes to the standard turtle """ if self.custom_shapes: self.shapes = generate_turtle_pixbufs(self.colors) self.custom_shapes = False def set_heading(self, heading): """ Set the turtle heading (one shape per 360/SHAPES degrees) """ self.heading = heading i = (int(self.heading + 5) % 360) / (360 / SHAPES) if not self.hidden and self.spr is not None: try: self.spr.set_shape(self.shapes[i]) except IndexError: self.spr.set_shape(self.shapes[0]) def set_color(self, color): """ Set the pen color for this turtle. """ self.pen_color = color def set_gray(self, gray): """ Set the pen gray level for this turtle. """ self.pen_gray = gray def set_shade(self, shade): """ Set the pen shade for this turtle. """ self.pen_shade = shade def set_pen_size(self, pen_size): """ Set the pen size for this turtle. """ self.pen_size = pen_size def set_pen_state(self, pen_state): """ Set the pen state (down==True) for this turtle. """ self.pen_state = pen_state def hide(self): """ Hide the turtle. """ if self.spr is not None: self.spr.hide() if self.label_block is not None: self.label_block.spr.hide() self.hidden = True def show(self): """ Show the turtle. """ if self.spr is not None: self.spr.set_layer(TURTLE_LAYER) self.hidden = False self.move((self.x, self.y)) self.set_heading(self.heading) if self.label_block is not None: self.label_block.spr.move((self.x + self.label_xy[0], self.y + self.label_xy[1])) self.label_block.spr.set_layer(TURTLE_LAYER + 1) def move(self, pos): """ Move the turtle. """ self.x, self.y = int(pos[0]), int(pos[1]) if not self.hidden and self.spr is not None: self.spr.move(pos) if self.label_block is not None: self.label_block.spr.move((pos[0] + self.label_xy[0], pos[1] + self.label_xy[1])) return(self.x, self.y) def get_name(self): ''' return turtle name (key) ''' return self.name def get_xy(self): """ Return the turtle's x, y coordinates. """ return(self.x, self.y) def get_heading(self): """ Return the turtle's heading. """ return(self.heading) def get_color(self): """ Return the turtle's color. """ return(self.pen_color) def get_gray(self): """ Return the turtle's gray level. """ return(self.pen_gray) def get_shade(self): """ Return the turtle's shade. """ return(self.pen_shade) def get_pen_size(self): """ Return the turtle's pen size. """ return(self.pen_size) def get_pen_state(self): """ Return the turtle's pen state. """ return(self.pen_state)
class Turtle: def __init__(self, turtles, turtle_name, turtle_colors=None): #print 'class Turtle taturtle.py: def __init__' ''' The turtle is not a block, just a sprite with an orientation ''' self.spr = None self.label_block = None self._turtles = turtles self._shapes = [] self._custom_shapes = False self._name = turtle_name self._hidden = False self._remote = False self._x = 0.0 self._y = 0.0 self._3Dz = 0.0 self._3Dx = 0.0 self._3Dy = 0.0 self._heading = 0.0 self._roll = 0.0 self._pitch = 0.0 self._direction = [0.0, 1.0, 0.0] self._points = [[0., 0., 0.]] self._points_penstate = [1] self._half_width = 0 self._half_height = 0 self._drag_radius = None self._pen_shade = 50 self._pen_color = 0 self._pen_gray = 100 if self._turtles.turtle_window.coord_scale == 1: self._pen_size = 5 else: self._pen_size = 1 self._pen_state = True self._pen_fill = False self._poly_points = [] self._prep_shapes(turtle_name, self._turtles, turtle_colors) # Create a sprite for the turtle in interactive mode. if turtles.sprite_list is not None: self.spr = Sprite(self._turtles.sprite_list, 0, 0, self._shapes[0]) self._calculate_sizes() # Choose a random angle from which to attach the turtle # label to be used when sharing. angle = uniform(0, pi * 4 / 3.0) # 240 degrees width = self._shapes[0].get_width() radius = width * 0.67 # Restrict the angle to the sides: 30-150; 210-330 if angle > pi * 2 / 3.0: angle += pi / 2.0 # + 90 self.label_xy = [int(radius * sin(angle)), int(radius * cos(angle) + width / 2.0)] else: angle += pi / 6.0 # + 30 self.label_xy = [int(radius * sin(angle) + width / 2.0), int(radius * cos(angle) + width / 2.0)] self._turtles.add_to_dict(turtle_name, self) def _calculate_sizes(self): #print 'taturtle.py: def _calculate_sizes' self._half_width = int(self.spr.rect.width / 2.0) self._half_height = int(self.spr.rect.height / 2.0) self._drag_radius = ((self._half_width * self._half_width) + (self._half_height * self._half_height)) / 6 def set_remote(self): #print 'taturtle.py: def set_remote' self._remote = True def get_remote(self): #print 'taturtle.py: def get_remote' return self._remote def _prep_shapes(self, name, turtles=None, turtle_colors=None): #print 'taturtle.py: def _prep_shapes' # If the turtle name is an int, we'll use a palette color as the # turtle color try: int_key = int(name) use_color_table = True except ValueError: use_color_table = False if turtle_colors is not None: self.colors = turtle_colors[:] self._shapes = generate_turtle_pixbufs(self.colors) elif use_color_table: fill = wrap100(int_key) stroke = wrap100(fill + 10) self.colors = ['#%06x' % (COLOR_TABLE[fill]), '#%06x' % (COLOR_TABLE[stroke])] self._shapes = generate_turtle_pixbufs(self.colors) else: if turtles is not None: self.colors = DEFAULT_TURTLE_COLORS self._shapes = turtles.get_pixbufs() def set_turtle_colors(self, turtle_colors): #print 'taturtle.py: def set_turtle_colors' ''' reset the colors of a preloaded turtle ''' if turtle_colors is not None: self.colors = turtle_colors[:] self._shapes = generate_turtle_pixbufs(self.colors) self.set_heading(self._heading, share=False) def set_shapes(self, shapes, i=0): #print 'taturtle.py: def set_shapes' ''' Reskin the turtle ''' n = len(shapes) if n == 1 and i > 0: # set shape[i] if i < len(self._shapes): self._shapes[i] = shapes[0] elif n == SHAPES: # all shapes have been precomputed self._shapes = shapes[:] else: # rotate shapes if n != 1: debug_output("%d images passed to set_shapes: ignoring" % (n), self._turtles.turtle_window.running_sugar) if self._heading == 0.0: # rotate the shapes images = [] w, h = shapes[0].get_width(), shapes[0].get_height() nw = nh = int(sqrt(w * w + h * h)) for i in range(SHAPES): surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, nw, nh) context = cairo.Context(surface) context = gtk.gdk.CairoContext(context) context.translate(nw / 2.0, nh / 2.0) context.rotate(i * 10 * pi / 180.) context.translate(-nw / 2.0, -nh / 2.0) context.set_source_pixbuf(shapes[0], (nw - w) / 2.0, (nh - h) / 2.0) context.rectangle(0, 0, nw, nh) context.fill() images.append(surface) self._shapes = images[:] else: # associate shape with image at current heading j = int(self._heading + 5) % 360 / (360 / SHAPES) self._shapes[j] = shapes[0] self._custom_shapes = True self.show() self._calculate_sizes() def reset_shapes(self): #print 'taturtle.py: def reset_shapes' ''' Reset the shapes to the standard turtle ''' if self._custom_shapes: self._shapes = generate_turtle_pixbufs(self.colors) self._custom_shapes = False self._calculate_sizes() def _apply_rotations(self): self._direction = [0., 1., 0.] angle = self._heading * DEGTOR * -1.0 temp = [] temp.append((self._direction[0] * cos(angle)) - (self._direction[1] * sin(angle))) temp.append((self._direction[0] * sin(angle)) + (self._direction[1] * cos(angle))) temp.append(self._direction[2] * 1.0) self._direction = temp[:] angle = self._roll * DEGTOR * -1.0 temp = [] temp.append(self._direction[0] * 1.0) temp.append((self._direction[1] * cos(angle)) - (self._direction[2] * sin(angle))) temp.append((self._direction[1] * sin(angle)) + (self._direction[2] * cos(angle))) self._direction = temp[:] angle = self._pitch * DEGTOR * -1.0 temp = [] temp.append((self._direction[0] * cos(angle)) + (self._direction[2] * sin(angle))) temp.append(self._direction[1] * 1.0) temp.append((self._direction[0] * -1.0 * sin(angle)) + (self._direction[2] * cos(angle))) self._direction = temp[:] def set_heading(self, heading, share=True): #print 'taturtle.py: def set_heading' ''' Set the turtle heading (one shape per 360/SHAPES degrees) ''' self._heading = heading self._heading %= 360 self._apply_rotations() self._update_sprite_heading() if self._turtles.turtle_window.sharing() and share: event = 'r|%s' % (data_to_string([self._turtles.turtle_window.nick, round_int(self._heading)])) self._turtles.turtle_window.send_event(event) def set_roll(self, roll): ''' Set the turtle roll ''' self._roll = roll self._roll %= 360 self._apply_rotations() def set_pitch(self, pitch): ''' Set the turtle pitch ''' self._pitch = pitch self._pitch %= 360 self._apply_rotations() def _update_sprite_heading(self): #print 'taturtle.py: def _update_sprite_heading' ''' Update the sprite to reflect the current heading ''' i = (int(self._heading + 5) % 360) / (360 / SHAPES) if not self._hidden and self.spr is not None: try: self.spr.set_shape(self._shapes[i]) except IndexError: self.spr.set_shape(self._shapes[0]) def set_color(self, color=None, share=True): #print 'taturtle.py: def set_color' ''' Set the pen color for this turtle. ''' if isinstance(color, ColorObj): # See comment in tatype.py TYPE_BOX -> TYPE_COLOR color = color.color if color is None: color = self._pen_color # Special case for color blocks from CONSTANTS elif isinstance(color, Color): self.set_shade(color.shade, share) self.set_gray(color.gray, share) if color.color is not None: color = color.color else: color = self._pen_color self._pen_color = color self._turtles.turtle_window.canvas.set_fgcolor(shade=self._pen_shade, gray=self._pen_gray, color=self._pen_color) if self._turtles.turtle_window.sharing() and share: event = 'c|%s' % (data_to_string([self._turtles.turtle_window.nick, round_int(self._pen_color)])) self._turtles.turtle_window.send_event(event) def set_gray(self, gray=None, share=True): #print 'taturtle.py: def set_gray' ''' Set the pen gray level for this turtle. ''' if gray is not None: self._pen_gray = gray if self._pen_gray < 0: self._pen_gray = 0 if self._pen_gray > 100: self._pen_gray = 100 self._turtles.turtle_window.canvas.set_fgcolor(shade=self._pen_shade, gray=self._pen_gray, color=self._pen_color) if self._turtles.turtle_window.sharing() and share: event = 'g|%s' % (data_to_string([self._turtles.turtle_window.nick, round_int(self._pen_gray)])) self._turtles.turtle_window.send_event(event) def set_shade(self, shade=None, share=True): #print 'taturtle.py: def set_shade' ''' Set the pen shade for this turtle. ''' if shade is not None: self._pen_shade = shade self._turtles.turtle_window.canvas.set_fgcolor(shade=self._pen_shade, gray=self._pen_gray, color=self._pen_color) if self._turtles.turtle_window.sharing() and share: event = 's|%s' % (data_to_string([self._turtles.turtle_window.nick, round_int(self._pen_shade)])) self._turtles.turtle_window.send_event(event) def set_pen_size(self, pen_size=None, share=True): #print 'taturtle.py: def set_pen_size' ''' Set the pen size for this turtle. ''' if pen_size is not None: self._pen_size = max(0, pen_size) self._turtles.turtle_window.canvas.set_pen_size( self._pen_size * self._turtles.turtle_window.coord_scale) if self._turtles.turtle_window.sharing() and share: event = 'w|%s' % (data_to_string([self._turtles.turtle_window.nick, round_int(self._pen_size)])) self._turtles.turtle_window.send_event(event) def set_pen_state(self, pen_state=None, share=True): #print 'taturtle.py: def set_pen_state' ''' Set the pen state (down==True) for this turtle. ''' if pen_state is not None: self._pen_state = pen_state if self._turtles.turtle_window.sharing() and share: event = 'p|%s' % (data_to_string([self._turtles.turtle_window.nick, self._pen_state])) self._turtles.turtle_window.send_event(event) def set_fill(self, state=False): #print 'taturtle.py: def set_fill' self._pen_fill = state if not self._pen_fill: self._poly_points = [] def set_poly_points(self, poly_points=None): #print 'taturtle.py: def set_poly_points' if poly_points is not None: self._poly_points = poly_points[:] def start_fill(self): #print 'taturtle.py: def start_fill' self._pen_fill = True self._poly_points = [] def stop_fill(self, share=True): #print 'taturtle.py: def stop_fill' self._pen_fill = False if len(self._poly_points) == 0: return self._turtles.turtle_window.canvas.fill_polygon(self._poly_points) if self._turtles.turtle_window.sharing() and share: shared_poly_points = [] for p in self._poly_points: x, y = self._turtles.turtle_to_screen_coordinates( (p[1], p[2])) if p[0] in ['move', 'line']: shared_poly_points.append((p[0], x, y)) elif p[0] in ['rarc', 'larc']: shared_poly_points.append((p[0], x, y, p[3], p[4], p[5])) event = 'F|%s' % (data_to_string( [self._turtles.turtle_window.nick, shared_poly_points])) self._turtles.turtle_window.send_event(event) self._poly_points = [] def hide(self): #print 'taturtle.py: def hide' if self.spr is not None: self.spr.hide() if self.label_block is not None: self.label_block.spr.hide() self._hidden = True def show(self): #print 'taturtle.py: def show' if self.spr is not None: self.spr.set_layer(TURTLE_LAYER) self._hidden = False self.move_turtle_spr((self._x, self._y)) self.set_heading(self._heading, share=False) if self.label_block is not None: self.label_block.spr.set_layer(TURTLE_LAYER + 1) def move_turtle(self, pos=None): #print 'taturtle.py: def move_turtle' ''' Move the turtle's position ''' if pos is None: pos = self.get_xy() self._x, self._y = pos[0], pos[1] if self.spr is not None: self.move_turtle_spr(pos) def move_turtle_spr(self, pos): #print 'taturtle.py: def move_turtle_spr' ''' Move the turtle's sprite ''' pos = self._turtles.turtle_to_screen_coordinates(pos) pos[0] -= self._half_width pos[1] -= self._half_height if not self._hidden and self.spr is not None: self.spr.move(pos) if self.label_block is not None: self.label_block.spr.move((pos[0] + self.label_xy[0], pos[1] + self.label_xy[1])) def reset_3D(self): self._3Dx, self._3Dy, self._3Dz = 0.0, 0.0, 0.0 self._direction = [0.0, 1.0, 0.0] self._roll, self._pitch = 0.0, 0.0 self._points = [[0., 0., 0.]] self._points_penstate = [1] def right(self, degrees, share=True): #print 'taturtle.py: def right' ''' Rotate turtle clockwise ''' self._heading += degrees self._heading %= 360 self._update_sprite_heading() if self._turtles.turtle_window.sharing() and share: event = 'r|%s' % (data_to_string([self._turtles.turtle_window.nick, round_int(self._heading)])) self._turtles.turtle_window.send_event(event) def left(self, degrees, share=True): #print 'taturtle.py: def left' degrees = 0 - degrees self.right(degrees, share) def _draw_line(self, old, new, pendown): #print 'taturtle.py: def _draw_line' if self._pen_state and pendown: self._turtles.turtle_window.canvas.set_source_rgb() pos1 = self._turtles.turtle_to_screen_coordinates(old) pos2 = self._turtles.turtle_to_screen_coordinates(new) self._turtles.turtle_window.canvas.draw_line(pos1[0], pos1[1], pos2[0], pos2[1]) if self._pen_fill: if self._poly_points == []: self._poly_points.append(('move', pos1[0], pos1[1])) self._poly_points.append(('line', pos2[0], pos2[1])) def draw_obj(self, file_name): vertices = [] lines = [] file_handle = open(file_name, 'r') for line in file_handle: temp = line.split() if temp[0] == 'v': vertices.append([float(temp[1]), float(temp[2]), float(temp[3])]) if temp[0] == 'l': lines.append([int(temp[1]), int(temp[2])]) width = self._turtles.turtle_window.width height = self._turtles.turtle_window.height for line in lines: source = vertices[line[0] - 1] dest = vertices[line[1] - 1] source_point = Point3D(source[0], source[1], source[2]) p1 = source_point.project(width, height, 512, 512) pair1 = [p1.x, p1.y] pos1 = self._turtles.screen_to_turtle_coordinates(pair1) dest_point = Point3D(dest[0], dest[1], dest[2]) p2 = dest_point.project(width, height, 512, 512) pair2 = [p2.x, p2.y] pos2 = self._turtles.screen_to_turtle_coordinates(pair2) self._draw_line(pos1, pos2, True) self.move_turtle((pos2[0], pos2[1])) return vertices, lines def forward(self, distance, share=True): #print 'taturtle.py: def forward' scaled_distance = distance * self._turtles.turtle_window.coord_scale old = self.get_xy() #Projected Point old_3D = self.get_3Dpoint() #Actual Point #xcor = old[0] + scaled_distance * sin(self._heading * DEGTOR) #ycor = old[1] + scaled_distance * cos(self._heading * DEGTOR) xcor = old_3D[0] + scaled_distance * self._direction[0] ycor = old_3D[1] + scaled_distance * self._direction[1] zcor = old_3D[2] + scaled_distance * self._direction[2] width = self._turtles.turtle_window.width height = self._turtles.turtle_window.height old_point = Point3D(old_3D[0], old_3D[1], old_3D[2]) # Old point as Point3D object p = old_point.project(width, height, 512, 512) # Projected Old Point new_x, new_y = p.x, p.y pair1 = [new_x, new_y] pos1 = self._turtles.screen_to_turtle_coordinates(pair1) ''' for i, val in enumerate(old_3D): if (abs(val) < 0.0001): old_3D[i] = 0. old_3D[i] = round(old_3D[i], 2) self._points.append([old_3D[0], old_3D[1], old_3D[2]]) if (self._pen_state): self._points_penstate.append(1) else: self._points_penstate.append(0) ''' self._3Dx, self._3Dy, self._3Dz = xcor, ycor, zcor self.store_data() new_point = Point3D(xcor, ycor, zcor) # New point as 3D object p = new_point.project(width, height, 512, 512) # Projected New Point new_x, new_y = p.x, p.y pair2 = [new_x, new_y] pos2 = self._turtles.screen_to_turtle_coordinates(pair2) #print 'new = ', new_point.x, new_point.y, new_point.z self._draw_line(pos1, pos2, True) #self.move_turtle((xcor, ycor)) self.move_turtle((pos2[0], pos2[1])) if self._turtles.turtle_window.sharing() and share: event = 'f|%s' % (data_to_string([self._turtles.turtle_window.nick, int(distance)])) self._turtles.turtle_window.send_event(event) def backward(self, distance, share=True): #print 'taturtle.py: def backward' distance = 0 - distance self.forward(distance, share) def set_xy(self, x, y, share=True, pendown=True, dragging=False): #print 'taturtle.py: def set_xy' old = self.get_xy() if dragging: xcor = x ycor = y else: xcor = x * self._turtles.turtle_window.coord_scale ycor = y * self._turtles.turtle_window.coord_scale self._draw_line(old, (xcor, ycor), pendown) self.move_turtle((xcor, ycor)) if self._turtles.turtle_window.sharing() and share: event = 'x|%s' % (data_to_string([self._turtles.turtle_window.nick, [round_int(xcor), round_int(ycor)]])) self._turtles.turtle_window.send_event(event) def set_xyz(self, x, y, z): ''' Set the x, y and z coordinates ''' self._3Dx, self._3Dy, self._3Dz = x, y, z self.store_data() point_3D = Point3D(x, y, z) width = self._turtles.turtle_window.width height = self._turtles.turtle_window.height p = point_3D.project(width, height, 512, 512) new_x, new_y = p.x, p.y pair = [new_x, new_y] pos = self._turtles.screen_to_turtle_coordinates(pair) self.set_xy(pos[0], pos[1]) def store_data(self): if(abs(self._3Dx) < 0.0001): self._3Dx = 0. if(abs(self._3Dy) < 0.0001): self._3Dy = 0. if(abs(self._3Dz) < 0.0001): self._3Dz = 0. self._3Dx = round(self._3Dx, 2) self._3Dy = round(self._3Dy, 2) self._3Dz = round(self._3Dz, 2) self._points.append([self._3Dx, self._3Dy, self._3Dz]) if (self._pen_state): self._points_penstate.append(1) else: self._points_penstate.append(0) def arc(self, a, r, share=True): #print 'taturtle.py: def arc' ''' Draw an arc ''' if self._pen_state: self._turtles.turtle_window.canvas.set_source_rgb() if a < 0: pos = self.larc(-a, r) else: pos = self.rarc(a, r) self.move_turtle(pos) if self._turtles.turtle_window.sharing() and share: event = 'a|%s' % (data_to_string([self._turtles.turtle_window.nick, [round_int(a), round_int(r)]])) self._turtles.turtle_window.send_event(event) def rarc(self, a, r): #print 'taturtle.py: def rarc' ''' draw a clockwise arc ''' r *= self._turtles.turtle_window.coord_scale if r < 0: r = -r a = -a pos = self.get_xy() cx = pos[0] + r * cos(self._heading * DEGTOR) cy = pos[1] - r * sin(self._heading * DEGTOR) if self._pen_state: npos = self._turtles.turtle_to_screen_coordinates((cx, cy)) self._turtles.turtle_window.canvas.rarc(npos[0], npos[1], r, a, self._heading) if self._pen_fill: self._poly_points.append(('move', npos[0], npos[1])) self._poly_points.append(('rarc', npos[0], npos[1], r, (self._heading - 180) * DEGTOR, (self._heading - 180 + a) * DEGTOR)) self.right(a, False) return [cx - r * cos(self._heading * DEGTOR), cy + r * sin(self._heading * DEGTOR)] def larc(self, a, r): #print 'taturtle.py: def larc' ''' draw a counter-clockwise arc ''' r *= self._turtles.turtle_window.coord_scale if r < 0: r = -r a = -a pos = self.get_xy() cx = pos[0] - r * cos(self._heading * DEGTOR) cy = pos[1] + r * sin(self._heading * DEGTOR) if self._pen_state: npos = self._turtles.turtle_to_screen_coordinates((cx, cy)) self._turtles.turtle_window.canvas.larc(npos[0], npos[1], r, a, self._heading) if self._pen_fill: self._poly_points.append(('move', npos[0], npos[1])) self._poly_points.append(('larc', npos[0], npos[1], r, (self._heading) * DEGTOR, (self._heading - a) * DEGTOR)) self.right(-a, False) return [cx + r * cos(self._heading * DEGTOR), cy - r * sin(self._heading * DEGTOR)] def draw_pixbuf(self, pixbuf, a, b, x, y, w, h, path, share=True): #print 'taturtle.py: def draw_pixbuf' ''' Draw a pixbuf ''' self._turtles.turtle_window.canvas.draw_pixbuf( pixbuf, a, b, x, y, w, h, self._heading) if self._turtles.turtle_window.sharing() and share: if self._turtles.turtle_window.running_sugar: tmp_path = get_path(self._turtles.turtle_window.activity, 'instance') else: tmp_path = '/tmp' tmp_file = os.path.join( get_path(self._turtles.turtle_window.activity, 'instance'), 'tmpfile.png') pixbuf.save(tmp_file, 'png', {'quality': '100'}) data = image_to_base64(tmp_file, tmp_path) height = pixbuf.get_height() width = pixbuf.get_width() pos = self._turtles.screen_to_turtle_coordinates((x, y)) event = 'P|%s' % (data_to_string([self._turtles.turtle_window.nick, [round_int(a), round_int(b), round_int(pos[0]), round_int(pos[1]), round_int(w), round_int(h), round_int(width), round_int(height), data]])) gobject.idle_add(self._turtles.turtle_window.send_event, event) os.remove(tmp_file) def draw_text(self, label, x, y, size, w, share=True): #print 'taturtle.py: def draw_text' ''' Draw text ''' self._turtles.turtle_window.canvas.draw_text( label, x, y, size, w, self._heading, self._turtles.turtle_window.coord_scale) if self._turtles.turtle_window.sharing() and share: event = 'W|%s' % (data_to_string([self._turtles.turtle_window.nick, [label, round_int(x), round_int(y), round_int(size), round_int(w)]])) self._turtles.turtle_window.send_event(event) def read_pixel(self): #print 'taturtle.py: def read_pixel' """ Read r, g, b, a from the canvas and push b, g, r to the stack """ r, g, b, a = self.get_pixel() self._turtles.turtle_window.lc.heap.append(b) self._turtles.turtle_window.lc.heap.append(g) self._turtles.turtle_window.lc.heap.append(r) def get_color_index(self): #print 'taturtle.py: def get_color_index' r, g, b, a = self.get_pixel() color_index = self._turtles.turtle_window.canvas.get_color_index( r, g, b) return color_index def get_name(self): #print 'taturtle.py: def get_name' return self._name def get_xy(self): #print 'taturtle.py: def get_xy' return [self._x, self._y] def get_3Dpoint(self): return [self._3Dx, self._3Dy, self._3Dz] def get_x(self): #print 'taturtle.py: def get_x' return self._3Dx def get_y(self): #print 'taturtle.py: def get_y' return self._3Dy def get_z(self): return self._3Dz def get_heading(self): #print 'taturtle.py: def get_heading' return self._heading def get_roll(self): return self._roll def get_pitch(self): return self._pitch def get_color(self): #print 'taturtle.py: def get_color' return self._pen_color def get_gray(self): #print 'taturtle.py: def get_gray' return self._pen_gray def get_shade(self): #print 'taturtle.py: def get_shade' return self._pen_shade def get_pen_size(self): #print 'taturtle.py: def get_pen_size' return self._pen_size def get_pen_state(self): #print 'taturtle.py: def get_pen_state' return self._pen_state def get_fill(self): #print 'taturtle.py: def get_fill' return self._pen_fill def get_poly_points(self): #print 'taturtle.py: def get_poly_points' return self._poly_points def get_pixel(self): #print 'taturtle.py: def get_pixel' pos = self._turtles.turtle_to_screen_coordinates(self.get_xy()) return self._turtles.turtle_window.canvas.get_pixel(pos[0], pos[1]) def get_drag_radius(self): #print 'taturtle.py: def get_drag_radius' if self._drag_radius is None: self._calculate_sizes() return self._drag_radius
class Spirolaterals: def __init__(self, canvas, colors, parent, score=0, delay=500, pattern=1, last=None): self._canvas = canvas self._colors = colors self._parent = parent self.delay = delay self.score = score self.pattern = pattern self.last_pattern = last self._running = False self._turtle_canvas = None self._user_numbers = [1, 1, 1, 3, 2] self._active_index = 0 self._sprites = Sprites(self._canvas) self._sprites.set_delay(True) size = max(Gdk.Screen.width(), Gdk.Screen.height()) cr = self._canvas.get_property('window').cairo_create() self._turtle_canvas = cr.get_target().create_similar( cairo.CONTENT_COLOR, size, size) self._canvas.connect('draw', self.__draw_cb) self._cr = cairo.Context(self._turtle_canvas) self._cr.set_line_cap(1) # Set the line cap to be round self._sprites.set_cairo_context(self._cr) self._canvas.set_can_focus(True) self._canvas.grab_focus() self._canvas.add_events(Gdk.EventMask.BUTTON_PRESS_MASK) self._canvas.connect('button-press-event', self._button_press_cb) self._canvas.connect('key_press_event', self._keypress_cb) self._width = Gdk.Screen.width() self._height = Gdk.Screen.height() - style.GRID_CELL_SIZE if self._width < self._height: self.i = 1 else: self.i = 0 self._calculate_scale_and_offset() self._numbers = [] self._glownumbers = [] self._create_number_sprites() self._create_turtle_sprites() self._create_results_sprites() self._set_color(colors[0]) self._set_pen_size(4) self.reset_level() def _calculate_scale_and_offset(self): self.offset = 0 if self.i == 0: self.scale = self._height / (900. - style.GRID_CELL_SIZE) * 1.25 self.offset = ( self._width - (self.sx(X1[self.i] + X2[self.i]) + self.ss(BS[self.i]))) / 2. else: self.scale = self._width / 900. self.offset = (self._width - (self.sx(X1[self.i]) + self.ss(BS[self.i]))) / 2. def reset_level(self): self._width = Gdk.Screen.width() self._height = Gdk.Screen.height() - style.GRID_CELL_SIZE if self._width < self._height: self.i = 1 else: self.i = 0 self._calculate_scale_and_offset() self._show_background_graphics() self._show_user_numbers() self._get_goal() self._draw_goal() self._reset_sprites() if self.score > 0: self._parent.update_score(int(self.score)) def _reset_sprites(self): x = self.sx(TX[self.i] - TS[self.i] / 2) y = self.sy(TY[self.i]) self._target_turtle.move((x, y)) x = self.sx(UX[self.i] - US[self.i] / 2) y = self.sy(UY[self.i]) self._user_turtles[0].move((x, y)) for i in range(5): for j in range(5): if self.i == 0: x = self.sx( NX[self.i]) + i * (self.ss(NS[self.i] + NO[self.i])) y = self.sy(NY[self.i]) else: x = self.sx(NX[self.i]) y = self.sy( NY[self.i]) + i * (self.ss(NS[self.i] + NO[self.i])) self._numbers[i][j].move((x, y)) self._glownumbers[i][j].move((x, y)) x = 0 y = self.sy(GY[self.i]) self._success.move((x, y)) self._success.hide() self._failure.move((x, y)) self._failure.hide() self._splot.hide() if self.last_pattern == self.pattern: self._parent.cyan.set_sensitive(True) def _keypress_cb(self, area, event): ''' Keypress: moving the slides with the arrow keys ''' k = Gdk.keyval_name(event.keyval) if k in ['1', '2', '3', '4', '5']: self.do_stop() i = self._active_index j = int(k) - 1 self._numbers[i][self._user_numbers[i] - 1].set_layer(HIDDEN_LAYER) self._numbers[i][j].set_layer(NUMBER_LAYER) self._user_numbers[i] = j + 1 self.inval(self._numbers[i][j].rect) elif k in ['KP_Up', 'j', 'Up']: self.do_stop() i = self._active_index j = self._user_numbers[i] if j < 5: j += 1 self._numbers[i][self._user_numbers[i] - 1].set_layer(HIDDEN_LAYER) self._numbers[i][j - 1].set_layer(NUMBER_LAYER) self._user_numbers[i] = j self.inval(self._numbers[i][j].rect) elif k in ['KP_Down', 'k', 'Down']: self.do_stop() i = self._active_index j = self._user_numbers[i] if j > 0: j -= 1 self._numbers[i][self._user_numbers[i] - 1].set_layer(HIDDEN_LAYER) self._numbers[i][j - 1].set_layer(NUMBER_LAYER) self._user_numbers[i] = j self.inval(self._numbers[i][j].rect) elif k in ['KP_Left', 'h', 'Left']: self.do_stop() self._active_index -= 1 self._active_index %= 5 elif k in ['KP_Right', 'l', 'Right']: self.do_stop() self._active_index += 1 self._active_index %= 5 elif k in ['Return', 'KP_Page_Up', 'KP_End']: self.do_run() elif k in ['space', 'Esc', 'KP_Page_Down', 'KP_Home']: self.do_stop() else: logging.debug(k) self._canvas.grab_focus() def _button_press_cb(self, win, event): ''' Callback to handle the button presses ''' win.grab_focus() x, y = map(int, event.get_coords()) self.press = self._sprites.find_sprite((x, y)) if self.press is not None and self.press.type == 'number': self.do_stop() i = int(self.press.name.split(',')[0]) self._active_index = i j = int(self.press.name.split(',')[1]) j1 = (j + 1) % 5 self._numbers[i][j1].set_layer(NUMBER_LAYER) self._numbers[i][j].set_layer(HIDDEN_LAYER) self._user_numbers[i] = j1 + 1 self.inval(self._numbers[i][j].rect) def _create_results_sprites(self): x = 0 y = self.sy(GY[self.i]) self._success = Sprite(self._sprites, x, y, self._parent.good_job_pixbuf()) self._success.hide() self._failure = Sprite(self._sprites, x, y, self._parent.try_again_pixbuf()) self._failure.hide() def _create_turtle_sprites(self): x = self.sx(TX[self.i] - TS[self.i] / 2) y = self.sy(TY[self.i]) pixbuf = self._parent.turtle_pixbuf() self._target_turtle = Sprite(self._sprites, x, y, pixbuf) self._user_turtles = [] x = self.sx(UX[self.i] - US[self.i] / 2) y = self.sy(UY[self.i]) self._user_turtles.append(Sprite(self._sprites, x, y, pixbuf)) pixbuf = pixbuf.rotate_simple(270) self._user_turtles.append(Sprite(self._sprites, x, y, pixbuf)) pixbuf = pixbuf.rotate_simple(270) self._user_turtles.append(Sprite(self._sprites, x, y, pixbuf)) pixbuf = pixbuf.rotate_simple(270) self._user_turtles.append(Sprite(self._sprites, x, y, pixbuf)) self._show_turtle(0) self._splot = Sprite(self._sprites, 0, 0, self._parent.splot_pixbuf()) self._splot.hide() def _show_splot(self, x, y, dd, h): for i in range(4): self._user_turtles[i].hide() if h == 0: self._splot.move((x - int(dd / 2), y)) elif h == 1: self._splot.move((x - dd, y - int(dd / 2))) elif h == 2: self._splot.move((x - int(dd / 2), y - dd)) elif h == 3: self._splot.move((x, y - int(dd / 2))) self._splot.set_layer(SUCCESS_LAYER) self._failure.set_layer(SUCCESS_LAYER) def _show_turtle(self, t): for i in range(4): if i == t: self._user_turtles[i].set_layer(TURTLE_LAYER) else: self._user_turtles[i].hide() def _reset_user_turtle(self): x = self.sx(UX[self.i] - US[self.i] / 2) y = self.sy(UY[self.i]) self._user_turtles[0].move((x, y)) self._show_turtle(0) def _create_number_sprites(self): for i in range(5): self._numbers.append([]) self._glownumbers.append([]) for j in range(5): if self.i == 0: x = self.sx( NX[self.i]) + i * (self.ss(NS[self.i] + NO[self.i])) y = self.sy(NY[self.i]) else: x = self.sx(NX[self.i]) y = self.sy( NY[self.i]) + i * (self.ss(NS[self.i] + NO[self.i])) number = Sprite( self._sprites, x, y, self._parent.number_pixbuf(self.ss(NS[self.i]), j + 1, self._parent.sugarcolors[1])) number.type = 'number' number.name = '%d,%d' % (i, j) self._numbers[i].append(number) number = Sprite( self._sprites, x, y, self._parent.number_pixbuf(self.ss(NS[self.i]), j + 1, '#FFFFFF')) number.type = 'number' number.name = '%d,%d' % (i, j) self._glownumbers[i].append(number) def _show_user_numbers(self): # Hide the numbers for i in range(5): for j in range(5): self._numbers[i][j].set_layer(HIDDEN_LAYER) self._glownumbers[i][j].set_layer(HIDDEN_LAYER) # Show user numbers self._numbers[0][self._user_numbers[0] - 1].set_layer(NUMBER_LAYER) self._numbers[1][self._user_numbers[1] - 1].set_layer(NUMBER_LAYER) self._numbers[2][self._user_numbers[2] - 1].set_layer(NUMBER_LAYER) self._numbers[3][self._user_numbers[3] - 1].set_layer(NUMBER_LAYER) self._numbers[4][self._user_numbers[4] - 1].set_layer(NUMBER_LAYER) def _show_background_graphics(self): self._draw_pixbuf(self._parent.background_pixbuf(), 0, 0, self._width, self._height) self._draw_pixbuf(self._parent.box_pixbuf(self.ss(BS[self.i])), self.sx(X1[self.i]), self.sy(Y1[self.i]), self.ss(BS[self.i]), self.ss(BS[self.i])) self._draw_pixbuf(self._parent.box_pixbuf(self.ss(BS[self.i])), self.sx(X2[self.i]), self.sy(Y2[self.i]), self.ss(BS[self.i]), self.ss(BS[self.i])) self._draw_text(self.pattern, self.sx(X1[self.i]), self.sy(Y1[self.i]), self.ss(LS[self.i])) def _set_pen_size(self, ps): self._cr.set_line_width(ps) def _set_color(self, color): r = color[0] / 255. g = color[1] / 255. b = color[2] / 255. self._cr.set_source_rgb(r, g, b) def _draw_line(self, x1, y1, x2, y2): self._cr.move_to(x1, y1) self._cr.line_to(x2, y2) self._cr.stroke() def ss(self, f): # scale size function return int(f * self.scale) def sx(self, f): # scale x function return int(f * self.scale + self.offset) def sy(self, f): # scale y function return int(f * self.scale) def _draw_pixbuf(self, pixbuf, x, y, w, h): self._cr.save() self._cr.translate(x + w / 2., y + h / 2.) self._cr.translate(-x - w / 2., -y - h / 2.) Gdk.cairo_set_source_pixbuf(self._cr, pixbuf, x, y) self._cr.rectangle(x, y, w, h) self._cr.fill() self._cr.restore() def _draw_text(self, label, x, y, size): pl = PangoCairo.create_layout(self._cr) fd = Pango.FontDescription('Sans') fd.set_size(int(size) * Pango.SCALE) pl.set_font_description(fd) if type(label) == str or type(label) == unicode: pl.set_text(label.replace('\0', ' '), -1) elif type(label) == float or type(label) == int: pl.set_text(str(label), -1) else: pl.set_text(str(label), -1) self._cr.save() self._cr.translate(x, y) self._cr.set_source_rgb(1, 1, 1) PangoCairo.update_layout(self._cr, pl) PangoCairo.show_layout(self._cr, pl) self._cr.restore() def inval(self, r): self._canvas.queue_draw_area(r[0], r[1], r[2], r[3]) def inval_all(self): self._canvas.queue_draw_area(0, 0, self._width, self._height) def __draw_cb(self, canvas, cr): cr.set_source_surface(self._turtle_canvas) cr.paint() self._sprites.redraw_sprites(cr=cr) def do_stop(self): self._parent.green.set_sensitive(True) self._running = False def do_run(self): self._show_background_graphics() # TODO: Add turtle graphics self._success.hide() self._failure.hide() self._splot.hide() self._get_goal() self._draw_goal() self.inval_all() self._running = True self.loop = 0 self._active_index = 0 self.step = 0 self._set_pen_size(4) self._set_color(self._colors[0]) x1 = self.sx(UX[self.i]) y1 = self.sy(UY[self.i]) dd = self.ss(US[self.i]) self._numbers[0][self._user_numbers[0] - 1].set_layer(HIDDEN_LAYER) self._glownumbers[0][self._user_numbers[0] - 1].set_layer(NUMBER_LAYER) self._user_turtles[0].move((int(x1 - dd / 2), y1)) self._show_turtle(0) if self._running: GObject.timeout_add(self.delay, self._do_step, x1, y1, dd, 0) def _do_step(self, x1, y1, dd, h): if not self._running: return if self.loop > 3: return if h == 0: # up x2 = x1 y2 = y1 - dd self._user_turtles[h].move((int(x2 - dd / 2), int(y2 - dd))) elif h == 1: # right x2 = x1 + dd y2 = y1 self._user_turtles[h].move((int(x2), int(y2 - dd / 2))) elif h == 2: # down x2 = x1 y2 = y1 + dd self._user_turtles[h].move((int(x2 - dd / 2), int(y2))) elif h == 3: # left x2 = x1 - dd y2 = y1 self._user_turtles[h].move((int(x2 - dd), int(y2 - dd / 2))) self._show_turtle(h) if x2 < self.sx(X2[self.i]) or \ x2 > self.sx(X2[self.i] + BS[self.i]) or \ y2 < self.sy(Y2[self.i]) or \ y2 > self.sy(Y2[self.i] + BS[self.i]): self.do_stop() self._show_splot(x2, y2, dd, h) self._draw_line(x1, y1, x2, y2) self.inval_all() self.step += 1 i = self._active_index if self.step == self._user_numbers[i]: number = self._user_numbers[i] - 1 self._numbers[i][number].set_layer(NUMBER_LAYER) self._glownumbers[i][number].set_layer(HIDDEN_LAYER) h += 1 h %= 4 self.step = 0 self._active_index += 1 if self._active_index == 5: self.loop += 1 self._active_index = 0 else: i = self._active_index number = self._user_numbers[i] - 1 self._numbers[i][number].set_layer(HIDDEN_LAYER) self._glownumbers[i][number].set_layer(NUMBER_LAYER) if self.loop < 4 and self._running: GObject.timeout_add(self.delay, self._do_step, x2, y2, dd, h) elif self.loop == 4: # Test to see if we win self._running = False self._parent.green.set_sensitive(True) self._reset_user_turtle() self._show_user_numbers() self._test_level() def _test_level(self): success = True for i in range(5): if self._user_numbers[i] != self._goal[i]: success = False break if success: self._do_success() else: self._do_fail() def _do_success(self): self._success.set_layer(SUCCESS_LAYER) self._parent.cyan.set_sensitive(True) if self.last_pattern != self.pattern: self.score += 6 self.last_pattern = self.pattern self._parent.update_score(int(self.score)) def _do_fail(self): self._failure.set_layer(SUCCESS_LAYER) self._parent.cyan.set_sensitive(False) def do_slider(self, value): self.delay = int(value) def do_button(self, bu): self._success.hide() self._failure.hide() if bu == 'cyan': # Next level self.do_stop() self._splot.hide() self.pattern += 1 if self.pattern == 123: self.pattern = 1 self._get_goal() self._show_background_graphics() self._draw_goal() self._reset_user_turtle() self.inval_all() self._parent.cyan.set_sensitive(False) elif bu == 'green': # Run level self._parent.green.set_sensitive(False) self.do_run() elif bu == 'red': # Stop level self.do_stop() def _draw_goal(self): # draws the left hand pattern x1 = self.sx(TX[self.i]) y1 = self.sy(TY[self.i]) dd = self.ss(TS[self.i]) dx = 0 dy = -dd for i in range(4): for j in self._goal: for k in range(j): x2 = x1 + dx y2 = y1 + dy self._set_pen_size(4) self._set_color(self._colors[0]) self._draw_line(x1, y1, x2, y2) x1 = x2 y1 = y2 if dy == -dd: dx = dd dy = 0 elif dx == dd: dx = 0 dy = dd elif dy == dd: dx = -dd dy = 0 else: dx = 0 dy = -dd def _get_goal(self): fname = os.path.join('data', 'patterns.dat') try: f = open(fname, 'r') for n in range(0, self.pattern): s = f.readline() s = s[0:5] except: s = 11132 self.pattern = 1 f.close l = [int(c) for c in str(s)] self._goal = l
class Turtle: def __init__(self, turtles, turtle_name, turtle_colors=None): #print 'class Turtle taturtle.py: def __init__' ''' The turtle is not a block, just a sprite with an orientation ''' self.spr = None self.label_block = None self._turtles = turtles self._shapes = [] self._custom_shapes = False self._name = turtle_name self._hidden = False self._remote = False self._x = 0.0 self._y = 0.0 self._3Dz = 0.0 self._3Dx = 0.0 self._3Dy = 0.0 self._heading = 0.0 self._roll = 0.0 self._pitch = 0.0 self._direction = [0.0, 1.0, 0.0] self._points = [[0., 0., 0.]] self._points_penstate = [1] self._half_width = 0 self._half_height = 0 self._drag_radius = None self._pen_shade = 50 self._pen_color = 0 self._pen_gray = 100 if self._turtles.turtle_window.coord_scale == 1: self._pen_size = 5 else: self._pen_size = 1 self._pen_state = True self._pen_fill = False self._poly_points = [] self._prep_shapes(turtle_name, self._turtles, turtle_colors) # Create a sprite for the turtle in interactive mode. if turtles.sprite_list is not None: self.spr = Sprite(self._turtles.sprite_list, 0, 0, self._shapes[0]) self._calculate_sizes() # Choose a random angle from which to attach the turtle # label to be used when sharing. angle = uniform(0, pi * 4 / 3.0) # 240 degrees width = self._shapes[0].get_width() radius = width * 0.67 # Restrict the angle to the sides: 30-150; 210-330 if angle > pi * 2 / 3.0: angle += pi / 2.0 # + 90 self.label_xy = [ int(radius * sin(angle)), int(radius * cos(angle) + width / 2.0) ] else: angle += pi / 6.0 # + 30 self.label_xy = [ int(radius * sin(angle) + width / 2.0), int(radius * cos(angle) + width / 2.0) ] self._turtles.add_to_dict(turtle_name, self) def _calculate_sizes(self): #print 'taturtle.py: def _calculate_sizes' self._half_width = int(self.spr.rect.width / 2.0) self._half_height = int(self.spr.rect.height / 2.0) self._drag_radius = ((self._half_width * self._half_width) + (self._half_height * self._half_height)) / 6 def set_remote(self): #print 'taturtle.py: def set_remote' self._remote = True def get_remote(self): #print 'taturtle.py: def get_remote' return self._remote def _prep_shapes(self, name, turtles=None, turtle_colors=None): #print 'taturtle.py: def _prep_shapes' # If the turtle name is an int, we'll use a palette color as the # turtle color try: int_key = int(name) use_color_table = True except ValueError: use_color_table = False if turtle_colors is not None: self.colors = turtle_colors[:] self._shapes = generate_turtle_pixbufs(self.colors) elif use_color_table: fill = wrap100(int_key) stroke = wrap100(fill + 10) self.colors = [ '#%06x' % (COLOR_TABLE[fill]), '#%06x' % (COLOR_TABLE[stroke]) ] self._shapes = generate_turtle_pixbufs(self.colors) else: if turtles is not None: self.colors = DEFAULT_TURTLE_COLORS self._shapes = turtles.get_pixbufs() def set_turtle_colors(self, turtle_colors): #print 'taturtle.py: def set_turtle_colors' ''' reset the colors of a preloaded turtle ''' if turtle_colors is not None: self.colors = turtle_colors[:] self._shapes = generate_turtle_pixbufs(self.colors) self.set_heading(self._heading, share=False) def set_shapes(self, shapes, i=0): #print 'taturtle.py: def set_shapes' ''' Reskin the turtle ''' n = len(shapes) if n == 1 and i > 0: # set shape[i] if i < len(self._shapes): self._shapes[i] = shapes[0] elif n == SHAPES: # all shapes have been precomputed self._shapes = shapes[:] else: # rotate shapes if n != 1: debug_output("%d images passed to set_shapes: ignoring" % (n), self._turtles.turtle_window.running_sugar) if self._heading == 0.0: # rotate the shapes images = [] w, h = shapes[0].get_width(), shapes[0].get_height() nw = nh = int(sqrt(w * w + h * h)) for i in range(SHAPES): surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, nw, nh) context = cairo.Context(surface) context = gtk.gdk.CairoContext(context) context.translate(nw / 2.0, nh / 2.0) context.rotate(i * 10 * pi / 180.) context.translate(-nw / 2.0, -nh / 2.0) context.set_source_pixbuf(shapes[0], (nw - w) / 2.0, (nh - h) / 2.0) context.rectangle(0, 0, nw, nh) context.fill() images.append(surface) self._shapes = images[:] else: # associate shape with image at current heading j = int(self._heading + 5) % 360 / (360 / SHAPES) self._shapes[j] = shapes[0] self._custom_shapes = True self.show() self._calculate_sizes() def reset_shapes(self): #print 'taturtle.py: def reset_shapes' ''' Reset the shapes to the standard turtle ''' if self._custom_shapes: self._shapes = generate_turtle_pixbufs(self.colors) self._custom_shapes = False self._calculate_sizes() def _apply_rotations(self): self._direction = [0., 1., 0.] angle = self._heading * DEGTOR * -1.0 temp = [] temp.append((self._direction[0] * cos(angle)) - (self._direction[1] * sin(angle))) temp.append((self._direction[0] * sin(angle)) + (self._direction[1] * cos(angle))) temp.append(self._direction[2] * 1.0) self._direction = temp[:] angle = self._roll * DEGTOR * -1.0 temp = [] temp.append(self._direction[0] * 1.0) temp.append((self._direction[1] * cos(angle)) - (self._direction[2] * sin(angle))) temp.append((self._direction[1] * sin(angle)) + (self._direction[2] * cos(angle))) self._direction = temp[:] angle = self._pitch * DEGTOR * -1.0 temp = [] temp.append((self._direction[0] * cos(angle)) + (self._direction[2] * sin(angle))) temp.append(self._direction[1] * 1.0) temp.append((self._direction[0] * -1.0 * sin(angle)) + (self._direction[2] * cos(angle))) self._direction = temp[:] def set_heading(self, heading, share=True): #print 'taturtle.py: def set_heading' ''' Set the turtle heading (one shape per 360/SHAPES degrees) ''' self._heading = heading self._heading %= 360 self._apply_rotations() self._update_sprite_heading() if self._turtles.turtle_window.sharing() and share: event = 'r|%s' % (data_to_string( [self._turtles.turtle_window.nick, round_int(self._heading)])) self._turtles.turtle_window.send_event(event) def set_roll(self, roll): ''' Set the turtle roll ''' self._roll = roll self._roll %= 360 self._apply_rotations() def set_pitch(self, pitch): ''' Set the turtle pitch ''' self._pitch = pitch self._pitch %= 360 self._apply_rotations() def _update_sprite_heading(self): #print 'taturtle.py: def _update_sprite_heading' ''' Update the sprite to reflect the current heading ''' i = (int(self._heading + 5) % 360) / (360 / SHAPES) if not self._hidden and self.spr is not None: try: self.spr.set_shape(self._shapes[i]) except IndexError: self.spr.set_shape(self._shapes[0]) def set_color(self, color=None, share=True): #print 'taturtle.py: def set_color' ''' Set the pen color for this turtle. ''' if isinstance(color, ColorObj): # See comment in tatype.py TYPE_BOX -> TYPE_COLOR color = color.color if color is None: color = self._pen_color # Special case for color blocks from CONSTANTS elif isinstance(color, Color): self.set_shade(color.shade, share) self.set_gray(color.gray, share) if color.color is not None: color = color.color else: color = self._pen_color self._pen_color = color self._turtles.turtle_window.canvas.set_fgcolor(shade=self._pen_shade, gray=self._pen_gray, color=self._pen_color) if self._turtles.turtle_window.sharing() and share: event = 'c|%s' % (data_to_string( [self._turtles.turtle_window.nick, round_int(self._pen_color)])) self._turtles.turtle_window.send_event(event) def set_gray(self, gray=None, share=True): #print 'taturtle.py: def set_gray' ''' Set the pen gray level for this turtle. ''' if gray is not None: self._pen_gray = gray if self._pen_gray < 0: self._pen_gray = 0 if self._pen_gray > 100: self._pen_gray = 100 self._turtles.turtle_window.canvas.set_fgcolor(shade=self._pen_shade, gray=self._pen_gray, color=self._pen_color) if self._turtles.turtle_window.sharing() and share: event = 'g|%s' % (data_to_string( [self._turtles.turtle_window.nick, round_int(self._pen_gray)])) self._turtles.turtle_window.send_event(event) def set_shade(self, shade=None, share=True): #print 'taturtle.py: def set_shade' ''' Set the pen shade for this turtle. ''' if shade is not None: self._pen_shade = shade self._turtles.turtle_window.canvas.set_fgcolor(shade=self._pen_shade, gray=self._pen_gray, color=self._pen_color) if self._turtles.turtle_window.sharing() and share: event = 's|%s' % (data_to_string( [self._turtles.turtle_window.nick, round_int(self._pen_shade)])) self._turtles.turtle_window.send_event(event) def set_pen_size(self, pen_size=None, share=True): #print 'taturtle.py: def set_pen_size' ''' Set the pen size for this turtle. ''' if pen_size is not None: self._pen_size = max(0, pen_size) self._turtles.turtle_window.canvas.set_pen_size( self._pen_size * self._turtles.turtle_window.coord_scale) if self._turtles.turtle_window.sharing() and share: event = 'w|%s' % (data_to_string( [self._turtles.turtle_window.nick, round_int(self._pen_size)])) self._turtles.turtle_window.send_event(event) def set_pen_state(self, pen_state=None, share=True): #print 'taturtle.py: def set_pen_state' ''' Set the pen state (down==True) for this turtle. ''' if pen_state is not None: self._pen_state = pen_state if self._turtles.turtle_window.sharing() and share: event = 'p|%s' % (data_to_string( [self._turtles.turtle_window.nick, self._pen_state])) self._turtles.turtle_window.send_event(event) def set_fill(self, state=False): #print 'taturtle.py: def set_fill' self._pen_fill = state if not self._pen_fill: self._poly_points = [] def set_poly_points(self, poly_points=None): #print 'taturtle.py: def set_poly_points' if poly_points is not None: self._poly_points = poly_points[:] def start_fill(self): #print 'taturtle.py: def start_fill' self._pen_fill = True self._poly_points = [] def stop_fill(self, share=True): #print 'taturtle.py: def stop_fill' self._pen_fill = False if len(self._poly_points) == 0: return self._turtles.turtle_window.canvas.fill_polygon(self._poly_points) if self._turtles.turtle_window.sharing() and share: shared_poly_points = [] for p in self._poly_points: x, y = self._turtles.turtle_to_screen_coordinates((p[1], p[2])) if p[0] in ['move', 'line']: shared_poly_points.append((p[0], x, y)) elif p[0] in ['rarc', 'larc']: shared_poly_points.append((p[0], x, y, p[3], p[4], p[5])) event = 'F|%s' % (data_to_string( [self._turtles.turtle_window.nick, shared_poly_points])) self._turtles.turtle_window.send_event(event) self._poly_points = [] def hide(self): #print 'taturtle.py: def hide' if self.spr is not None: self.spr.hide() if self.label_block is not None: self.label_block.spr.hide() self._hidden = True def show(self): #print 'taturtle.py: def show' if self.spr is not None: self.spr.set_layer(TURTLE_LAYER) self._hidden = False self.move_turtle_spr((self._x, self._y)) self.set_heading(self._heading, share=False) if self.label_block is not None: self.label_block.spr.set_layer(TURTLE_LAYER + 1) def move_turtle(self, pos=None): #print 'taturtle.py: def move_turtle' ''' Move the turtle's position ''' if pos is None: pos = self.get_xy() self._x, self._y = pos[0], pos[1] if self.spr is not None: self.move_turtle_spr(pos) def move_turtle_spr(self, pos): #print 'taturtle.py: def move_turtle_spr' ''' Move the turtle's sprite ''' pos = self._turtles.turtle_to_screen_coordinates(pos) pos[0] -= self._half_width pos[1] -= self._half_height if not self._hidden and self.spr is not None: self.spr.move(pos) if self.label_block is not None: self.label_block.spr.move( (pos[0] + self.label_xy[0], pos[1] + self.label_xy[1])) def reset_3D(self): self._3Dx, self._3Dy, self._3Dz = 0.0, 0.0, 0.0 self._direction = [0.0, 1.0, 0.0] self._roll, self._pitch = 0.0, 0.0 self._points = [[0., 0., 0.]] self._points_penstate = [1] def right(self, degrees, share=True): #print 'taturtle.py: def right' ''' Rotate turtle clockwise ''' self._heading += degrees self._heading %= 360 self._update_sprite_heading() if self._turtles.turtle_window.sharing() and share: event = 'r|%s' % (data_to_string( [self._turtles.turtle_window.nick, round_int(self._heading)])) self._turtles.turtle_window.send_event(event) def left(self, degrees, share=True): #print 'taturtle.py: def left' degrees = 0 - degrees self.right(degrees, share) def _draw_line(self, old, new, pendown): #print 'taturtle.py: def _draw_line' if self._pen_state and pendown: self._turtles.turtle_window.canvas.set_source_rgb() pos1 = self._turtles.turtle_to_screen_coordinates(old) pos2 = self._turtles.turtle_to_screen_coordinates(new) self._turtles.turtle_window.canvas.draw_line( pos1[0], pos1[1], pos2[0], pos2[1]) if self._pen_fill: if self._poly_points == []: self._poly_points.append(('move', pos1[0], pos1[1])) self._poly_points.append(('line', pos2[0], pos2[1])) def draw_obj(self, file_name): vertices = [] lines = [] file_handle = open(file_name, 'r') for line in file_handle: temp = line.split() if temp[0] == 'v': vertices.append( [float(temp[1]), float(temp[2]), float(temp[3])]) if temp[0] == 'l': lines.append([int(temp[1]), int(temp[2])]) width = self._turtles.turtle_window.width height = self._turtles.turtle_window.height for line in lines: source = vertices[line[0] - 1] dest = vertices[line[1] - 1] source_point = Point3D(source[0], source[1], source[2]) p1 = source_point.project(width, height, 512, 512) pair1 = [p1.x, p1.y] pos1 = self._turtles.screen_to_turtle_coordinates(pair1) dest_point = Point3D(dest[0], dest[1], dest[2]) p2 = dest_point.project(width, height, 512, 512) pair2 = [p2.x, p2.y] pos2 = self._turtles.screen_to_turtle_coordinates(pair2) self._draw_line(pos1, pos2, True) self.move_turtle((pos2[0], pos2[1])) return vertices, lines def forward(self, distance, share=True): #print 'taturtle.py: def forward' scaled_distance = distance * self._turtles.turtle_window.coord_scale old = self.get_xy() #Projected Point old_3D = self.get_3Dpoint() #Actual Point #xcor = old[0] + scaled_distance * sin(self._heading * DEGTOR) #ycor = old[1] + scaled_distance * cos(self._heading * DEGTOR) xcor = old_3D[0] + scaled_distance * self._direction[0] ycor = old_3D[1] + scaled_distance * self._direction[1] zcor = old_3D[2] + scaled_distance * self._direction[2] width = self._turtles.turtle_window.width height = self._turtles.turtle_window.height old_point = Point3D(old_3D[0], old_3D[1], old_3D[2]) # Old point as Point3D object p = old_point.project(width, height, 512, 512) # Projected Old Point new_x, new_y = p.x, p.y pair1 = [new_x, new_y] pos1 = self._turtles.screen_to_turtle_coordinates(pair1) ''' for i, val in enumerate(old_3D): if (abs(val) < 0.0001): old_3D[i] = 0. old_3D[i] = round(old_3D[i], 2) self._points.append([old_3D[0], old_3D[1], old_3D[2]]) if (self._pen_state): self._points_penstate.append(1) else: self._points_penstate.append(0) ''' self._3Dx, self._3Dy, self._3Dz = xcor, ycor, zcor self.store_data() new_point = Point3D(xcor, ycor, zcor) # New point as 3D object p = new_point.project(width, height, 512, 512) # Projected New Point new_x, new_y = p.x, p.y pair2 = [new_x, new_y] pos2 = self._turtles.screen_to_turtle_coordinates(pair2) #print 'new = ', new_point.x, new_point.y, new_point.z self._draw_line(pos1, pos2, True) #self.move_turtle((xcor, ycor)) self.move_turtle((pos2[0], pos2[1])) if self._turtles.turtle_window.sharing() and share: event = 'f|%s' % (data_to_string( [self._turtles.turtle_window.nick, int(distance)])) self._turtles.turtle_window.send_event(event) def backward(self, distance, share=True): #print 'taturtle.py: def backward' distance = 0 - distance self.forward(distance, share) def set_xy(self, x, y, share=True, pendown=True, dragging=False): #print 'taturtle.py: def set_xy' old = self.get_xy() if dragging: xcor = x ycor = y else: xcor = x * self._turtles.turtle_window.coord_scale ycor = y * self._turtles.turtle_window.coord_scale self._draw_line(old, (xcor, ycor), pendown) self.move_turtle((xcor, ycor)) if self._turtles.turtle_window.sharing() and share: event = 'x|%s' % (data_to_string([ self._turtles.turtle_window.nick, [round_int(xcor), round_int(ycor)] ])) self._turtles.turtle_window.send_event(event) def set_xyz(self, x, y, z): ''' Set the x, y and z coordinates ''' self._3Dx, self._3Dy, self._3Dz = x, y, z self.store_data() point_3D = Point3D(x, y, z) width = self._turtles.turtle_window.width height = self._turtles.turtle_window.height p = point_3D.project(width, height, 512, 512) new_x, new_y = p.x, p.y pair = [new_x, new_y] pos = self._turtles.screen_to_turtle_coordinates(pair) self.set_xy(pos[0], pos[1]) def store_data(self): if (abs(self._3Dx) < 0.0001): self._3Dx = 0. if (abs(self._3Dy) < 0.0001): self._3Dy = 0. if (abs(self._3Dz) < 0.0001): self._3Dz = 0. self._3Dx = round(self._3Dx, 2) self._3Dy = round(self._3Dy, 2) self._3Dz = round(self._3Dz, 2) self._points.append([self._3Dx, self._3Dy, self._3Dz]) if (self._pen_state): self._points_penstate.append(1) else: self._points_penstate.append(0) def arc(self, a, r, share=True): #print 'taturtle.py: def arc' ''' Draw an arc ''' if self._pen_state: self._turtles.turtle_window.canvas.set_source_rgb() if a < 0: pos = self.larc(-a, r) else: pos = self.rarc(a, r) self.move_turtle(pos) if self._turtles.turtle_window.sharing() and share: event = 'a|%s' % (data_to_string([ self._turtles.turtle_window.nick, [round_int(a), round_int(r)] ])) self._turtles.turtle_window.send_event(event) def rarc(self, a, r): #print 'taturtle.py: def rarc' ''' draw a clockwise arc ''' r *= self._turtles.turtle_window.coord_scale if r < 0: r = -r a = -a pos = self.get_xy() cx = pos[0] + r * cos(self._heading * DEGTOR) cy = pos[1] - r * sin(self._heading * DEGTOR) if self._pen_state: npos = self._turtles.turtle_to_screen_coordinates((cx, cy)) self._turtles.turtle_window.canvas.rarc(npos[0], npos[1], r, a, self._heading) if self._pen_fill: self._poly_points.append(('move', npos[0], npos[1])) self._poly_points.append(('rarc', npos[0], npos[1], r, (self._heading - 180) * DEGTOR, (self._heading - 180 + a) * DEGTOR)) self.right(a, False) return [ cx - r * cos(self._heading * DEGTOR), cy + r * sin(self._heading * DEGTOR) ] def larc(self, a, r): #print 'taturtle.py: def larc' ''' draw a counter-clockwise arc ''' r *= self._turtles.turtle_window.coord_scale if r < 0: r = -r a = -a pos = self.get_xy() cx = pos[0] - r * cos(self._heading * DEGTOR) cy = pos[1] + r * sin(self._heading * DEGTOR) if self._pen_state: npos = self._turtles.turtle_to_screen_coordinates((cx, cy)) self._turtles.turtle_window.canvas.larc(npos[0], npos[1], r, a, self._heading) if self._pen_fill: self._poly_points.append(('move', npos[0], npos[1])) self._poly_points.append( ('larc', npos[0], npos[1], r, (self._heading) * DEGTOR, (self._heading - a) * DEGTOR)) self.right(-a, False) return [ cx + r * cos(self._heading * DEGTOR), cy - r * sin(self._heading * DEGTOR) ] def draw_pixbuf(self, pixbuf, a, b, x, y, w, h, path, share=True): #print 'taturtle.py: def draw_pixbuf' ''' Draw a pixbuf ''' self._turtles.turtle_window.canvas.draw_pixbuf(pixbuf, a, b, x, y, w, h, self._heading) if self._turtles.turtle_window.sharing() and share: if self._turtles.turtle_window.running_sugar: tmp_path = get_path(self._turtles.turtle_window.activity, 'instance') else: tmp_path = '/tmp' tmp_file = os.path.join( get_path(self._turtles.turtle_window.activity, 'instance'), 'tmpfile.png') pixbuf.save(tmp_file, 'png', {'quality': '100'}) data = image_to_base64(tmp_file, tmp_path) height = pixbuf.get_height() width = pixbuf.get_width() pos = self._turtles.screen_to_turtle_coordinates((x, y)) event = 'P|%s' % (data_to_string([ self._turtles.turtle_window.nick, [ round_int(a), round_int(b), round_int(pos[0]), round_int(pos[1]), round_int(w), round_int(h), round_int(width), round_int(height), data ] ])) gobject.idle_add(self._turtles.turtle_window.send_event, event) os.remove(tmp_file) def draw_text(self, label, x, y, size, w, share=True): #print 'taturtle.py: def draw_text' ''' Draw text ''' self._turtles.turtle_window.canvas.draw_text( label, x, y, size, w, self._heading, self._turtles.turtle_window.coord_scale) if self._turtles.turtle_window.sharing() and share: event = 'W|%s' % (data_to_string([ self._turtles.turtle_window.nick, [ label, round_int(x), round_int(y), round_int(size), round_int(w) ] ])) self._turtles.turtle_window.send_event(event) def read_pixel(self): #print 'taturtle.py: def read_pixel' """ Read r, g, b, a from the canvas and push b, g, r to the stack """ r, g, b, a = self.get_pixel() self._turtles.turtle_window.lc.heap.append(b) self._turtles.turtle_window.lc.heap.append(g) self._turtles.turtle_window.lc.heap.append(r) def get_color_index(self): #print 'taturtle.py: def get_color_index' r, g, b, a = self.get_pixel() color_index = self._turtles.turtle_window.canvas.get_color_index( r, g, b) return color_index def get_name(self): #print 'taturtle.py: def get_name' return self._name def get_xy(self): #print 'taturtle.py: def get_xy' return [self._x, self._y] def get_3Dpoint(self): return [self._3Dx, self._3Dy, self._3Dz] def get_x(self): #print 'taturtle.py: def get_x' return self._3Dx def get_y(self): #print 'taturtle.py: def get_y' return self._3Dy def get_z(self): return self._3Dz def get_heading(self): #print 'taturtle.py: def get_heading' return self._heading def get_roll(self): return self._roll def get_pitch(self): return self._pitch def get_color(self): #print 'taturtle.py: def get_color' return self._pen_color def get_gray(self): #print 'taturtle.py: def get_gray' return self._pen_gray def get_shade(self): #print 'taturtle.py: def get_shade' return self._pen_shade def get_pen_size(self): #print 'taturtle.py: def get_pen_size' return self._pen_size def get_pen_state(self): #print 'taturtle.py: def get_pen_state' return self._pen_state def get_fill(self): #print 'taturtle.py: def get_fill' return self._pen_fill def get_poly_points(self): #print 'taturtle.py: def get_poly_points' return self._poly_points def get_pixel(self): #print 'taturtle.py: def get_pixel' pos = self._turtles.turtle_to_screen_coordinates(self.get_xy()) return self._turtles.turtle_window.canvas.get_pixel(pos[0], pos[1]) def get_drag_radius(self): #print 'taturtle.py: def get_drag_radius' if self._drag_radius is None: self._calculate_sizes() return self._drag_radius
class BBoardActivity(activity.Activity): ''' Make a slideshow from starred Journal entries. ''' def __init__(self, handle): ''' Initialize the toolbars and the work surface ''' super(BBoardActivity, self).__init__(handle) self.datapath = get_path(activity, 'instance') self._hw = get_hardware() self._playback_buttons = {} self._audio_recordings = {} self.colors = profile.get_color().to_string().split(',') self._setup_toolbars() self._setup_canvas() self.slides = [] self._setup_workspace() self._buddies = [profile.get_nick_name()] self._setup_presence_service() self._thumbs = [] self._thumbnail_mode = False self._recording = False self._grecord = None self._alert = None self._dirty = False def _setup_canvas(self): ''' Create a canvas ''' self._canvas = gtk.DrawingArea() self._canvas.set_size_request(int(gtk.gdk.screen_width()), int(gtk.gdk.screen_height())) self._canvas.show() self.set_canvas(self._canvas) self.show_all() self._canvas.set_flags(gtk.CAN_FOCUS) self._canvas.add_events(gtk.gdk.BUTTON_PRESS_MASK) self._canvas.add_events(gtk.gdk.POINTER_MOTION_MASK) self._canvas.add_events(gtk.gdk.BUTTON_RELEASE_MASK) self._canvas.add_events(gtk.gdk.KEY_PRESS_MASK) self._canvas.connect("expose-event", self._expose_cb) self._canvas.connect("button-press-event", self._button_press_cb) self._canvas.connect("button-release-event", self._button_release_cb) self._canvas.connect("motion-notify-event", self._mouse_move_cb) def _setup_workspace(self): ''' Prepare to render the datastore entries. ''' # Use the lighter color for the text background if lighter_color(self.colors) == 0: tmp = self.colors[0] self.colors[0] = self.colors[1] self.colors[1] = tmp self._width = gtk.gdk.screen_width() self._height = gtk.gdk.screen_height() self._scale = gtk.gdk.screen_height() / 900. if not HAVE_TOOLBOX and self._hw[0:2] == 'xo': titlef = 18 descriptionf = 12 else: titlef = 36 descriptionf = 24 self._find_starred() for ds in self.dsobjects: if 'title' in ds.metadata: title = ds.metadata['title'] else: title = None pixbuf = None media_object = False mimetype = None if 'mime_type' in ds.metadata: mimetype = ds.metadata['mime_type'] if mimetype[0:5] == 'image': pixbuf = gtk.gdk.pixbuf_new_from_file_at_size( ds.file_path, MAXX, MAXY) # ds.file_path, 300, 225) media_object = True else: pixbuf = get_pixbuf_from_journal(ds, MAXX, MAXY) # 300, 225) if 'description' in ds.metadata: desc = ds.metadata['description'] else: desc = None self.slides.append(Slide(True, ds.object_id, self.colors, title, pixbuf, desc)) # Generate the sprites we'll need... self._sprites = Sprites(self._canvas) self._help = Sprite( self._sprites, int((self._width - int(PREVIEWW * self._scale)) / 2), int(PREVIEWY * self._scale), gtk.gdk.pixbuf_new_from_file_at_size( os.path.join(activity.get_bundle_path(), 'help.png'), int(PREVIEWW * self._scale), int(PREVIEWH * self._scale))) self._help.hide() self._genblanks(self.colors) self._title = Sprite(self._sprites, 0, 0, self._title_pixbuf) self._title.set_label_attributes(int(titlef * self._scale), rescale=False) self._preview = Sprite(self._sprites, int((self._width - int(PREVIEWW * self._scale)) / 2), int(PREVIEWY * self._scale), self._preview_pixbuf) self._description = Sprite(self._sprites, int(DESCRIPTIONX * self._scale), int(DESCRIPTIONY * self._scale), self._desc_pixbuf) self._description.set_label_attributes(int(descriptionf * self._scale)) self._my_canvas = Sprite(self._sprites, 0, 0, self._canvas_pixbuf) self._my_canvas.set_layer(BOTTOM) self._clear_screen() self.i = 0 self._show_slide() self._playing = False self._rate = 10 def _genblanks(self, colors): ''' Need to cache these ''' self._title_pixbuf = svg_str_to_pixbuf( genblank(self._width, int(TITLEH * self._scale), colors)) self._preview_pixbuf = svg_str_to_pixbuf( genblank(int(PREVIEWW * self._scale), int(PREVIEWH * self._scale), colors)) self._desc_pixbuf = svg_str_to_pixbuf( genblank(int(self._width - (2 * DESCRIPTIONX * self._scale)), int(DESCRIPTIONH * self._scale), colors)) self._canvas_pixbuf = svg_str_to_pixbuf( genblank(self._width, self._height, (colors[0], colors[0]))) def _setup_toolbars(self): ''' Setup the toolbars. ''' self.max_participants = 6 if HAVE_TOOLBOX: toolbox = ToolbarBox() # Activity toolbar activity_button_toolbar = ActivityToolbarButton(self) toolbox.toolbar.insert(activity_button_toolbar, 0) activity_button_toolbar.show() self.set_toolbar_box(toolbox) toolbox.show() self.toolbar = toolbox.toolbar self.record_toolbar = gtk.Toolbar() record_toolbar_button = ToolbarButton( label=_('Record a sound'), page=self.record_toolbar, icon_name='media-audio') self.record_toolbar.show_all() record_toolbar_button.show() toolbox.toolbar.insert(record_toolbar_button, -1) else: # Use pre-0.86 toolbar design primary_toolbar = gtk.Toolbar() toolbox = activity.ActivityToolbox(self) self.set_toolbox(toolbox) toolbox.add_toolbar(_('Page'), primary_toolbar) self.record_toolbar = gtk.Toolbar() toolbox.add_toolbar(_('Record'), self.record_toolbar) toolbox.show() toolbox.set_current_toolbar(1) self.toolbar = primary_toolbar self._prev_button = button_factory( 'go-previous-inactive', self.toolbar, self._prev_cb, tooltip=_('Prev slide'), accelerator='<Ctrl>P') self._next_button = button_factory( 'go-next', self.toolbar, self._next_cb, tooltip=_('Next slide'), accelerator='<Ctrl>N') separator_factory(self.toolbar) slide_button = radio_factory('slide-view', self.toolbar, self._slides_cb, group=None, tooltip=_('Slide view')) radio_factory('thumbs-view', self.toolbar, self._thumbs_cb, tooltip=_('Thumbnail view'), group=slide_button) button_factory('view-fullscreen', self.toolbar, self.do_fullscreen_cb, tooltip=_('Fullscreen'), accelerator='<Alt>Return') separator_factory(self.toolbar) journal_button = button_factory( 'write-journal', self.toolbar, self._do_journal_cb, tooltip=_('Update description')) self._palette = journal_button.get_palette() msg_box = gtk.HBox() sw = gtk.ScrolledWindow() sw.set_size_request(int(gtk.gdk.screen_width() / 2), 2 * style.GRID_CELL_SIZE) sw.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC) self._text_view = gtk.TextView() self._text_view.set_left_margin(style.DEFAULT_PADDING) self._text_view.set_right_margin(style.DEFAULT_PADDING) self._text_view.set_wrap_mode(gtk.WRAP_WORD_CHAR) self._text_view.connect('focus-out-event', self._text_view_focus_out_event_cb) sw.add(self._text_view) sw.show() msg_box.pack_start(sw, expand=False) msg_box.show_all() self._palette.set_content(msg_box) label_factory(self.record_toolbar, _('Record a sound') + ':') self._record_button = button_factory( 'media-record', self.record_toolbar, self._record_cb, tooltip=_('Start recording')) separator_factory(self.record_toolbar) # Look to see if we have audio previously recorded obj_id = self._get_audio_obj_id() dsobject = self._search_for_audio_note(obj_id) if dsobject is not None: _logger.debug('Found previously recorded audio') self._add_playback_button(profile.get_nick_name(), self.colors, dsobject.file_path) if HAVE_TOOLBOX: button_factory('system-restart', activity_button_toolbar, self._resend_cb, tooltip=_('Refresh')) separator_factory(activity_button_toolbar) self._save_pdf = button_factory( 'save-as-pdf', activity_button_toolbar, self._save_as_pdf_cb, tooltip=_('Save as PDF')) else: separator_factory(self.toolbar) self._save_pdf = button_factory( 'save-as-pdf', self.toolbar, self._save_as_pdf_cb, tooltip=_('Save as PDF')) if HAVE_TOOLBOX: separator_factory(toolbox.toolbar, True, False) stop_button = StopButton(self) stop_button.props.accelerator = '<Ctrl>q' toolbox.toolbar.insert(stop_button, -1) stop_button.show() def _do_journal_cb(self, button): self._dirty = True if self._palette: if not self._palette.is_up(): self._palette.popup(immediate=True, state=self._palette.SECONDARY) else: self._palette.popdown(immediate=True) return def _text_view_focus_out_event_cb(self, widget, event): buffer = self._text_view.get_buffer() start_iter = buffer.get_start_iter() end_iter = buffer.get_end_iter() self.slides[self.i].desc = buffer.get_text(start_iter, end_iter) self._show_slide() def _destroy_cb(self, win, event): ''' Clean up on the way out. ''' gtk.main_quit() def _find_starred(self): ''' Find all the favorites in the Journal. ''' self.dsobjects, nobjects = datastore.find({'keep': '1'}) _logger.debug('found %d starred items', nobjects) def _prev_cb(self, button=None): ''' The previous button has been clicked; goto previous slide. ''' if self.i > 0: self.i -= 1 self._show_slide(direction=-1) def _next_cb(self, button=None): ''' The next button has been clicked; goto next slide. ''' if self.i < len(self.slides) - 1: self.i += 1 self._show_slide() def _save_as_pdf_cb(self, button=None): ''' Export an PDF version of the slideshow to the Journal. ''' _logger.debug('saving to PDF...') if 'description' in self.metadata: tmp_file = save_pdf(self, self._buddies, description=self.metadata['description']) else: tmp_file = save_pdf(self, self._buddies) _logger.debug('copying PDF file to Journal...') dsobject = datastore.create() dsobject.metadata['title'] = profile.get_nick_name() + ' ' + \ _('Bboard') dsobject.metadata['icon-color'] = profile.get_color().to_string() dsobject.metadata['mime_type'] = 'application/pdf' dsobject.set_file_path(tmp_file) dsobject.metadata['activity'] = 'org.laptop.sugar.ReadActivity' datastore.write(dsobject) dsobject.destroy() return def _clear_screen(self): ''' Clear the screen to the darker of the two user colors. ''' self._title.hide() self._preview.hide() self._description.hide() if hasattr(self, '_thumbs'): for thumbnail in self._thumbs: thumbnail[0].hide() self.invalt(0, 0, self._width, self._height) # Reset drag settings self._press = None self._release = None self._dragpos = [0, 0] self._total_drag = [0, 0] self.last_spr_moved = None def _update_colors(self): ''' Match the colors to those of the slide originator. ''' if len(self.slides) == 0: return self._genblanks(self.slides[self.i].colors) self._title.set_image(self._title_pixbuf) self._preview.set_image(self._preview_pixbuf) self._description.set_image(self._desc_pixbuf) self._my_canvas.set_image(self._canvas_pixbuf) def _show_slide(self, direction=1): ''' Display a title, preview image, and decription for slide. ''' self._clear_screen() self._update_colors() if len(self.slides) == 0: self._prev_button.set_icon('go-previous-inactive') self._next_button.set_icon('go-next-inactive') self._description.set_label( _('Do you have any items in your Journal starred?')) self._help.set_layer(TOP) self._description.set_layer(MIDDLE) return if self.i == 0: self._prev_button.set_icon('go-previous-inactive') else: self._prev_button.set_icon('go-previous') if self.i == len(self.slides) - 1: self._next_button.set_icon('go-next-inactive') else: self._next_button.set_icon('go-next') pixbuf = self.slides[self.i].pixbuf if pixbuf is not None: self._preview.set_shape(pixbuf.scale_simple( int(PREVIEWW * self._scale), int(PREVIEWH * self._scale), gtk.gdk.INTERP_NEAREST)) self._preview.set_layer(MIDDLE) else: if self._preview is not None: self._preview.hide() self._title.set_label(self.slides[self.i].title) self._title.set_layer(MIDDLE) if self.slides[self.i].desc is not None: self._description.set_label(self.slides[self.i].desc) self._description.set_layer(MIDDLE) text_buffer = gtk.TextBuffer() text_buffer.set_text(self.slides[self.i].desc) self._text_view.set_buffer(text_buffer) else: self._description.set_label('') self._description.hide() def _add_playback_button(self, nick, colors, audio_file): ''' Add a toolbar button for this audio recording ''' if nick not in self._playback_buttons: self._playback_buttons[nick] = button_factory( 'xo-chat', self.record_toolbar, self._playback_recording_cb, cb_arg=nick, tooltip=_('Audio recording by %s') % (nick)) xocolor = XoColor('%s,%s' % (colors[0], colors[1])) icon = Icon(icon_name='xo-chat', xo_color=xocolor) icon.show() self._playback_buttons[nick].set_icon_widget(icon) self._playback_buttons[nick].show() self._audio_recordings[nick] = audio_file def _slides_cb(self, button=None): if self._thumbnail_mode: self._thumbnail_mode = False self.i = self._current_slide self._show_slide() def _thumbs_cb(self, button=None): ''' Toggle between thumbnail view and slideshow view. ''' if not self._thumbnail_mode: self._current_slide = self.i self._thumbnail_mode = True self._clear_screen() self._prev_button.set_icon('go-previous-inactive') self._next_button.set_icon('go-next-inactive') n = int(ceil(sqrt(len(self.slides)))) if n > 0: w = int(self._width / n) else: w = self._width h = int(w * 0.75) # maintain 4:3 aspect ratio x_off = int((self._width - n * w) / 2) x = x_off y = 0 self._thumbs = [] for i in range(len(self.slides)): self._show_thumb(i, x, y, w, h) x += w if x + w > self._width: x = x_off y += h self.i = 0 # Reset position in slideshow to the beginning return False def _show_thumb(self, i, x, y, w, h): ''' Display a preview image and title as a thumbnail. ''' pixbuf = self.slides[i].pixbuf if pixbuf is not None: pixbuf_thumb = pixbuf.scale_simple( int(w), int(h), gtk.gdk.INTERP_TILES) else: pixbuf_thumb = svg_str_to_pixbuf( genblank(int(w), int(h), self.slides[i].colors)) # Create a Sprite for this thumbnail self._thumbs.append([Sprite(self._sprites, x, y, pixbuf_thumb), x, y, i]) self._thumbs[i][0].set_image( svg_str_to_pixbuf(svg_rectangle(int(w), int(h), self.slides[i].colors)), i=1) self._thumbs[i][0].set_layer(TOP) def _expose_cb(self, win, event): ''' Callback to handle window expose events ''' self.do_expose_event(event) return True # Handle the expose-event by drawing def do_expose_event(self, event): # Create the cairo context cr = self.canvas.window.cairo_create() # Restrict Cairo to the exposed area; avoid extra work cr.rectangle(event.area.x, event.area.y, event.area.width, event.area.height) cr.clip() # Refresh sprite list self._sprites.redraw_sprites(cr=cr) def write_file(self, file_path): ''' Clean up ''' if self._dirty: self._save_descriptions_cb() self._dirty = False if os.path.exists(os.path.join(self.datapath, 'output.ogg')): os.remove(os.path.join(self.datapath, 'output.ogg')) def do_fullscreen_cb(self, button): ''' Hide the Sugar toolbars. ''' self.fullscreen() def invalt(self, x, y, w, h): ''' Mark a region for refresh ''' self._canvas.window.invalidate_rect( gtk.gdk.Rectangle(int(x), int(y), int(w), int(h)), False) def _spr_to_thumb(self, spr): ''' Find which entry in the thumbnails table matches spr. ''' for i, thumb in enumerate(self._thumbs): if spr == thumb[0]: return i return -1 def _spr_is_thumbnail(self, spr): ''' Does spr match an entry in the thumbnails table? ''' if self._spr_to_thumb(spr) == -1: return False else: return True def _button_press_cb(self, win, event): ''' The mouse button was pressed. Is it on a thumbnail sprite? ''' win.grab_focus() x, y = map(int, event.get_coords()) self._dragpos = [x, y] self._total_drag = [0, 0] spr = self._sprites.find_sprite((x, y)) self._press = None self._release = None # Are we clicking on a thumbnail? if not self._spr_is_thumbnail(spr): return False self.last_spr_moved = spr self._press = spr self._press.set_layer(DRAG) return False def _mouse_move_cb(self, win, event): """ Drag a thumbnail with the mouse. """ spr = self._press if spr is None: self._dragpos = [0, 0] return False win.grab_focus() x, y = map(int, event.get_coords()) dx = x - self._dragpos[0] dy = y - self._dragpos[1] spr.move_relative([dx, dy]) # Also move the star self._dragpos = [x, y] self._total_drag[0] += dx self._total_drag[1] += dy return False def _button_release_cb(self, win, event): ''' Button event is used to swap slides or goto next slide. ''' win.grab_focus() self._dragpos = [0, 0] x, y = map(int, event.get_coords()) if self._thumbnail_mode: if self._press is None: return # Drop the dragged thumbnail below the other thumbnails so # that you can find the thumbnail beneath it. self._press.set_layer(UNDRAG) i = self._spr_to_thumb(self._press) spr = self._sprites.find_sprite((x, y)) if self._spr_is_thumbnail(spr): self._release = spr # If we found a thumbnail and it is not the one we # dragged, swap their positions. if not self._press == self._release: j = self._spr_to_thumb(self._release) self._thumbs[i][0] = self._release self._thumbs[j][0] = self._press tmp = self.slides[i] self.slides[i] = self.slides[j] self.slides[j] = tmp self._thumbs[j][0].move((self._thumbs[j][1], self._thumbs[j][2])) self._thumbs[i][0].move((self._thumbs[i][1], self._thumbs[i][2])) self._press.set_layer(TOP) self._press = None self._release = None else: self._next_cb() return False def _unit_combo_cb(self, arg=None): ''' Read value of predefined conversion factors from combo box ''' if hasattr(self, '_unit_combo'): active = self._unit_combo.get_active() if active in UNIT_DICTIONARY: self._rate = UNIT_DICTIONARY[active][1] def _record_cb(self, button=None): ''' Start/stop audio recording ''' if self._grecord is None: _logger.debug('setting up grecord') self._grecord = Grecord(self) if self._recording: # Was recording, so stop (and save?) _logger.debug('recording...True. Preparing to save.') self._grecord.stop_recording_audio() self._recording = False self._record_button.set_icon('media-record') self._record_button.set_tooltip(_('Start recording')) _logger.debug('Autosaving recording') self._notify(title=_('Save recording')) gobject.timeout_add(100, self._wait_for_transcoding_to_finish) else: # Wasn't recording, so start _logger.debug('recording...False. Start recording.') self._grecord.record_audio() self._recording = True self._record_button.set_icon('media-recording') self._record_button.set_tooltip(_('Stop recording')) def _wait_for_transcoding_to_finish(self, button=None): while not self._grecord.transcoding_complete(): time.sleep(1) if self._alert is not None: self.remove_alert(self._alert) self._alert = None self._save_recording() def _playback_recording_cb(self, button=None, nick=profile.get_nick_name()): ''' Play back current recording ''' _logger.debug('Playback current recording from %s...' % (nick)) if nick in self._audio_recordings: play_audio_from_file(self._audio_recordings[nick]) return def _get_audio_obj_id(self): ''' Find unique name for audio object ''' if 'activity_id' in self.metadata: obj_id = self.metadata['activity_id'] else: obj_id = _('Bulletin Board') _logger.debug(obj_id) return obj_id def _save_recording(self): if os.path.exists(os.path.join(self.datapath, 'output.ogg')): _logger.debug('Saving recording to Journal...') obj_id = self._get_audio_obj_id() copyfile(os.path.join(self.datapath, 'output.ogg'), os.path.join(self.datapath, '%s.ogg' % (obj_id))) dsobject = self._search_for_audio_note(obj_id) if dsobject is None: dsobject = datastore.create() if dsobject is not None: _logger.debug(self.dsobjects[self.i].metadata['title']) dsobject.metadata['title'] = _('Audio recording by %s') % \ (self.metadata['title']) dsobject.metadata['icon-color'] = \ profile.get_color().to_string() dsobject.metadata['tags'] = obj_id dsobject.metadata['mime_type'] = 'audio/ogg' dsobject.set_file_path( os.path.join(self.datapath, '%s.ogg' % (obj_id))) datastore.write(dsobject) dsobject.destroy() self._add_playback_button( profile.get_nick_name(), self.colors, os.path.join(self.datapath, '%s.ogg' % (obj_id))) if hasattr(self, 'chattube') and self.chattube is not None: self._share_audio() else: _logger.debug('Nothing to save...') return def _search_for_audio_note(self, obj_id): ''' Look to see if there is already a sound recorded for this dsobject ''' dsobjects, nobjects = datastore.find({'mime_type': ['audio/ogg']}) # Look for tag that matches the target object id for dsobject in dsobjects: if 'tags' in dsobject.metadata and \ obj_id in dsobject.metadata['tags']: _logger.debug('Found audio note') return dsobject return None def _save_descriptions_cb(self, button=None): ''' Find the object in the datastore and write out the changes to the decriptions. ''' for s in self.slides: if not s.owner: continue jobject = datastore.get(s.uid) jobject.metadata['description'] = s.desc datastore.write(jobject, update_mtime=False, reply_handler=self.datastore_write_cb, error_handler=self.datastore_write_error_cb) def datastore_write_cb(self): pass def datastore_write_error_cb(self, error): _logger.error('datastore_write_error_cb: %r' % error) def _notify(self, title='', msg=''): ''' Notify user when saves are completed ''' self._alert = Alert() self._alert.props.title = title self._alert.props.msg = msg self.add_alert(self._alert) self._alert.show() def _resend_cb(self, button=None): ''' Resend slides, but only of sharing ''' if hasattr(self, 'chattube') and self.chattube is not None: self._share_slides() self._share_audio() # Serialize def _dump(self, slide): ''' Dump data for sharing.''' _logger.debug('dumping %s' % (slide.uid)) data = [slide.uid, slide.colors, slide.title, pixbuf_to_base64(activity, slide.pixbuf), slide.desc] return self._data_dumper(data) def _data_dumper(self, data): if _OLD_SUGAR_SYSTEM: return json.write(data) else: io = StringIO() jdump(data, io) return io.getvalue() def _load(self, data): ''' Load game data from the journal. ''' slide = self._data_loader(data) if len(slide) == 5: if not self._slide_search(slide[0]): _logger.debug('loading %s' % (slide[0])) self.slides.append(Slide( False, slide[0], slide[1], slide[2], base64_to_pixbuf(activity, slide[3]), slide[4])) def _slide_search(self, uid): ''' Is this slide in the list already? ''' for slide in self.slides: if slide.uid == uid: _logger.debug('skipping %s' % (slide.uid)) return True return False def _data_loader(self, data): if _OLD_SUGAR_SYSTEM: return json.read(data) else: io = StringIO(data) return jload(io) # Sharing-related methods def _setup_presence_service(self): ''' Setup the Presence Service. ''' self.pservice = presenceservice.get_instance() self.initiating = None # sharing (True) or joining (False) owner = self.pservice.get_owner() self.owner = owner self.buddies = [owner] self._share = '' self.connect('shared', self._shared_cb) self.connect('joined', self._joined_cb) def _shared_cb(self, activity): ''' Either set up initial share...''' if self._shared_activity is None: _logger.error('Failed to share or join activity ... \ _shared_activity is null in _shared_cb()') return self.initiating = True self.waiting = False _logger.debug('I am sharing...') self.conn = self._shared_activity.telepathy_conn self.tubes_chan = self._shared_activity.telepathy_tubes_chan self.text_chan = self._shared_activity.telepathy_text_chan self.tubes_chan[telepathy.CHANNEL_TYPE_TUBES].connect_to_signal( 'NewTube', self._new_tube_cb) _logger.debug('This is my activity: making a tube...') id = self.tubes_chan[telepathy.CHANNEL_TYPE_TUBES].OfferDBusTube( SERVICE, {}) def _joined_cb(self, activity): ''' ...or join an exisiting share. ''' if self._shared_activity is None: _logger.error('Failed to share or join activity ... \ _shared_activity is null in _shared_cb()') return self.initiating = False _logger.debug('I joined a shared activity.') self.conn = self._shared_activity.telepathy_conn self.tubes_chan = self._shared_activity.telepathy_tubes_chan self.text_chan = self._shared_activity.telepathy_text_chan self.tubes_chan[telepathy.CHANNEL_TYPE_TUBES].connect_to_signal(\ 'NewTube', self._new_tube_cb) _logger.debug('I am joining an activity: waiting for a tube...') self.tubes_chan[telepathy.CHANNEL_TYPE_TUBES].ListTubes( reply_handler=self._list_tubes_reply_cb, error_handler=self._list_tubes_error_cb) self.waiting = True def _list_tubes_reply_cb(self, tubes): ''' Reply to a list request. ''' for tube_info in tubes: self._new_tube_cb(*tube_info) def _list_tubes_error_cb(self, e): ''' Log errors. ''' _logger.error('ListTubes() failed: %s', e) def _new_tube_cb(self, id, initiator, type, service, params, state): ''' Create a new tube. ''' _logger.debug('New tube: ID=%d initator=%d type=%d service=%s ' 'params=%r state=%d', id, initiator, type, service, params, state) if (type == telepathy.TUBE_TYPE_DBUS and service == SERVICE): if state == telepathy.TUBE_STATE_LOCAL_PENDING: self.tubes_chan[ \ telepathy.CHANNEL_TYPE_TUBES].AcceptDBusTube(id) tube_conn = TubeConnection(self.conn, self.tubes_chan[telepathy.CHANNEL_TYPE_TUBES], id, \ group_iface=self.text_chan[telepathy.CHANNEL_INTERFACE_GROUP]) self.chattube = ChatTube(tube_conn, self.initiating, \ self.event_received_cb) if self.waiting: self._send_event('j:%s' % (profile.get_nick_name())) def event_received_cb(self, text): ''' Data is passed as tuples: cmd:text ''' _logger.debug('<<< %s' % (text[0])) if text[0] == 's': # shared journal objects e, data = text.split(':') self._load(data) elif text[0] == 'j': # Someone new has joined e, buddy = text.split(':') _logger.debug('%s has joined' % (buddy)) if buddy not in self._buddies: self._buddies.append(buddy) if self.initiating: self._send_event('J:%s' % (profile.get_nick_name())) self._share_slides() self._share_audio() elif text[0] == 'J': # Everyone must share e, buddy = text.split(':') self.waiting = False if buddy not in self._buddies: self._buddies.append(buddy) _logger.debug('%s has joined' % (buddy)) self._share_slides() self._share_audio() elif text[0] == 'a': # audio recording e, data = text.split(':') nick, colors, base64 = self._data_loader(data) path = os.path.join(activity.get_activity_root(), 'instance', 'nick.ogg') base64_to_file(activity, base64, path) self._add_playback_button(nick, colors, path) def _share_audio(self): if profile.get_nick_name() in self._audio_recordings: base64 = file_to_base64( activity, self._audio_recordings[profile.get_nick_name()]) gobject.idle_add(self._send_event, 'a:' + str( self._data_dumper([profile.get_nick_name(), self.colors, base64]))) def _share_slides(self): for s in self.slides: if s.owner: # Maybe stagger the timing of the sends? gobject.idle_add(self._send_event, 's:' + str(self._dump(s))) _logger.debug('finished sharing') def _send_event(self, text): ''' Send event through the tube. ''' if hasattr(self, 'chattube') and self.chattube is not None: _logger.debug('>>> %s' % (text[0])) self.chattube.SendText(text)
class Game(): def __init__(self, canvas, parent=None, colors=['#A0FFA0', '#FF8080']): self._activity = parent self._colors = [colors[0]] self._colors.append(colors[1]) self._colors.append('#FFFFFF') self._colors.append('#000000') self._colors.append('#FF0000') self._colors.append('#FF8000') self._colors.append('#FFFF00') self._colors.append('#00FF00') self._colors.append('#00FFFF') self._colors.append('#0000FF') self._colors.append('#FF00FF') self._canvas = canvas if parent is not None: parent.show_all() self._parent = parent self._canvas.add_events(Gdk.EventMask.BUTTON_PRESS_MASK) self._canvas.add_events(Gdk.EventMask.BUTTON_RELEASE_MASK) self._canvas.add_events(Gdk.EventMask.POINTER_MOTION_MASK) self._canvas.connect("draw", self.__draw_cb) self._canvas.connect("button-press-event", self._button_press_cb) self._canvas.connect("button-release-event", self._button_release_cb) self._canvas.connect("motion-notify-event", self._mouse_move_cb) self._width = Gdk.Screen.width() self._height = Gdk.Screen.height() - GRID_CELL_SIZE scale = [ self._width / (10 * DOT_SIZE * 1.2), self._height / (6 * DOT_SIZE * 1.2) ] self._scale = min(scale) self._dot_size = int(DOT_SIZE * self._scale) self._space = int(self._dot_size / 5.) self._orientation = 'horizontal' self.we_are_sharing = False self.playing_with_robot = False self._press = False self.last_spr = None self._timer = None self.roygbiv = False # Generate the sprites we'll need... self._sprites = Sprites(self._canvas) self._dots = [] for y in range(SIX): for x in range(TEN): xoffset = int((self._width - TEN * self._dot_size - \ (TEN - 1) * self._space) / 2.) self._dots.append( Sprite(self._sprites, xoffset + x * (self._dot_size + self._space), y * (self._dot_size + self._space), self._new_dot(self._colors[2]))) self._dots[-1].type = 2 # not set self._dots[-1].set_label_attributes(40) self.vline = Sprite(self._sprites, int(self._width / 2.) - 1, 0, self._line(vertical=True)) n = SIX / 2. self.hline = Sprite( self._sprites, 0, int(self._dot_size * n + self._space * (n - 0.5)) - 1, self._line(vertical=False)) self.hline.hide() # and initialize a few variables we'll need. self._all_clear() def _all_clear(self): ''' Things to reinitialize when starting up a new game. ''' for dot in self._dots: dot.type = 2 dot.set_shape(self._new_dot(self._colors[2])) dot.set_label('') self._set_orientation() def _set_orientation(self): ''' Set bar and message for current orientation ''' if self._orientation == 'horizontal': self.hline.hide() self.vline.set_layer(1000) elif self._orientation == 'vertical': self.hline.set_layer(1000) self.vline.hide() else: self.hline.set_layer(1000) self.vline.set_layer(1000) ''' if self._orientation == 'horizontal': self._set_label( _('Click on the dots to make a horizontal reflection.')) elif self._orientation == 'vertical': self._set_label( _('Click on the dots to make a vertical reflection.')) else: self._set_label( _('Click on the dots to make a bilateral reflection.')) ''' def _initiating(self): return self._activity.initiating def new_game(self, orientation='horizontal'): ''' Start a new game. ''' self._orientation = orientation self._all_clear() # Fill in a few dots to start for i in range(int(TEN * SIX / 2)): n = int(uniform(0, TEN * SIX)) if self.roygbiv: self._dots[n].type = int(uniform(2, len(self._colors))) else: self._dots[n].type = int(uniform(0, 4)) self._dots[n].set_shape( self._new_dot(self._colors[self._dots[n].type])) if self.we_are_sharing: _logger.debug('sending a new game') self._parent.send_new_game() def restore_game(self, dot_list, orientation): ''' Restore a game from the Journal or share ''' for i, dot in enumerate(dot_list): self._dots[i].type = dot self._dots[i].set_shape( self._new_dot(self._colors[self._dots[i].type])) self._orientation = orientation self._set_orientation() def save_game(self): ''' Return dot list and orientation for saving to Journal or sharing ''' dot_list = [] for dot in self._dots: dot_list.append(dot.type) return [dot_list, self._orientation] def _set_label(self, string): ''' Set the label in the toolbar or the window frame. ''' self._activity.status.set_label(string) def _button_press_cb(self, win, event): win.grab_focus() x, y = list(map(int, event.get_coords())) self._press = True spr = self._sprites.find_sprite((x, y)) if spr == None: return True self.last_spr = spr if spr.type is not None: self._increment_dot(spr) return True def _button_release_cb(self, win, event): self._press = False self._stop_increment_dot() def _increment_dot_cb(self, spr): spr.type += 1 if self.roygbiv: if spr.type >= len(self._colors): spr.type = 2 else: spr.type %= 4 spr.set_shape(self._new_dot(self._colors[spr.type])) if self.playing_with_robot: self._robot_play(spr) self._test_game_over() if self.we_are_sharing: _logger.debug('sending a click to the share') self._parent.send_dot_click(self._dots.index(spr), spr.type) return True # call again def _increment_dot(self, spr): self._stop_increment_dot() if self._increment_dot_cb(spr): self._timer = GLib.timeout_add(1000, self._increment_dot_cb, spr) def _stop_increment_dot(self): if not self._timer is None: GLib.source_remove(self._timer) self._timer = None def _mouse_move_cb(self, win, event): """ Drag a tile with the mouse. """ if not self._press: return x, y = list(map(int, event.get_coords())) spr = self._sprites.find_sprite((x, y)) if spr == self.last_spr: return True if spr is None: return True if spr.type is not None: self.last_spr = spr self._increment_dot(spr) def _robot_play(self, dot): ''' Robot reflects dot clicked. ''' x, y = self._dot_to_grid(self._dots.index(dot)) if self._orientation == 'horizontal': x = TEN - x - 1 i = self._grid_to_dot((x, y)) self._dots[i].type = dot.type self._dots[i].set_shape(self._new_dot(self._colors[dot.type])) if self.we_are_sharing: _logger.debug('sending a robot click to the share') self._parent.send_dot_click(i, dot.type) elif self._orientation == 'vertical': y = SIX - y - 1 i = self._grid_to_dot((x, y)) self._dots[i].type = dot.type self._dots[i].set_shape(self._new_dot(self._colors[dot.type])) if self.we_are_sharing: _logger.debug('sending a robot click to the share') self._parent.send_dot_click(i, dot.type) else: x = TEN - x - 1 i = self._grid_to_dot((x, y)) self._dots[i].type = dot.type self._dots[i].set_shape(self._new_dot(self._colors[dot.type])) if self.we_are_sharing: _logger.debug('sending a robot click to the share') self._parent.send_dot_click(i, dot.type) y = SIX - y - 1 i = self._grid_to_dot((x, y)) self._dots[i].type = dot.type self._dots[i].set_shape(self._new_dot(self._colors[dot.type])) if self.we_are_sharing: _logger.debug('sending a robot click to the share') self._parent.send_dot_click(i, dot.type) x = TEN - x - 1 i = self._grid_to_dot((x, y)) self._dots[i].type = dot.type self._dots[i].set_shape(self._new_dot(self._colors[dot.type])) if self.we_are_sharing: _logger.debug('sending a robot click to the share') self._parent.send_dot_click(i, dot.type) def remote_button_press(self, dot, color): ''' Receive a button press from a sharer ''' self._dots[dot].type = color self._dots[dot].set_shape(self._new_dot(self._colors[color])) def set_sharing(self, share=True): _logger.debug('enabling sharing') self.we_are_sharing = share def _smile(self): for dot in self._dots: dot.set_label(':)') def _test_game_over(self): ''' Check to see if game is over ''' if self._orientation == 'horizontal': for y in range(SIX): for x in range(SIX): if self._dots[y * TEN + x].type != \ self._dots[y * TEN + TEN - x - 1].type: self._set_label(_('keep trying')) return False self._set_label(_('good work')) self._smile() return True if self._orientation == 'vertical': for y in range(int(SIX / 2)): for x in range(TEN): if self._dots[y * TEN + x].type != \ self._dots[(SIX - y - 1) * TEN + x].type: self._set_label(_('keep trying')) return False self._set_label(_('good work')) else: for y in range(SIX): for x in range(SIX): if self._dots[y * TEN + x].type != \ self._dots[y * TEN + TEN - x - 1].type: self._set_label(_('keep trying')) return False for y in range(int(SIX / 2)): for x in range(TEN): if self._dots[y * TEN + x].type != \ self._dots[(SIX - y - 1) * TEN + x].type: self._set_label(_('keep trying')) return False self._set_label(_('good work')) self._smile() return True def __draw_cb(self, canvas, cr): self._sprites.redraw_sprites(cr=cr) def _grid_to_dot(self, pos): ''' calculate the dot index from a column and row in the grid ''' return pos[0] + pos[1] * TEN def _dot_to_grid(self, dot): ''' calculate the grid column and row for a dot ''' return [dot % TEN, int(dot / TEN)] def _expose_cb(self, win, event): self.do_expose_event(event) def do_expose_event(self, event): ''' Handle the expose-event by drawing ''' # Restrict Cairo to the exposed area cr = self._canvas.window.cairo_create() cr.rectangle(event.area.x, event.area.y, event.area.width, event.area.height) cr.clip() # Refresh sprite list self._sprites.redraw_sprites(cr=cr) def _destroy_cb(self, win, event): Gtk.main_quit() def _new_dot(self, color): ''' generate a dot of a color color ''' self._dot_cache = {} if not color in self._dot_cache: self._stroke = color self._fill = color self._svg_width = self._dot_size self._svg_height = self._dot_size pixbuf = svg_str_to_pixbuf( self._header() + \ self._circle(self._dot_size / 2., self._dot_size / 2., self._dot_size / 2.) + \ self._footer()) surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, self._svg_width, self._svg_height) context = cairo.Context(surface) Gdk.cairo_set_source_pixbuf(context, pixbuf, 0, 0) context.rectangle(0, 0, self._svg_width, self._svg_height) context.fill() self._dot_cache[color] = surface return self._dot_cache[color] def _line(self, vertical=True): ''' Generate a center line ''' if vertical: self._svg_width = 3 self._svg_height = self._height return svg_str_to_pixbuf( self._header() + \ self._rect(3, self._height, 0, 0) + \ self._footer()) else: self._svg_width = self._width self._svg_height = 3 return svg_str_to_pixbuf( self._header() + \ self._rect(self._width, 3, 0, 0) + \ self._footer()) def _header(self): return '<svg\n' + 'xmlns:svg="http://www.w3.org/2000/svg"\n' + \ 'xmlns="http://www.w3.org/2000/svg"\n' + \ 'xmlns:xlink="http://www.w3.org/1999/xlink"\n' + \ 'version="1.1"\n' + 'width="' + str(self._svg_width) + '"\n' + \ 'height="' + str(self._svg_height) + '">\n' def _rect(self, w, h, x, y): svg_string = ' <rect\n' svg_string += ' width="%f"\n' % (w) svg_string += ' height="%f"\n' % (h) svg_string += ' rx="%f"\n' % (0) svg_string += ' ry="%f"\n' % (0) svg_string += ' x="%f"\n' % (x) svg_string += ' y="%f"\n' % (y) svg_string += 'style="fill:#000000;stroke:#000000;"/>\n' return svg_string def _circle(self, r, cx, cy): return '<circle style="fill:' + str(self._fill) + ';stroke:' + \ str(self._stroke) + ';" r="' + str(r - 0.5) + '" cx="' + \ str(cx) + '" cy="' + str(cy) + '" />\n' def _footer(self): return '</svg>\n'
class Game(): def __init__(self, canvas, parent=None, path=None): self._canvas = canvas self._parent = parent self._parent.show_all() self._path = path self._canvas.connect("draw", self.__draw_cb) self._canvas.add_events(Gdk.EventMask.BUTTON_PRESS_MASK) self._canvas.connect("button-press-event", self._button_press_cb) self._canvas.add_events(Gdk.EventMask.POINTER_MOTION_MASK) self._canvas.connect("motion-notify-event", self._mouse_move_cb) self._canvas.add_events(Gdk.EventMask.BUTTON_RELEASE_MASK) self._canvas.connect('button-release-event', self._button_release_cb) self._canvas.add_events(Gdk.EventMask.KEY_PRESS_MASK) self._canvas.connect('key-press-event', self._keypress_cb) self._canvas.set_can_focus(True) self._canvas.grab_focus() self._width = Gdk.Screen.width() self._height = Gdk.Screen.height() self._scale = self._width / 1200. self._first_time = True self._loco_pos = (0, 0) self._loco_dim = (0, 0) self._loco_quadrant = 3 self._drag_pos = [0, 0] self._counter = 0 self._correct = 0 self._timeout_id = None self._pause = 200 self._press = None self._clicked = False self._dead_key = None self._waiting_for_delete = False self._waiting_for_enter = False self._seconds = 0 self._timer_id = None self.level = 0 self.score = 0 # Generate the sprites we'll need... self._sprites = Sprites(self._canvas) self._BG = ['background0.jpg', 'background0.jpg', 'background0.jpg', 'background1.jpg', 'background2.jpg', 'background2.jpg', 'background2.jpg'] self._backgrounds = [] for bg in self._BG: self._backgrounds.append(Sprite( self._sprites, 0, 0, GdkPixbuf.Pixbuf.new_from_file_at_size( os.path.join(self._path, 'images', bg), self._width, self._height))) self._backgrounds[-1].type = 'background' self._backgrounds[-1].hide() self._panel = Sprite( self._sprites, int(400 * self._scale), int(400 * self._scale), GdkPixbuf.Pixbuf.new_from_file_at_size( os.path.join(self._path, 'images', 'ventana.png'), int(720 * self._scale), int(370 * self._scale))) self._panel.type = 'panel' self._panel.set_label(LABELS[0]) self._panel.set_label_attributes(20) self._panel.hide() self._LOCOS = glob.glob( os.path.join(self._path, 'images', 'loco*.png')) self._loco_cards = [] for loco in self._LOCOS: pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_size( loco, int(150 * self._scale), int(208 * self._scale)) self._loco_cards.append(Sprite(self._sprites, 0, 0, pixbuf)) self._loco_cards[-1].type = 'loco' self._loco_dim = (int(150 * self._scale), int(208 * self._scale)) self._MEN = glob.glob( os.path.join(self._path, 'images', 'man*.png')) self._man_cards = [] for loco in self._MEN: pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_size( loco, int(150 * self._scale), int(208 * self._scale)) self._man_cards.append(Sprite(self._sprites, 0, 0, pixbuf)) self._man_cards[-1].type = 'loco' self._TAUNTS = glob.glob( os.path.join(self._path, 'images', 'taunt*.png')) self._taunt_cards = [] for loco in self._TAUNTS: pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_size( loco, int(150 * self._scale), int(208 * self._scale)) self._taunt_cards.append(Sprite(self._sprites, 0, 0, pixbuf)) self._taunt_cards[-1].type = 'loco' self._GHOSTS = glob.glob( os.path.join(self._path, 'images', 'ghost*.png')) self._ghost_cards = [] for loco in self._GHOSTS: pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_size( loco, int(150 * self._scale), int(208 * self._scale)) self._ghost_cards.append(Sprite(self._sprites, 0, 0, pixbuf)) self._ghost_cards[-1].type = 'loco' self._sticky_cards = [] self._loco_pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_size( self._LOCOS[0], int(150 * self._scale), int(208 * self._scale)) self._man_pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_size( self._MEN[0], int(150 * self._scale), int(208 * self._scale)) self._ghost_pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_size( self._GHOSTS[0], int(150 * self._scale), int(208 * self._scale)) for i in range(len(MSGS[1])): # Check re i18n self._sticky_cards.append(Sprite(self._sprites, 0, 0, self._loco_pixbuf)) self._sticky_cards[-1].type = 'loco' self._sticky_cards[-1].set_label_attributes(24, vert_align='bottom') self._all_clear() def _time_increment(self): ''' Track seconds since start_time. ''' self._seconds = int(GObject.get_current_time() - self._start_time) self.timer_id = GObject.timeout_add(1000, self._time_increment) def _timer_reset(self): ''' Reset the timer for each level ''' self._start_time = GObject.get_current_time() if self._timer_id is not None: GObject.source_remove(self._timer_id) self._timer_id = None self.score += self._seconds self._time_increment() def _all_clear(self): ''' Things to reinitialize when starting up a new game. ''' for p in self._loco_cards: p.hide() for p in self._man_cards: p.hide() for p in self._taunt_cards: p.hide() for p in self._ghost_cards: p.hide() for p in self._sticky_cards: p.set_shape(self._loco_pixbuf) p.set_label('') p.set_label_color('white') p.hide() self._backgrounds[self.level].set_layer(BG_LAYER) def _show_time(self): self.level = 0 self._all_clear() x = int(self._width / 4.) y = int(self._height / 8.) for i in range(len(str(self.score))): self._sticky_cards[i].move((x, y)) self._sticky_cards[i].set_layer(LOCO_LAYER) self._sticky_cards[i].set_label(str(self.score)[i]) x += int(self._loco_dim[0] / 2.) self.score = 0 self._parent.unfullscreen() GObject.idle_add(play_audio_from_file, self, os.path.join( self._path, 'sounds', 'sonar.ogg')) GObject.timeout_add(5000, self.new_game, True) def new_game(self, first_time): ''' Start a new game at the current level. ''' self._first_time = first_time self._clicked = False # It may be time to advance to the next level. if (self.level == 6 and self._counter == len(MSGS)) or \ self._counter > 4: self._first_time = True self.level += 1 self._counter = 0 self._correct = 0 self._pause = 200 if self.level == len(self._backgrounds): self._show_time() return self._all_clear() if self._first_time: # Every game starts by putting up a panel with instructions # The panel disappears on mouse movement self._panel.set_label(LABELS[self.level]) self._panel.set_layer(PANEL_LAYER) play_audio_from_file(self, os.path.join( self._path, 'sounds', 'drip.ogg')) self._timer_reset() if self.level == 0: # Choose a random location for the Loco self._loco_quadrant += int(uniform(1, 4)) self._loco_quadrant %= 4 x, y = self._quad_to_xy(self._loco_quadrant) play_audio_from_file(self, os.path.join( self._path, 'sounds', 'bark.ogg')) self._loco_cards[0].move((x, y)) self._loco_pos = (x, y) elif self.level == 1: play_audio_from_file(self, os.path.join( self._path, 'sounds', 'glass.ogg')) elif self.level == 2: play_audio_from_file(self, os.path.join( self._path, 'sounds', 'glass.ogg')) # Place some Locos on the canvas for i in range(self._counter + 1): self._loco_quadrant += int(uniform(1, 4)) self._loco_quadrant %= 4 x, y = self._quad_to_xy(self._loco_quadrant) self._sticky_cards[i].move((x, y)) self._sticky_cards[i].type = 'loco' self._sticky_cards[i].set_layer(LOCO_LAYER) elif self.level == 3: play_audio_from_file(self, os.path.join( self._path, 'sounds', 'bark.ogg')) # Place some Locos on the left-side of the canvas for i in range(self._counter + 1): self._loco_quadrant = int(uniform(2, 4)) x, y = self._quad_to_xy(self._loco_quadrant) self._sticky_cards[i].move((x, y)) self._sticky_cards[i].type = 'loco' self._sticky_cards[i].set_layer(LOCO_LAYER) elif self.level == 4: # Place some Locos on the canvas with letters as labels # Just lowercase for i in range(self._counter + 1): self._loco_quadrant = int(uniform(0, 4)) x, y = self._quad_to_xy(self._loco_quadrant) self._sticky_cards[i].move((x, y)) self._sticky_cards[i].type = 'loco' self._sticky_cards[i].set_layer(LOCO_LAYER) self._sticky_cards[i].set_label( ALPHABETLC[int(uniform(0, len(ALPHABETLC)))]) elif self.level == 5: # Place some Locos on the canvas with letters as labels # Uppercase for i in range(self._counter + 1): self._loco_quadrant = int(uniform(0, 4)) x, y = self._quad_to_xy(self._loco_quadrant) self._sticky_cards[i].move((x, y)) self._sticky_cards[i].type = 'loco' self._sticky_cards[i].set_layer(LOCO_LAYER) self._sticky_cards[i].set_label( ALPHABETUC[int(uniform(0, len(ALPHABETUC)))]) elif self.level == 6: x = 0 y = 0 c = 0 for i in range(len(MSGS[self._counter])): if MSGS[self._counter][i] == ' ': y += self._loco_dim[1] x = 0 else: self._sticky_cards[c].move((x, y)) self._sticky_cards[c].type = i self._sticky_cards[c].set_layer(LOCO_LAYER) self._sticky_cards[c].set_label(MSGS[self._counter][i]) c += 1 x += int(self._loco_dim[0] / 2.) if self.level in [0, 1]: self._loco_quadrant += int(uniform(1, 4)) self._loco_quadrant %= 4 x, y = self._quad_to_xy(self._loco_quadrant) if self.level == 0: self._move_loco(x, y, 0) else: self._taunt(x, y, 0) def _quad_to_xy(self, q): x = int(max(0, (self._width / 2.) * uniform(0, 1) - self._loco_dim[0])) if q in [0, 1]: x += int(self._width / 2.) y = int(max(0, (self._height / 2.) * uniform(0, 1) - self._loco_dim[1])) if q in [1, 2]: y += int(self._height / 2.) return x, y def _taunt(self, x, y, i): n = len(self._taunt_cards) self._taunt_cards[(i + 1) % n].hide() if self._clicked: self._timeout_id = None return True else: self._taunt_cards[i % n].move((x, y)) self._taunt_cards[i % n].set_layer(LOCO_LAYER) self._timeout_id = GObject.timeout_add( 200, self._taunt, x, y, i + 1) def _move_loco(self, x, y, i): j = (i + 1) % len(self._loco_cards) cx, cy = self._loco_cards[i].get_xy() dx = cx - x dy = cy - y if dx * dx + dy * dy < 100: self._loco_cards[j].move((x, y)) self._loco_pos = (x, y) self._loco_cards[j].hide() self._loco_cards[i].hide() self._man_cards[0].move((x, y)) self._man_cards[0].set_layer(LOCO_LAYER) self._timeout_id = None if self._pause > 50: self._pause -= 10 return True else: if dx > 0: cx -= 5 elif dx < 0: cx += 5 if dy > 0: cy -= 5 elif dy < 0: cy += 5 self._loco_cards[j].move((cx, cy)) self._loco_pos = (cx, cy) self._loco_cards[j].set_layer(LOCO_LAYER) self._loco_cards[i].hide() self._timeout_id = GObject.timeout_add( self._pause, self._move_loco, x, y, j) def _keypress_cb(self, area, event): ''' Keypress ''' # Games 4, 5, and 6 use the keyboard print 'keypress event' if self.level not in [4, 5, 6]: return True k = Gdk.keyval_name(event.keyval) u = Gdk.keyval_to_unicode(event.keyval) if self._waiting_for_enter: if k == 'Return': self._waiting_for_enter = False self._panel.hide() self._counter += 1 self._correct = 0 GObject.timeout_add(1000, self.new_game, False) return if k in NOISE_KEYS or k in WHITE_SPACE: return True if self.level == 6 and self._waiting_for_delete: if k in ['BackSpace', 'Delete']: self._waiting_for_delete = False self._sticky_cards[self._correct].set_label_color('white') self._sticky_cards[self._correct].set_label( MSGS[self._counter][ self._sticky_cards[self._correct].type]) self._panel.hide() self._panel.set_label_color('black') return if k[0:5] == 'dead_': self._dead_key = k[5:] return if self.level == 6: n = len(MSGS[self._counter]) else: n = self._counter + 1 if self.level == 6: i = self._correct if self._dead_key is not None: k = DEAD_DICTS[DEAD_KEYS.index(self._dead_key)][k] self._dead_key = None elif k in PUNCTUATION: k = PUNCTUATION[k] elif k in SPECIAL: k = SPECIAL[k] elif len(k) > 1: return True if self._sticky_cards[i].labels[0] == k: self._sticky_cards[i].set_label_color('blue') self._sticky_cards[i].set_label(k) self._correct += 1 else: self._sticky_cards[i].set_label_color('red') self._sticky_cards[i].set_label(k) self._panel.set_label_color('red') self._panel.set_label(ALERTS[1]) self._panel.set_layer(PANEL_LAYER) self._waiting_for_delete = True play_audio_from_file(self, os.path.join( self._path, 'sounds', 'glass.ogg')) else: for i in range(n): if self._sticky_cards[i].labels[0] == k: self._sticky_cards[i].set_label('') self._sticky_cards[i].hide() break # Test for end condition if self.level == 6 and \ self._correct == len(MSGS[self._counter]) - \ MSGS[self._counter].count(' '): c = 0 for i in range(len(MSGS[self._counter])): if MSGS[self._counter][i] == ' ': continue elif MSGS[self._counter][i] != self._sticky_cards[c].labels[0]: return True c += 1 self._panel.set_label(ALERTS[0]) self._panel.set_layer(PANEL_LAYER) self._waiting_for_enter = True GObject.idle_add(play_audio_from_file, self, os.path.join( self._path, 'sounds', 'drip.ogg')) return else: for i in range(n): if len(self._sticky_cards[i].labels[0]) > 0: return True self._counter += 1 self._correct = 0 GObject.timeout_add(1000, self.new_game, False) def _mouse_move_cb(self, win, event): ''' Move the mouse. ''' # Games 0, 3, 4, and 5 use move events x, y = map(int, event.get_coords()) if self._seconds > 1: self._panel.hide() if not self._clicked and self.level == 0: # For Game 0, see if the mouse is on the Loco dx = x - self._loco_pos[0] - self._loco_dim[0] / 2. dy = y - self._loco_pos[1] - self._loco_dim[1] / 2. if dx * dx + dy * dy < 200: self._clicked = True if self._timeout_id is not None: GObject.source_remove(self._timeout_id) # Play again self._all_clear() self._man_cards[0].move((x - int(self._loco_dim[0] / 2.), y - int(self._loco_dim[1] / 2.))) self._man_cards[0].set_layer(LOCO_LAYER) self._correct += 1 self._counter += 1 GObject.timeout_add(1000, self.new_game, False) elif self.level in [4, 5]: # For Game 4 and 5, we allow dragging if self._press is None: self._drag_pos = [0, 0] return True dx = x - self._drag_pos[0] dy = y - self._drag_pos[1] self._press.move_relative((dx, dy)) self._drag_pos = [x, y] elif self.level == 3: # For Game 3, we are dragging if self._press is None: self._drag_pos = [0, 0] return True dx = x - self._drag_pos[0] dy = y - self._drag_pos[1] self._press.move_relative((dx, dy)) self._drag_pos = [x, y] if x > self._width / 2.: self._press.set_shape(self._man_pixbuf) if self._press.type == 'loco': self._correct += 1 self._press.type = 'man' return True def _button_release_cb(self, win, event): # Game 3 uses release if self.level == 3: # Move to release if self._correct == self._counter + 1: self._counter += 1 self._correct = 0 GObject.timeout_add(2000, self.new_game, False) self._press = None self._drag_pos = [0, 0] return True def _button_press_cb(self, win, event): self._press = None x, y = map(int, event.get_coords()) if self.level == 0: return spr = self._sprites.find_sprite((x, y)) if spr is None: return if spr.type != 'loco': return if self.level < 2 and self._timeout_id is None: return if self._clicked: return # Games 1, 2, and 3 involve clicks; Games 4 and 5 allow click to drag if self.level == 1: self._all_clear() self._man_cards[0].move((x - int(self._loco_dim[0] / 2.), y - int(self._loco_dim[1] / 2.))) self._man_cards[0].set_layer(LOCO_LAYER) self._clicked = True self._counter += 1 self._correct += 1 if self._timeout_id is not None: GObject.source_remove(self._timeout_id) GObject.timeout_add(2000, self.new_game, False) elif self.level == 2: spr.set_shape(self._ghost_pixbuf) spr.type = 'ghost' if self._correct == self._counter: self._counter += 1 self._correct = 0 GObject.timeout_add(2000, self.new_game, False) else: self._correct += 1 elif self.level in [3, 4, 5]: # In Games 4 and 5, dragging is used to remove overlaps self._press = spr self._drag_pos = [x, y] return True def __draw_cb(self, canvas, cr): self._sprites.redraw_sprites(cr=cr) def do_expose_event(self, event): ''' Handle the expose-event by drawing ''' # Restrict Cairo to the exposed area cr = self._canvas.window.cairo_create() cr.rectangle(event.area.x, event.area.y, event.area.width, event.area.height) cr.clip() # Refresh sprite list self._sprites.redraw_sprites(cr=cr) def _destroy_cb(self, win, event): Gtk.main_quit()
class Slide(Stator): """ Create a sprite for a slide """ def __init__(self, sprites, path, name, x, y, w, h, svg_engine=None, function=None): if svg_engine is None: self.spr = Sprite(sprites, x, y, file_to_pixbuf(path, name, w, h)) else: self.spr = Sprite(sprites, x, y, svg_str_to_pixbuf(svg_engine().svg)) self.tab_dx = [0, SWIDTH - TABWIDTH] self.tab_dy = [2 * SHEIGHT, 2 * SHEIGHT] self.tabs = [] self.tabs.append( Tab(sprites, path, 'tab', x + self.tab_dx[0], y + self.tab_dy[0], TABWIDTH, SHEIGHT)) self.tabs.append( Tab(sprites, path, 'tab', x + self.tab_dx[1], y + self.tab_dy[1], TABWIDTH, SHEIGHT)) self.calculate = function self.name = name def add_textview(self, textview, i=0): self.tabs[i].textview = textview self.tabs[i].textbuffer = textview.get_buffer() def set_fixed(self, fixed): for tab in self.tabs: tab.fixed = fixed def match(self, sprite): if sprite == self.spr or sprite == self.tabs[0].spr or \ sprite == self.tabs[1].spr: return True return False def draw(self, layer=1000): self.spr.set_layer(layer) self.spr.draw() for tab in self.tabs: tab.draw() def move(self, dx, dy): self.spr.move((dx, dy)) for i, tab in enumerate(self.tabs): tab.move(dx + self.tab_dx[i], dy + self.tab_dy[i]) def move_relative(self, dx, dy): self.spr.move_relative((dx, dy)) for i, tab in enumerate(self.tabs): tab.move_relative(dx, dy) def hide(self): self.spr.hide() for tab in self.tabs: tab.hide() def label(self, label, i=0): self.tabs[i].label(label)
class Game(): def __init__(self, canvas, parent=None, path=None, root=None, mode='array', colors=['#A0FFA0', '#FF8080']): self._canvas = canvas self._parent = parent self._path = path self._root = root self._mode = mode self.current_image = 0 self.playing = False self._timeout_id = None self._prev_mouse_pos = (0, 0) self._start_time = 0 self._colors = ['#FFFFFF'] self._colors.append(colors[0]) self._colors.append(colors[1]) self._canvas.add_events(Gdk.EventMask.BUTTON_PRESS_MASK | Gdk.EventMask.BUTTON_RELEASE_MASK | Gdk.EventMask.BUTTON_MOTION_MASK | Gdk.EventMask.POINTER_MOTION_MASK | Gdk.EventMask.POINTER_MOTION_HINT_MASK | Gdk.EventMask.TOUCH_MASK) self._canvas.connect('draw', self.__draw_cb) self._canvas.connect('event', self.__event_cb) self.configure(move=False) self.we_are_sharing = False self._start_time = 0 self._timeout_id = None # Find the image files self._PATHS = glob.glob(os.path.join(self._path, 'images', '*.svg')) # Generate the sprites we'll need... self._sprites = Sprites(self._canvas) a = max(Gdk.Screen.width(), Gdk.Screen.height()) b = min(Gdk.Screen.width(), Gdk.Screen.height()) self._bg_pixbufs = [] if self._parent.tablet_mode: # text on top # landscape self._bg_pixbufs.append( svg_str_to_pixbuf( genhole(a, a, 3 * style.GRID_CELL_SIZE, style.DEFAULT_SPACING, a - 3 * style.GRID_CELL_SIZE, style.GRID_CELL_SIZE * 3 + style.DEFAULT_SPACING))) # portrait self._bg_pixbufs.append( svg_str_to_pixbuf( genhole(a, a, 3 * style.GRID_CELL_SIZE, style.DEFAULT_SPACING, b - 3 * style.GRID_CELL_SIZE, style.GRID_CELL_SIZE * 3 + style.DEFAULT_SPACING))) else: # text on bottom # landscape self._bg_pixbufs.append( svg_str_to_pixbuf( genhole( a, a, 3 * style.GRID_CELL_SIZE, b - style.GRID_CELL_SIZE * 4 - style.DEFAULT_SPACING, a - 3 * style.GRID_CELL_SIZE, b - style.GRID_CELL_SIZE - style.DEFAULT_SPACING))) # portrait self._bg_pixbufs.append( svg_str_to_pixbuf( genhole( a, a, 3 * style.GRID_CELL_SIZE, a - style.GRID_CELL_SIZE * 4 - style.DEFAULT_SPACING, b - 3 * style.GRID_CELL_SIZE, a - style.GRID_CELL_SIZE - style.DEFAULT_SPACING))) if Gdk.Screen.width() > Gdk.Screen.height(): self._bg = Sprite(self._sprites, 0, 0, self._bg_pixbufs[0]) else: self._bg = Sprite(self._sprites, 0, 0, self._bg_pixbufs[1]) self._bg.set_layer(-2) self._bg.type = 'background' size = 3 * self._dot_size + 4 * self._space x = int((Gdk.Screen.width() - size) / 2.) self._dots = [] self._Dots = [] # larger dots for linear mode X = int((Gdk.Screen.width() - self._dot_size * 3) / 2.) Y = style.GRID_CELL_SIZE + self._yoff if self._parent.tablet_mode: yoffset = self._space * 2 + self._yoff else: yoffset = self._yoff for y in range(3): for x in range(3): xoffset = int( (self._width - 3 * self._dot_size - 2 * self._space) / 2.) self._dots.append( Sprite(self._sprites, xoffset + x * (self._dot_size + self._space), y * (self._dot_size + self._space) + yoffset, self._new_dot_surface(color=self._colors[0]))) self._dots[-1].type = -1 # No image self._dots[-1].set_label_attributes(72) self._dots[-1].set_label('?') self._Dots.append( Sprite( self._sprites, X, Y, self._new_dot_surface(color=self._colors[0], large=True))) self._Dots[-1].type = -1 # No image self._Dots[-1].set_label_attributes(72 * 3) self._Dots[-1].set_label('?') self.number_of_images = len(self._PATHS) if USE_ART4APPS: self._art4apps = Art4Apps() self.number_of_images = len(self._art4apps.get_words()) self._record_pixbufs = [] for icon in ['media-audio', 'media-audio-recording']: self._record_pixbufs.append( GdkPixbuf.Pixbuf.new_from_file_at_size( os.path.join(self._root, 'icons', icon + '.svg'), style.GRID_CELL_SIZE, style.GRID_CELL_SIZE)) self._play_pixbufs = [] for icon in ['play-inactive', 'play']: self._play_pixbufs.append( GdkPixbuf.Pixbuf.new_from_file_at_size( os.path.join(self._root, 'icons', icon + '.svg'), style.GRID_CELL_SIZE, style.GRID_CELL_SIZE)) self._speak_pixbufs = [] for icon in ['speak-inactive', 'speak']: self._speak_pixbufs.append( GdkPixbuf.Pixbuf.new_from_file_at_size( os.path.join(self._root, 'icons', icon + '.svg'), style.GRID_CELL_SIZE, style.GRID_CELL_SIZE)) left = style.GRID_CELL_SIZE right = Gdk.Screen.width() - 2 * style.GRID_CELL_SIZE y0 = style.DEFAULT_SPACING + style.DEFAULT_PADDING y1 = y0 + style.GRID_CELL_SIZE y2 = y1 + style.GRID_CELL_SIZE if not self._parent.tablet_mode: dy = Gdk.Screen.height() - 4 * style.GRID_CELL_SIZE - \ 2 * style.DEFAULT_SPACING y0 += dy y1 += dy y2 += dy y3 = int((Gdk.Screen.height() - 2 * style.GRID_CELL_SIZE) / 2) self._record = Sprite(self._sprites, right, y0, self._record_pixbufs[RECORD_OFF]) self._record.set_layer(1) self._record.type = 'record' self._play = Sprite(self._sprites, right, y1, self._play_pixbufs[PLAY_OFF]) self._play.set_layer(1) self._play.type = 'play-inactive' self._speak = Sprite(self._sprites, right, y2, self._speak_pixbufs[SPEAK_OFF]) self._speak.set_layer(1) self._speak.type = 'speak-inactive' self._next_prev_pixbufs = [] for icon in [ 'go-previous', 'go-next', 'go-previous-inactive', 'go-next-inactive' ]: self._next_prev_pixbufs.append( GdkPixbuf.Pixbuf.new_from_file_at_size( os.path.join(self._root, 'icons', icon + '.svg'), style.GRID_CELL_SIZE, style.GRID_CELL_SIZE)) self._prev = Sprite(self._sprites, left, y3, self._next_prev_pixbufs[PREV_INACTIVE]) self._prev.set_layer(1) self._prev.type = 'prev' if self._mode == 'array': self._prev.hide() self._next = Sprite(self._sprites, right, y3, self._next_prev_pixbufs[NEXT]) self._next.set_layer(1) self._next.type = 'next' if self._mode == 'array': self._next.hide() def configure(self, move=True): self._width = Gdk.Screen.width() self._height = Gdk.Screen.height() - style.GRID_CELL_SIZE if not move: if self._height < self._width: self._scale = self._height / (3 * DOT_SIZE * 1.2) else: self._scale = self._width / (3 * DOT_SIZE * 1.2) self._scale /= 1.5 self._dot_size = int(DOT_SIZE * self._scale) if self._parent.tablet_mode: # text on top self._yoff = style.GRID_CELL_SIZE * 3 + style.DEFAULT_SPACING else: self._yoff = style.DEFAULT_SPACING self._space = int(self._dot_size / 5.) return left = style.GRID_CELL_SIZE right = Gdk.Screen.width() - 2 * style.GRID_CELL_SIZE y0 = style.DEFAULT_SPACING + style.DEFAULT_PADDING y1 = y0 + style.GRID_CELL_SIZE y2 = y1 + style.GRID_CELL_SIZE if not self._parent.tablet_mode: dy = Gdk.Screen.height() - 4 * style.GRID_CELL_SIZE - \ 2 * style.DEFAULT_SPACING y0 += dy y1 += dy y2 += dy y3 = int((Gdk.Screen.height() - 2 * style.GRID_CELL_SIZE) / 2) self._record.move((right, y0)) self._play.move((right, y1)) self._speak.move((right, y2)) self._prev.move((left, y3)) self._next.move((right, y3)) # Move the dots X = int((Gdk.Screen.width() - self._dot_size * 3) / 2.) Y = style.GRID_CELL_SIZE + self._yoff if self._parent.tablet_mode: yoffset = self._space * 2 + self._yoff else: yoffset = self._yoff for y in range(3): for x in range(3): xoffset = int( (self._width - 3 * self._dot_size - 2 * self._space) / 2.) self._dots[x + y * 3].move( (xoffset + x * (self._dot_size + self._space), y * (self._dot_size + self._space) + yoffset)) self._Dots[x + y * 3].move((X, Y)) # switch orientation the bg sprite if Gdk.Screen.width() > Gdk.Screen.height(): self._bg.set_image(self._bg_pixbufs[0]) else: self._bg.set_image(self._bg_pixbufs[1]) self._bg.set_layer(-2) def set_speak_icon_state(self, state): if state: self._speak.set_image(self._speak_pixbufs[SPEAK_ON]) self._speak.type = 'speak' else: self._speak.set_image(self._speak_pixbufs[SPEAK_OFF]) self._speak.type = 'speak-inactive' self._speak.set_layer(1) def set_record_icon_state(self, state): if state: self._record.set_image(self._record_pixbufs[RECORD_ON]) else: self._record.set_image(self._record_pixbufs[RECORD_OFF]) self._record.set_layer(1) def set_play_icon_state(self, state): if state: self._play.set_image(self._play_pixbufs[PLAY_ON]) self._play.type = 'play' else: self._play.set_image(self._play_pixbufs[PLAY_OFF]) self._play.type = 'play-inactive' self._play.set_layer(1) def autoplay(self): self.set_mode('linear') # forces current image to 0 self.playing = True self._autonext(next=False) def stop(self): self.playing = False if self._parent.audio_process is not None: self._parent.audio_process.terminate() self._parent.audio_process = None if self._timeout_id is not None: GObject.source_remove(self._timeout_id) self._timeout_id = None self._parent.autoplay_button.set_icon_name('media-playback-start') self._parent.autoplay_button.set_tooltip(_('Play')) self._parent.array_button.set_sensitive(True) def _autonext(self, next=True): self._timeout_id = None if not self.playing: return if next: self._Dots[self.current_image].hide() self.current_image += 1 self._Dots[self.current_image].set_layer(100) if self.current_image == 8: self._next.set_image(self._next_prev_pixbufs[NEXT_INACTIVE]) self._next.set_layer(1) self._prev.set_image(self._next_prev_pixbufs[PREV]) self._prev.set_layer(1) self._parent.check_audio_status() self._parent.check_text_status() GObject.idle_add(self._play_sound) def _poll_audio(self): if self._parent.audio_process is None: # Already stopped? return if self._parent.audio_process.poll() is None: GObject.timeout_add(200, self._poll_audio) else: self._parent.audio_process = None self._next_image() def _play_sound(self): self._start_time = time.time() # Either play back a recording or speak the text if self._play.type == 'play': self._parent.playback_recording_cb() self._poll_audio() elif self._speak.type == 'speak': bounds = self._parent.text_buffer.get_bounds() text = self._parent.text_buffer.get_text(bounds[0], bounds[1], True) speak(text) self._next_image() def _next_image(self): accumulated_time = int(time.time() - self._start_time) if accumulated_time < 5: pause = 5 - accumulated_time else: pause = 1 if self.playing and self.current_image < 8: self._timeout_id = GObject.timeout_add(pause * 1000, self._autonext) else: self.stop() def __event_cb(self, win, event): ''' The mouse button was pressed. Is it on a sprite? or there was a gesture. ''' left = right = False if event.type in (Gdk.EventType.TOUCH_BEGIN, Gdk.EventType.TOUCH_CANCEL, Gdk.EventType.TOUCH_END, Gdk.EventType.BUTTON_PRESS, Gdk.EventType.BUTTON_RELEASE): x = int(event.get_coords()[1]) y = int(event.get_coords()[2]) if event.type in (Gdk.EventType.TOUCH_BEGIN, Gdk.EventType.BUTTON_PRESS): self._prev_mouse_pos = (x, y) elif event.type in (Gdk.EventType.TOUCH_END, Gdk.EventType.BUTTON_RELEASE): if self._parent.audio_process is not None: self._parent.audio_process.terminate() self._parent.audio_process = None terminated_audio = True else: terminated_audio = False if self.playing: self.stop() new_mouse_pos = (x, y) mouse_movement = (new_mouse_pos[0] - self._prev_mouse_pos[0], new_mouse_pos[1] - self._prev_mouse_pos[1]) # horizontal gestures only if (abs(mouse_movement[0]) / 5) > abs(mouse_movement[1]): if abs(mouse_movement[0]) > abs(mouse_movement[1]): if mouse_movement[0] < 0: right = True else: left = True if event.type in (Gdk.EventType.TOUCH_END, Gdk.EventType.BUTTON_RELEASE): spr = self._sprites.find_sprite((x, y)) if left or right or spr is not None: if spr.type in [ 'record', 'play', 'play-inactive', 'speak', 'speak-inactive' ]: if spr.type == 'record': self._parent.record_cb() elif spr.type == 'play' and not terminated_audio: self._parent.playback_recording_cb() elif spr.type == 'speak': bounds = self._parent.text_buffer.get_bounds() text = self._parent.text_buffer.get_text( bounds[0], bounds[1], True) speak(text) return elif self._mode == 'array': return self._parent.speak_text_cb() if self._parent.recording: self._parent.record_cb() if (left or spr.type == 'prev') and self.current_image > 0: self._Dots[self.current_image].hide() self.current_image -= 1 self._Dots[self.current_image].set_layer(100) if self.current_image == 0: self._prev.set_image( self._next_prev_pixbufs[PREV_INACTIVE]) self._next.set_image(self._next_prev_pixbufs[NEXT]) elif (right or spr.type == 'next') and self.current_image < 8: self._Dots[self.current_image].hide() self.current_image += 1 self._Dots[self.current_image].set_layer(100) if self.current_image == 8: self._next.set_image( self._next_prev_pixbufs[NEXT_INACTIVE]) self._prev.set_image(self._next_prev_pixbufs[PREV]) elif spr.type not in ['prev', 'background'] and \ self.current_image < 8: self._Dots[self.current_image].hide() self.current_image += 1 self._Dots[self.current_image].set_layer(100) if self.current_image == 8: self._next.set_image( self._next_prev_pixbufs[NEXT_INACTIVE]) self._prev.set_image(self._next_prev_pixbufs[PREV]) self._parent.check_audio_status() self._parent.check_text_status() self._prev.set_layer(1) self._next.set_layer(1) return False def get_mode(self): return self._mode def set_mode(self, mode): self.current_image = 0 self._prev.set_image(self._next_prev_pixbufs[PREV_INACTIVE]) self._next.set_image(self._next_prev_pixbufs[NEXT]) if mode == 'array': self._mode = 'array' self._prev.hide() self._next.hide() else: self._mode = 'linear' self._prev.set_layer(1) self._next.set_layer(1) for i in range(9): if self._mode == 'array': self._dots[i].set_layer(100) self._Dots[i].hide() else: self._dots[i].hide() if self.current_image == i: self._Dots[i].set_layer(100) else: self._Dots[i].hide() def _all_clear(self): ''' Things to reinitialize when starting up a new game. ''' if self._timeout_id is not None: GObject.source_remove(self._timeout_id) self.set_mode(self._mode) if self._mode == 'array': for dot in self._dots: if dot.type != -1: dot.type = -1 dot.set_shape( self._new_dot_surface(self._colors[abs(dot.type)])) dot.set_label('?') else: for dot in self._Dots: if dot.type != -1: dot.type = -1 dot.set_shape( self._new_dot_surface(self._colors[abs(dot.type)], large=True)) dot.set_label('?') self._dance_counter = 0 self._dance_step() def _dance_step(self): ''' Short animation before loading new game ''' if self._mode == 'array': for dot in self._dots: dot.set_shape( self._new_dot_surface(self._colors[int(uniform(0, 3))])) else: self._Dots[0].set_shape( self._new_dot_surface(self._colors[int(uniform(0, 3))], large=True)) self._dance_counter += 1 if self._dance_counter < 10: self._timeout_id = GObject.timeout_add(500, self._dance_step) else: self._new_images() def new_game(self): ''' Start a new game. ''' self._all_clear() def _new_images(self): ''' Select pictures at random ''' used_images = [0] * self.number_of_images for i in range(9): random_selection = int(uniform(0, self.number_of_images)) while used_images[random_selection] != 0: random_selection = int(uniform(0, self.number_of_images)) used_images[random_selection] = 1 self._dots[i].set_label('') self._dots[i].type = random_selection self._dots[i].set_shape( self._new_dot_surface(image=self._dots[i].type)) self._Dots[i].set_label('') self._Dots[i].type = self._dots[i].type self._Dots[i].set_shape( self._new_dot_surface(image=self._Dots[i].type, large=True)) if self._mode == 'array': self._dots[i].set_layer(100) self._Dots[i].hide() else: if self.current_image == i: self._Dots[i].set_layer(100) else: self._Dots[i].hide() self._dots[i].hide() if self.we_are_sharing: self._parent.send_new_images() def restore_game(self, dot_list): ''' Restore a game from the Journal or share ''' self.set_mode(self._mode) for i, dot in enumerate(dot_list): self._dots[i].type = dot self._dots[i].set_shape( self._new_dot_surface(image=self._dots[i].type)) self._dots[i].set_label('') self._Dots[i].type = dot self._Dots[i].set_shape( self._new_dot_surface(image=self._Dots[i].type, large=True)) self._Dots[i].set_label('') if self._mode == 'array': self._dots[i].set_layer(100) self._Dots[i].hide() else: if self.current_image == i: self._Dots[i].set_layer(100) else: self._Dots[i].hide() self._dots[i].hide() def save_game(self): ''' Return dot list for saving to Journal or sharing ''' dot_list = [] for dot in self._dots: dot_list.append(dot.type) return dot_list def set_sharing(self, share=True): self.we_are_sharing = share def _grid_to_dot(self, pos): ''' calculate the dot index from a column and row in the grid ''' return pos[0] + pos[1] * 3 def _dot_to_grid(self, dot): ''' calculate the grid column and row for a dot ''' return [dot % 3, int(dot / 3)] def __draw_cb(self, canvas, cr): self._sprites.redraw_sprites(cr=cr) def __expose_cb(self, win, event): ''' Callback to handle window expose events ''' self.do_expose_event(event) return True # Handle the expose-event by drawing def do_expose_event(self, event): # Create the cairo context cr = self._canvas.window.cairo_create() # Restrict Cairo to the exposed area; avoid extra work cr.rectangle(event.area.x, event.area.y, event.area.width, event.area.height) cr.clip() # Refresh sprite list if cr is not None: self._sprites.redraw_sprites(cr=cr) def _destroy_cb(self, win, event): Gtk.main_quit() def export(self): ''' Write dot to cairo surface. ''' if self._mode == 'array': w = h = int(4 * self._space + 3 * self._dot_size) png_surface = cairo.ImageSurface(cairo.FORMAT_RGB24, w, h) cr = cairo.Context(png_surface) cr.set_source_rgb(192, 192, 192) cr.rectangle(0, 0, w, h) cr.fill() for i in range(9): y = self._space + int(i / 3.) * (self._dot_size + self._space) x = self._space + (i % 3) * (self._dot_size + self._space) cr.save() cr.set_source_surface(self._dots[i].images[0], x, y) cr.rectangle(x, y, self._dot_size, self._dot_size) cr.fill() cr.restore() else: w = h = int(2 * self._space + 3 * self._dot_size) png_surface = cairo.ImageSurface(cairo.FORMAT_RGB24, w, h) cr = cairo.Context(png_surface) cr.set_source_rgb(192, 192, 192) cr.rectangle(0, 0, w, h) cr.fill() y = self._space x = self._space cr.save() cr.set_source_surface(self._Dots[self.current_image].images[0], x, y) cr.rectangle(x, y, 3 * self._dot_size, 3 * self._dot_size) cr.fill() cr.restore() return png_surface def _new_dot_surface(self, color='#000000', image=None, large=False): ''' generate a dot of a color color ''' if large: size = self._dot_size * 3 else: size = self._dot_size self._svg_width = size self._svg_height = size if image is None: # color dot self._stroke = color self._fill = color pixbuf = svg_str_to_pixbuf(self._header() + self._circle(size / 2., size / 2., size / 2.) + self._footer()) else: if USE_ART4APPS: word = self._art4apps.get_words()[image] try: pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_size( self._art4apps.get_image_filename(word), size, size) except Exception, e: _logger.error('new dot surface %s %s: %s' % (image, word, e)) word = 'zebra' # default in case image is not found pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_size( self._art4apps.get_image_filename(word), size, size) else:
class PortfolioActivity(activity.Activity): ''' Make a slideshow from starred Journal entries. ''' def __init__(self, handle): ''' Initialize the toolbars and the work surface ''' super(PortfolioActivity, self).__init__(handle) self._tmp_path = get_path(activity, 'instance') self._hw = get_hardware() self._setup_toolbars() self._setup_canvas() self._setup_workspace() self._thumbs = [] self._thumbnail_mode = False def _setup_canvas(self): ''' Create a canvas ''' self._canvas = gtk.DrawingArea() self._canvas.set_size_request(gtk.gdk.screen_width(), gtk.gdk.screen_height()) self.set_canvas(self._canvas) self._canvas.show() self.show_all() self._canvas.set_flags(gtk.CAN_FOCUS) self._canvas.add_events(gtk.gdk.BUTTON_PRESS_MASK) self._canvas.add_events(gtk.gdk.POINTER_MOTION_MASK) self._canvas.add_events(gtk.gdk.BUTTON_RELEASE_MASK) self._canvas.add_events(gtk.gdk.KEY_PRESS_MASK) self._canvas.connect("expose-event", self._expose_cb) self._canvas.connect("button-press-event", self._button_press_cb) self._canvas.connect("button-release-event", self._button_release_cb) self._canvas.connect("motion-notify-event", self._mouse_move_cb) def _setup_workspace(self): ''' Prepare to render the datastore entries. ''' self._colors = profile.get_color().to_string().split(',') # Use the lighter color for the text background if lighter_color(self._colors) == 0: tmp = self._colors[0] self._colors[0] = self._colors[1] self._colors[1] = tmp self._width = gtk.gdk.screen_width() self._height = gtk.gdk.screen_height() self._scale = gtk.gdk.screen_height() / 900. if self._hw[0:2] == 'xo': titlef = 18 descriptionf = 12 else: titlef = 36 descriptionf = 24 # Generate the sprites we'll need... self._sprites = Sprites(self._canvas) self._title = Sprite( self._sprites, 0, 0, svg_str_to_pixbuf( genblank(self._width, int(TITLEH * self._scale), self._colors))) self._title.set_label_attributes(int(titlef * self._scale), rescale=False) self._preview = Sprite( self._sprites, int( (self._width - int(PREVIEWW * self._scale)) / 2), int(PREVIEWY * self._scale), svg_str_to_pixbuf( genblank(int(PREVIEWW * self._scale), int(PREVIEWH * self._scale), self._colors))) self._full_screen = Sprite( self._sprites, int((self._width - int(FULLW * self._scale)) / 2), int(PREVIEWY * self._scale), svg_str_to_pixbuf( genblank(int(FULLW * self._scale), int(FULLH * self._scale), self._colors))) self._description = Sprite( self._sprites, int(DESCRIPTIONX * self._scale), int(DESCRIPTIONY * self._scale), svg_str_to_pixbuf( genblank(int(self._width - (2 * DESCRIPTIONX * self._scale)), int(DESCRIPTIONH * self._scale), self._colors))) self._description.set_label_attributes(int(descriptionf * self._scale)) self._description2 = Sprite( self._sprites, int(SHORTX * self._scale), int(SHORTY * self._scale), svg_str_to_pixbuf( genblank(int(self._width - (2 * SHORTX * self._scale)), int(SHORTH * self._scale), self._colors))) self._description2.set_label_attributes(int(descriptionf * self._scale)) self._my_canvas = Sprite( self._sprites, 0, 0, gtk.gdk.Pixmap(self._canvas.window, self._width, self._height, -1)) self._my_gc = self._my_canvas.images[0].new_gc() self._my_canvas.set_layer(BOTTOM) self._clear_screen() self._find_starred() self.i = 0 self._show_slide() self._playing = False self._rate = 10 def _setup_toolbars(self): ''' Setup the toolbars. ''' self.max_participants = 1 # no sharing if HAVE_TOOLBOX: toolbox = ToolbarBox() # Activity toolbar activity_button = ActivityToolbarButton(self) toolbox.toolbar.insert(activity_button, 0) activity_button.show() self.set_toolbar_box(toolbox) toolbox.show() self.toolbar = toolbox.toolbar adjust_toolbar = gtk.Toolbar() adjust_toolbar_button = ToolbarButton( label=_('Adjust'), page=adjust_toolbar, icon_name='preferences-system') adjust_toolbar.show_all() adjust_toolbar_button.show() else: # Use pre-0.86 toolbar design primary_toolbar = gtk.Toolbar() toolbox = activity.ActivityToolbox(self) self.set_toolbox(toolbox) toolbox.add_toolbar(_('Page'), primary_toolbar) adjust_toolbar = gtk.Toolbar() toolbox.add_toolbar(_('Adjust'), adjust_toolbar) toolbox.show() toolbox.set_current_toolbar(1) self.toolbar = primary_toolbar self._prev_button = button_factory('go-previous-inactive', _('Prev slide'), self._prev_cb, self.toolbar, accelerator='<Ctrl>P') self._next_button = button_factory('go-next', _('Next slide'), self._next_cb, self.toolbar, accelerator='<Ctrl>N') separator_factory(self.toolbar) self._auto_button = button_factory('media-playlist-repeat', _('Autoplay'), self._autoplay_cb, self.toolbar) if HAVE_TOOLBOX: toolbox.toolbar.insert(adjust_toolbar_button, -1) label = label_factory(_('Adjust playback speed'), adjust_toolbar) label.show() self._unit_combo = combo_factory(UNITS, TEN, _('Adjust playback speed'), self._unit_combo_cb, adjust_toolbar) self._unit_combo.show() separator_factory(self.toolbar) self._thumb_button = button_factory('thumbs-view', _('Thumbnail view'), self._thumbs_cb, self.toolbar) button_factory('view-fullscreen', _('Fullscreen'), self.do_fullscreen_cb, self.toolbar, accelerator='<Alt>Return') separator_factory(self.toolbar) self._save_button = button_factory('save-as-html', _('Save as HTML'), self._save_as_html_cb, self.toolbar) if HAVE_TOOLBOX: separator_factory(toolbox.toolbar, False, True) stop_button = StopButton(self) stop_button.props.accelerator = '<Ctrl>q' toolbox.toolbar.insert(stop_button, -1) stop_button.show() def _expose_cb(self, win, event): ''' Have to refresh after a change in window status. ''' self._sprites.redraw_sprites() return True def _destroy_cb(self, win, event): ''' Clean up on the way out. ''' gtk.main_quit() def _find_starred(self): ''' Find all the favorites in the Journal. ''' self._dsobjects, self._nobjects = datastore.find({'keep': '1'}) return def _prev_cb(self, button=None): ''' The previous button has been clicked; goto previous slide. ''' if self.i > 0: self.i -= 1 self._show_slide() def _next_cb(self, button=None): ''' The next button has been clicked; goto next slide. ''' if self.i < self._nobjects - 1: self.i += 1 self._show_slide() def _autoplay_cb(self, button=None): ''' The autoplay button has been clicked; step through slides. ''' if self._playing: self._stop_autoplay() else: if self._thumbnail_mode: self._set_view_mode(self._current_slide) self._playing = True self._auto_button.set_icon('media-playback-pause') self._loop() def _stop_autoplay(self): ''' Stop autoplaying. ''' self._playing = False self._auto_button.set_icon('media-playlist-repeat') if hasattr(self, '_timeout_id') and self._timeout_id is not None: gobject.source_remove(self._timeout_id) def _loop(self): ''' Show a slide and then call oneself with a timeout. ''' self.i += 1 if self.i == self._nobjects: self.i = 0 self._show_slide() self._timeout_id = gobject.timeout_add(int(self._rate * 1000), self._loop) def _bump_test(self): ''' Test for accelerometer event (XO 1.75 only). ''' fh = open('/sys/devices/platform/lis3lv02d/position') string = fh.read() xyz = string[1:-2].split(',') dx = int(xyz[0]) fh.close() if dx > 250: self.i += 1 if self.i == self._nobjects: self.i = 0 self._show_slide() elif dx < -250: self.i -= 1 if self.i < 0: self.i = self._nobjects - 1 self._show_slide() elif not self._thumbnail_mode: self._bump_id = gobject.timeout_add(int(100), self._bump_test) def _save_as_html_cb(self, button=None): ''' Export an HTML version of the slideshow to the Journal. ''' self._save_button.set_icon('save-in-progress') results = save_html(self._dsobjects, profile.get_nick_name(), self._colors, self._tmp_path) html_file = os.path.join(self._tmp_path, 'tmp.html') tmp_file = open(html_file, 'w') tmp_file.write(results) tmp_file.close() dsobject = datastore.create() dsobject.metadata['title'] = profile.get_nick_name() + ' ' + \ _('Portfolio') dsobject.metadata['icon-color'] = profile.get_color().to_string() dsobject.metadata['mime_type'] = 'text/html' dsobject.set_file_path(html_file) dsobject.metadata['activity'] = 'org.laptop.WebActivity' datastore.write(dsobject) dsobject.destroy() gobject.timeout_add(250, self._save_button.set_icon, 'save-as-html') return def _clear_screen(self): ''' Clear the screen to the darker of the two XO colors. ''' self._my_gc.set_foreground(self._my_gc.get_colormap().alloc_color( self._colors[0])) self._my_canvas.images[0].draw_rectangle(self._my_gc, True, 0, 0, self._width, self._height) self._title.hide() self._full_screen.hide() self._preview.hide() self._description.hide() if hasattr(self, '_thumbs'): for thumbnail in self._thumbs: thumbnail[0].hide() self.invalt(0, 0, self._width, self._height) # Reset drag settings self._press = None self._release = None self._dragpos = [0, 0] self._total_drag = [0, 0] self.last_spr_moved = None def _show_slide(self): ''' Display a title, preview image, and decription for slide i. ''' self._clear_screen() if self._nobjects == 0: self._prev_button.set_icon('go-previous-inactive') self._next_button.set_icon('go-next-inactive') self._description.set_label( _('Do you have any items in your Journal starred?')) self._description.set_layer(MIDDLE) return if self.i == 0: self._prev_button.set_icon('go-previous-inactive') else: self._prev_button.set_icon('go-previous') if self.i == self._nobjects - 1: self._next_button.set_icon('go-next-inactive') else: self._next_button.set_icon('go-next') pixbuf = None media_object = False try: pixbuf = gtk.gdk.pixbuf_new_from_file_at_size( self._dsobjects[self.i].file_path, int(PREVIEWW * self._scale), int(PREVIEWH * self._scale)) media_object = True except: pixbuf = get_pixbuf_from_journal(self._dsobjects[self.i], 300, 225) if pixbuf is not None: if not media_object: self._preview.images[0] = pixbuf.scale_simple( int(PREVIEWW * self._scale), int(PREVIEWH * self._scale), gtk.gdk.INTERP_TILES) self._full_screen.hide() self._preview.set_layer(MIDDLE) else: self._full_screen.images[0] = pixbuf.scale_simple( int(FULLW * self._scale), int(FULLH * self._scale), gtk.gdk.INTERP_TILES) self._full_screen.set_layer(MIDDLE) self._preview.hide() else: if self._preview is not None: self._preview.hide() self._full_screen.hide() self._title.set_label(self._dsobjects[self.i].metadata['title']) self._title.set_layer(MIDDLE) if 'description' in self._dsobjects[self.i].metadata: if media_object: self._description2.set_label( self._dsobjects[self.i].metadata['description']) self._description2.set_layer(MIDDLE) self._description.set_label('') self._description.hide() else: self._description.set_label( self._dsobjects[self.i].metadata['description']) self._description.set_layer(MIDDLE) self._description2.set_label('') self._description2.hide() else: self._description.set_label('') self._description.hide() self._description2.set_label('') self._description2.hide() if self._hw == XO175: self._bump_id = gobject.timeout_add(int(500), self._bump_test) def _thumbs_cb(self, button=None): ''' Toggle between thumbnail view and slideshow view. ''' if self._thumbnail_mode: self._set_view_mode(self._current_slide) self._show_slide() else: self._stop_autoplay() self._current_slide = self.i self._thumbnail_mode = True self._clear_screen() self._prev_button.set_icon('go-previous-inactive') self._next_button.set_icon('go-next-inactive') self._thumb_button.set_icon('slide-view') self._thumb_button.set_tooltip(_('Slide view')) n = int(sqrt(self._nobjects) + 0.5) w = int(self._width / n) h = int(w * 0.75) # maintain 4:3 aspect ratio x_off = int((self._width - n * w) / 2) x = x_off y = 0 for i in range(self._nobjects): self.i = i self._show_thumb(x, y, w, h) x += w if x + w > self._width: x = x_off y += h self.i = 0 # Reset position in slideshow to the beginning return False def _show_thumb(self, x, y, w, h): ''' Display a preview image and title as a thumbnail. ''' if len(self._thumbs) < self.i + 1: # Create a Sprite for this thumbnail pixbuf = None try: pixbuf = gtk.gdk.pixbuf_new_from_file_at_size( self._dsobjects[self.i].file_path, int(w), int(h)) except: pixbuf = get_pixbuf_from_journal(self._dsobjects[self.i], int(w), int(h)) pixbuf_thumb = pixbuf.scale_simple(int(w), int(h), gtk.gdk.INTERP_TILES) self._thumbs.append( [Sprite(self._sprites, x, y, pixbuf_thumb), x, y, self.i]) self._thumbs[-1][0].set_label(str(self.i + 1)) self._thumbs[self.i][0].set_layer(TOP) def do_fullscreen_cb(self, button): ''' Hide the Sugar toolbars. ''' self.fullscreen() def invalt(self, x, y, w, h): ''' Mark a region for refresh ''' self._canvas.window.invalidate_rect( gtk.gdk.Rectangle(int(x), int(y), int(w), int(h)), False) def _spr_to_thumb(self, spr): ''' Find which entry in the thumbnails table matches spr. ''' for i, thumb in enumerate(self._thumbs): if spr == thumb[0]: return i return -1 def _spr_is_thumbnail(self, spr): ''' Does spr match an entry in the thumbnails table? ''' if self._spr_to_thumb(spr) == -1: return False else: return True def _button_press_cb(self, win, event): ''' The mouse button was pressed. Is it on a thumbnail sprite? ''' win.grab_focus() x, y = map(int, event.get_coords()) self._dragpos = [x, y] self._total_drag = [0, 0] spr = self._sprites.find_sprite((x, y)) self._press = None self._release = None # Are we clicking on a thumbnail? if not self._spr_is_thumbnail(spr): return False _logger.debug('found a thumbnail') self.last_spr_moved = spr self._press = spr self._press.set_layer(DRAG) return False def _mouse_move_cb(self, win, event): """ Drag a thumbnail with the mouse. """ spr = self._press if spr is None: self._dragpos = [0, 0] return False win.grab_focus() x, y = map(int, event.get_coords()) dx = x - self._dragpos[0] dy = y - self._dragpos[1] spr.move_relative([dx, dy]) self._dragpos = [x, y] self._total_drag[0] += dx self._total_drag[1] += dy return False def _button_release_cb(self, win, event): ''' Button event is used to swap slides or goto next slide. ''' win.grab_focus() self._dragpos = [0, 0] x, y = map(int, event.get_coords()) if self._thumbnail_mode: # Drop the dragged thumbnail below the other thumbnails so # that you can find the thumbnail beneath it. self._press.set_layer(UNDRAG) i = self._spr_to_thumb(self._press) spr = self._sprites.find_sprite((x, y)) if self._spr_is_thumbnail(spr): self._release = spr # If we found a thumbnail and it is not the one we # dragged, swap their positions. if not self._press == self._release: j = self._spr_to_thumb(self._release) self._thumbs[i][0] = self._release self._thumbs[j][0] = self._press tmp = self._dsobjects[i] self._dsobjects[i] = self._dsobjects[j] self._dsobjects[j] = tmp self._thumbs[j][0].move( (self._thumbs[j][1], self._thumbs[j][2])) self._thumbs[i][0].move((self._thumbs[i][1], self._thumbs[i][2])) self._press.set_layer(TOP) self._press = None self._release = None else: self._next_cb() return False def _set_view_mode(self, i): ''' Switch to slide-viewing mode. ''' self._thumbnail_mode = False self.i = i self._thumb_button.set_icon('thumbs-view') self._thumb_button.set_tooltip(_('Thumbnail view')) def _unit_combo_cb(self, arg=None): ''' Read value of predefined conversion factors from combo box ''' if hasattr(self, '_unit_combo'): active = self._unit_combo.get_active() if active in UNIT_DICTIONARY: self._rate = UNIT_DICTIONARY[active][1]
class Turtle: def __init__(self, turtles, key, turtle_colors=None): """ The turtle is not a block, just a sprite with an orientation """ self.x = 0 self.y = 0 self.hidden = False self.shapes = [] self.custom_shapes = False self.type = 'turtle' self.heading = 0 self.pen_shade = 50 self.pen_color = 0 self.pen_gray = 100 self.pen_size = 5 self.pen_state = True # If the turtle key is an int, we'll use a palette color as the # turtle color try: int_key = int(key) use_color_table = True except ValueError: use_color_table = False if turtle_colors is not None: self.colors = turtle_colors[:] self.shapes = generate_turtle_pixbufs(self.colors) elif use_color_table: fill = wrap100(int_key) stroke = wrap100(fill + 10) self.colors = ['#%06x' % (color_table[fill]), '#%06x' % (color_table[stroke])] self.shapes = generate_turtle_pixbufs(self.colors) else: self.shapes = turtles.get_pixbufs() if turtles.sprite_list is not None: self.spr = Sprite(turtles.sprite_list, 0, 0, self.shapes[0]) else: self.spr = None turtles.add_to_dict(key, self) def set_shapes(self, shapes): """ Reskin the turtle """ n = len(shapes) if n == SHAPES: self.shapes = shapes[:] else: if n != 1: _logger.debug("%d images passed to set_shapes: ignoring" % (n)) images = [shapes[0]] if self.heading == 0: for i in range(3): images.append(images[i].rotate_simple(270)) for i in range(SHAPES): j = (i + 4) % SHAPES self.shapes[j] = images[int(j / 9)] else: j = int(self.heading + 5) % 360 / (360 / SHAPES) self.shapes[j] = images[0] self.custom_shapes = True self.show() def reset_shapes(self): """ Reset the shapes to the standard turtle """ if self.custom_shapes: self.shapes = generate_turtle_pixbufs(self.colors) self.custom_shapes = False def set_heading(self, heading): """ Set the turtle heading (one shape per 360/SHAPES degrees) """ self.heading = heading i = (int(self.heading + 5) % 360) / (360 / SHAPES) if not self.hidden and self.spr is not None: try: self.spr.set_shape(self.shapes[i]) except IndexError: self.spr.set_shape(self.shapes[0]) def set_color(self, color): """ Set the pen color for this turtle. """ self.pen_color = color def set_gray(self, gray): """ Set the pen gray level for this turtle. """ self.pen_gray = gray def set_shade(self, shade): """ Set the pen shade for this turtle. """ self.pen_shade = shade def set_pen_size(self, pen_size): """ Set the pen size for this turtle. """ self.pen_size = pen_size def set_pen_state(self, pen_state): """ Set the pen state (down==True) for this turtle. """ self.pen_state = pen_state def hide(self): """ Hide the turtle. """ if self.spr is not None: self.spr.hide() self.hidden = True def show(self): """ Show the turtle. """ if self.spr is not None: self.spr.set_layer(TURTLE_LAYER) self.hidden = False self.move((self.x, self.y)) self.set_heading(self.heading) def move(self, pos): """ Move the turtle. """ self.x, self.y = int(pos[0]), int(pos[1]) if not self.hidden and self.spr is not None: self.spr.move(pos) return(self.x, self.y) def get_xy(self): """ Return the turtle's x, y coordinates. """ return(self.x, self.y) def get_heading(self): """ Return the turtle's heading. """ return(self.heading) def get_color(self): """ Return the turtle's color. """ return(self.pen_color) def get_gray(self): """ Return the turtle's gray level. """ return(self.pen_gray) def get_shade(self): """ Return the turtle's shade. """ return(self.pen_shade) def get_pen_size(self): """ Return the turtle's pen size. """ return(self.pen_size) def get_pen_state(self): """ Return the turtle's pen state. """ return(self.pen_state)
class Game(): def __init__(self, canvas, parent=None, colors=['#A0FFA0', '#FF8080']): self._activity = parent self._colors = [colors[0]] self._colors.append(colors[1]) self._colors.append('#FFFFFF') self._colors.append('#000000') self._colors.append('#FF0000') self._colors.append('#FF8000') self._colors.append('#FFFF00') self._colors.append('#00FF00') self._colors.append('#00FFFF') self._colors.append('#0000FF') self._colors.append('#FF00FF') self._canvas = canvas if parent is not None: parent.show_all() self._parent = parent self._canvas.add_events(Gdk.EventMask.BUTTON_PRESS_MASK) self._canvas.add_events(Gdk.EventMask.BUTTON_RELEASE_MASK) self._canvas.add_events(Gdk.EventMask.POINTER_MOTION_MASK) self._canvas.connect("draw", self.__draw_cb) self._canvas.connect("button-press-event", self._button_press_cb) self._canvas.connect("button-release-event", self._button_release_cb) self._canvas.connect("motion-notify-event", self._mouse_move_cb) self._width = Gdk.Screen.width() self._height = Gdk.Screen.height() - GRID_CELL_SIZE scale = [self._width / (10 * DOT_SIZE * 1.2), self._height / (6 * DOT_SIZE * 1.2)] self._scale = min(scale) self._dot_size = int(DOT_SIZE * self._scale) self._space = int(self._dot_size / 5.) self._orientation = 'horizontal' self.we_are_sharing = False self.playing_with_robot = False self._press = False self.last_spr = None self._timer = None self.roygbiv = False # Generate the sprites we'll need... self._sprites = Sprites(self._canvas) self._dots = [] for y in range(SIX): for x in range(TEN): xoffset = int((self._width - TEN * self._dot_size - \ (TEN - 1) * self._space) / 2.) self._dots.append( Sprite(self._sprites, xoffset + x * (self._dot_size + self._space), y * (self._dot_size + self._space), self._new_dot(self._colors[2]))) self._dots[-1].type = 2 # not set self._dots[-1].set_label_attributes(40) self.vline = Sprite(self._sprites, int(self._width / 2.) - 1, 0, self._line(vertical=True)) n = SIX / 2. self.hline = Sprite( self._sprites, 0, int(self._dot_size * n + self._space * (n - 0.5)) - 1, self._line(vertical=False)) self.hline.hide() # and initialize a few variables we'll need. self._all_clear() def _all_clear(self): ''' Things to reinitialize when starting up a new game. ''' for dot in self._dots: dot.type = 2 dot.set_shape(self._new_dot(self._colors[2])) dot.set_label('') self._set_orientation() def _set_orientation(self): ''' Set bar and message for current orientation ''' if self._orientation == 'horizontal': self.hline.hide() self.vline.set_layer(1000) elif self._orientation == 'vertical': self.hline.set_layer(1000) self.vline.hide() else: self.hline.set_layer(1000) self.vline.set_layer(1000) ''' if self._orientation == 'horizontal': self._set_label( _('Click on the dots to make a horizontal reflection.')) elif self._orientation == 'vertical': self._set_label( _('Click on the dots to make a vertical reflection.')) else: self._set_label( _('Click on the dots to make a bilateral reflection.')) ''' def _initiating(self): return self._activity.initiating def new_game(self, orientation='horizontal'): ''' Start a new game. ''' self._orientation = orientation self._all_clear() # Fill in a few dots to start for i in range(int(TEN * SIX / 2)): n = int(uniform(0, TEN * SIX)) if self.roygbiv: self._dots[n].type = int(uniform(2, len(self._colors))) else: self._dots[n].type = int(uniform(0, 4)) self._dots[n].set_shape(self._new_dot( self._colors[self._dots[n].type])) if self.we_are_sharing: _logger.debug('sending a new game') self._parent.send_new_game() def restore_game(self, dot_list, orientation): ''' Restore a game from the Journal or share ''' for i, dot in enumerate(dot_list): self._dots[i].type = dot self._dots[i].set_shape(self._new_dot( self._colors[self._dots[i].type])) self._orientation = orientation self._set_orientation() def save_game(self): ''' Return dot list and orientation for saving to Journal or sharing ''' dot_list = [] for dot in self._dots: dot_list.append(dot.type) return [dot_list, self._orientation] def _set_label(self, string): ''' Set the label in the toolbar or the window frame. ''' self._activity.status.set_label(string) def _button_press_cb(self, win, event): win.grab_focus() x, y = map(int, event.get_coords()) self._press = True spr = self._sprites.find_sprite((x, y)) if spr == None: return True self.last_spr = spr if spr.type is not None: if not self._timer is None: GObject.source_remove(self._timer) self._increment_dot(spr) return True def _button_release_cb(self, win, event): self._press = False if not self._timer is None: GObject.source_remove(self._timer) def _increment_dot(self, spr): spr.type += 1 if self.roygbiv: if spr.type >= len(self._colors): spr.type = 2 else: spr.type %= 4 spr.set_shape(self._new_dot(self._colors[spr.type])) if self.playing_with_robot: self._robot_play(spr) self._test_game_over() if self.we_are_sharing: _logger.debug('sending a click to the share') self._parent.send_dot_click(self._dots.index(spr), spr.type) self._timer = GObject.timeout_add(1000, self._increment_dot, spr) def _mouse_move_cb(self, win, event): """ Drag a tile with the mouse. """ if not self._press: return x, y = map(int, event.get_coords()) spr = self._sprites.find_sprite((x, y)) if spr == self.last_spr: return True if spr is None: return True if spr.type is not None: self.last_spr = spr if not self._timer is None: GObject.source_remove(self._timer) self._increment_dot(spr) def _robot_play(self, dot): ''' Robot reflects dot clicked. ''' x, y = self._dot_to_grid(self._dots.index(dot)) if self._orientation == 'horizontal': x = TEN - x - 1 i = self._grid_to_dot((x, y)) self._dots[i].type = dot.type self._dots[i].set_shape(self._new_dot(self._colors[dot.type])) if self.we_are_sharing: _logger.debug('sending a robot click to the share') self._parent.send_dot_click(i, dot.type) elif self._orientation == 'vertical': y = SIX - y - 1 i = self._grid_to_dot((x, y)) self._dots[i].type = dot.type self._dots[i].set_shape(self._new_dot(self._colors[dot.type])) if self.we_are_sharing: _logger.debug('sending a robot click to the share') self._parent.send_dot_click(i, dot.type) else: x = TEN - x - 1 i = self._grid_to_dot((x, y)) self._dots[i].type = dot.type self._dots[i].set_shape(self._new_dot(self._colors[dot.type])) if self.we_are_sharing: _logger.debug('sending a robot click to the share') self._parent.send_dot_click(i, dot.type) y = SIX - y - 1 i = self._grid_to_dot((x, y)) self._dots[i].type = dot.type self._dots[i].set_shape(self._new_dot(self._colors[dot.type])) if self.we_are_sharing: _logger.debug('sending a robot click to the share') self._parent.send_dot_click(i, dot.type) x = TEN - x - 1 i = self._grid_to_dot((x, y)) self._dots[i].type = dot.type self._dots[i].set_shape(self._new_dot(self._colors[dot.type])) if self.we_are_sharing: _logger.debug('sending a robot click to the share') self._parent.send_dot_click(i, dot.type) def remote_button_press(self, dot, color): ''' Receive a button press from a sharer ''' self._dots[dot].type = color self._dots[dot].set_shape(self._new_dot(self._colors[color])) def set_sharing(self, share=True): _logger.debug('enabling sharing') self.we_are_sharing = share def _smile(self): for dot in self._dots: dot.set_label(':)') def _test_game_over(self): ''' Check to see if game is over ''' if self._orientation == 'horizontal': for y in range(SIX): for x in range(SIX): if self._dots[y * TEN + x].type != \ self._dots[y * TEN + TEN - x - 1].type: self._set_label(_('keep trying')) return False self._set_label(_('good work')) self._smile() return True if self._orientation == 'vertical': for y in range(int(SIX / 2)): for x in range(TEN): if self._dots[y * TEN + x].type != \ self._dots[(SIX - y - 1) * TEN + x].type: self._set_label(_('keep trying')) return False self._set_label(_('good work')) else: for y in range(SIX): for x in range(SIX): if self._dots[y * TEN + x].type != \ self._dots[y * TEN + TEN - x - 1].type: self._set_label(_('keep trying')) return False for y in range(int(SIX / 2)): for x in range(TEN): if self._dots[y * TEN + x].type != \ self._dots[(SIX - y - 1) * TEN + x].type: self._set_label(_('keep trying')) return False self._set_label(_('good work')) self._smile() return True def __draw_cb(self,canvas,cr): self._sprites.redraw_sprites(cr=cr) def _grid_to_dot(self, pos): ''' calculate the dot index from a column and row in the grid ''' return pos[0] + pos[1] * TEN def _dot_to_grid(self, dot): ''' calculate the grid column and row for a dot ''' return [dot % TEN, int(dot / TEN)] def _expose_cb(self, win, event): self.do_expose_event(event) def do_expose_event(self, event): ''' Handle the expose-event by drawing ''' # Restrict Cairo to the exposed area cr = self._canvas.window.cairo_create() cr.rectangle(event.area.x, event.area.y, event.area.width, event.area.height) cr.clip() # Refresh sprite list self._sprites.redraw_sprites(cr=cr) def _destroy_cb(self, win, event): Gtk.main_quit() def _new_dot(self, color): ''' generate a dot of a color color ''' self._dot_cache = {} if not color in self._dot_cache: self._stroke = color self._fill = color self._svg_width = self._dot_size self._svg_height = self._dot_size pixbuf = svg_str_to_pixbuf( self._header() + \ self._circle(self._dot_size / 2., self._dot_size / 2., self._dot_size / 2.) + \ self._footer()) surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, self._svg_width, self._svg_height) context = cairo.Context(surface) Gdk.cairo_set_source_pixbuf(context, pixbuf, 0, 0) context.rectangle(0, 0, self._svg_width, self._svg_height) context.fill() self._dot_cache[color] = surface return self._dot_cache[color] def _line(self, vertical=True): ''' Generate a center line ''' if vertical: self._svg_width = 3 self._svg_height = self._height return svg_str_to_pixbuf( self._header() + \ self._rect(3, self._height, 0, 0) + \ self._footer()) else: self._svg_width = self._width self._svg_height = 3 return svg_str_to_pixbuf( self._header() + \ self._rect(self._width, 3, 0, 0) + \ self._footer()) def _header(self): return '<svg\n' + 'xmlns:svg="http://www.w3.org/2000/svg"\n' + \ 'xmlns="http://www.w3.org/2000/svg"\n' + \ 'xmlns:xlink="http://www.w3.org/1999/xlink"\n' + \ 'version="1.1"\n' + 'width="' + str(self._svg_width) + '"\n' + \ 'height="' + str(self._svg_height) + '">\n' def _rect(self, w, h, x, y): svg_string = ' <rect\n' svg_string += ' width="%f"\n' % (w) svg_string += ' height="%f"\n' % (h) svg_string += ' rx="%f"\n' % (0) svg_string += ' ry="%f"\n' % (0) svg_string += ' x="%f"\n' % (x) svg_string += ' y="%f"\n' % (y) svg_string += 'style="fill:#000000;stroke:#000000;"/>\n' return svg_string def _circle(self, r, cx, cy): return '<circle style="fill:' + str(self._fill) + ';stroke:' + \ str(self._stroke) + ';" r="' + str(r - 0.5) + '" cx="' + \ str(cx) + '" cy="' + str(cy) + '" />\n' def _footer(self): return '</svg>\n'
class Game(): def __init__(self, canvas, parent=None, path=None): self._canvas = canvas self._parent = parent self._parent.show_all() self._path = path self._canvas.connect("draw", self.__draw_cb) self._canvas.add_events(Gdk.EventMask.BUTTON_PRESS_MASK) self._canvas.connect("button-press-event", self._button_press_cb) self._canvas.add_events(Gdk.EventMask.POINTER_MOTION_MASK) self._canvas.connect("motion-notify-event", self._mouse_move_cb) self._canvas.add_events(Gdk.EventMask.BUTTON_RELEASE_MASK) self._canvas.connect('button-release-event', self._button_release_cb) self._canvas.add_events(Gdk.EventMask.KEY_PRESS_MASK) self._canvas.connect('key-press-event', self._keypress_cb) self._canvas.set_can_focus(True) self._canvas.grab_focus() self._width = Gdk.Screen.width() self._height = Gdk.Screen.height() self._scale_x = self._width / 1200.0 self._scale_y = self._height / 900.0 self._first_time = True self._loco_pos = (0, 0) self._loco_dim = (0, 0) self._loco_quadrant = 3 self._drag_pos = [0, 0] self._counter = 0 self._correct = 0 self._timeout_id = None self._pause = 200 self._press = None self._clicked = False self._dead_key = None self._waiting_for_delete = False self._waiting_for_enter = False self._seconds = 0 self._timer_id = None self.level = 0 self.score = 0 # Generate the sprites we'll need... self._sprites = Sprites(self._canvas) self._BG = [ 'background0.jpg', 'background0.jpg', 'background0.jpg', 'background1.jpg', 'background2.jpg', 'background2.jpg', 'background2.jpg' ] self._backgrounds = [] for bg in self._BG: pixbuf = GdkPixbuf.Pixbuf.new_from_file( os.path.join(self._path, 'images', bg)) pixbuf = pixbuf.scale_simple(self._width, self._height, GdkPixbuf.InterpType.BILINEAR) self._backgrounds.append(Sprite(self._sprites, 0, 0, pixbuf)) self._backgrounds[-1].type = 'background' self._backgrounds[-1].hide() self._panel = Sprite( self._sprites, int(400 * self._scale_x), int(400 * self._scale_y), GdkPixbuf.Pixbuf.new_from_file_at_size( os.path.join(self._path, 'images', 'ventana.png'), int(720 * self._scale_x), int(370 * self._scale_y))) self._panel.type = 'panel' self._panel.set_label(LABELS[0]) self._panel.set_label_attributes(20) self._panel.hide() self._LOCOS = glob.glob(os.path.join(self._path, 'images', 'loco*.png')) self._loco_cards = [] for loco in self._LOCOS: pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_size( loco, int(150 * self._scale_x), int(208 * self._scale_y)) self._loco_cards.append(Sprite(self._sprites, 0, 0, pixbuf)) self._loco_cards[-1].type = 'loco' self._loco_dim = (int(150 * self._scale_x), int(208 * self._scale_y)) self._MEN = glob.glob(os.path.join(self._path, 'images', 'man*.png')) self._man_cards = [] for loco in self._MEN: pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_size( loco, int(150 * self._scale_x), int(208 * self._scale_y)) self._man_cards.append(Sprite(self._sprites, 0, 0, pixbuf)) self._man_cards[-1].type = 'loco' self._TAUNTS = glob.glob( os.path.join(self._path, 'images', 'taunt*.png')) self._taunt_cards = [] for loco in self._TAUNTS: pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_size( loco, int(150 * self._scale_x), int(208 * self._scale_y)) self._taunt_cards.append(Sprite(self._sprites, 0, 0, pixbuf)) self._taunt_cards[-1].type = 'loco' self._GHOSTS = glob.glob( os.path.join(self._path, 'images', 'ghost*.png')) self._ghost_cards = [] for loco in self._GHOSTS: pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_size( loco, int(150 * self._scale_x), int(208 * self._scale_y)) self._ghost_cards.append(Sprite(self._sprites, 0, 0, pixbuf)) self._ghost_cards[-1].type = 'loco' self._sticky_cards = [] self._loco_pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_size( self._LOCOS[0], int(150 * self._scale_x), int(208 * self._scale_y)) self._man_pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_size( self._MEN[0], int(150 * self._scale_x), int(208 * self._scale_y)) self._ghost_pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_size( self._GHOSTS[0], int(150 * self._scale_x), int(208 * self._scale_y)) for i in range(len(MSGS[1])): # Check re i18n self._sticky_cards.append( Sprite(self._sprites, 0, 0, self._loco_pixbuf)) self._sticky_cards[-1].type = 'loco' self._sticky_cards[-1].set_label_attributes(24, vert_align='bottom') self._all_clear() def _time_increment(self): ''' Track seconds since start_time. ''' self._seconds = int(GLib.get_current_time() - self._start_time) self.timer_id = GLib.timeout_add(1000, self._time_increment) def _timer_reset(self): ''' Reset the timer for each level ''' self._start_time = GLib.get_current_time() if self._timer_id is not None: GLib.source_remove(self._timer_id) self._timer_id = None self.score += self._seconds self._time_increment() def _all_clear(self): ''' Things to reinitialize when starting up a new game. ''' for p in self._loco_cards: p.hide() for p in self._man_cards: p.hide() for p in self._taunt_cards: p.hide() for p in self._ghost_cards: p.hide() for p in self._sticky_cards: p.set_shape(self._loco_pixbuf) p.set_label('') p.set_label_color('white') p.hide() self._backgrounds[self.level].set_layer(BG_LAYER) def _show_time(self): self.level = 0 self._all_clear() x = int(self._width / 4.) y = int(self._height / 8.) for i in range(len(str(self.score))): self._sticky_cards[i].move((x, y)) self._sticky_cards[i].set_layer(LOCO_LAYER) self._sticky_cards[i].set_label(str(self.score)[i]) x += int(self._loco_dim[0] / 2.) self.score = 0 self._parent.fullscreen() aplay.play(os.path.join(self._path, 'sounds', 'sonar.ogg')) GLib.timeout_add(5000, self.new_game, True) def new_game(self, first_time): ''' Start a new game at the current level. ''' self._first_time = first_time self._clicked = False # It may be time to advance to the next level. if (self.level == 6 and self._counter == len(MSGS)) or \ self._counter > 4: self._first_time = True self.level += 1 self._counter = 0 self._correct = 0 self._pause = 200 if self.level == len(self._backgrounds): self._show_time() return self._all_clear() if self._first_time: # Every game starts by putting up a panel with instructions # The panel disappears on mouse movement self._panel.set_label(LABELS[self.level]) self._panel.set_layer(PANEL_LAYER) aplay.play(os.path.join(self._path, 'sounds', 'drip.ogg')) self._timer_reset() if self.level == 0: # Choose a random location for the Loco self._loco_quadrant += int(uniform(1, 4)) self._loco_quadrant %= 4 x, y = self._quad_to_xy(self._loco_quadrant) aplay.play(os.path.join(self._path, 'sounds', 'bark.ogg')) self._loco_cards[0].move((x, y)) self._loco_pos = (x, y) elif self.level == 1: aplay.play(os.path.join(self._path, 'sounds', 'glass.ogg')) elif self.level == 2: aplay.play(os.path.join(self._path, 'sounds', 'glass.ogg')) # Place some Locos on the canvas for i in range(self._counter + 1): self._loco_quadrant += int(uniform(1, 4)) self._loco_quadrant %= 4 x, y = self._quad_to_xy(self._loco_quadrant) self._sticky_cards[i].move((x, y)) self._sticky_cards[i].type = 'loco' self._sticky_cards[i].set_layer(LOCO_LAYER) elif self.level == 3: aplay.play(os.path.join(self._path, 'sounds', 'bark.ogg')) # Place some Locos on the left-side of the canvas for i in range(self._counter + 1): self._loco_quadrant = int(uniform(2, 4)) x, y = self._quad_to_xy(self._loco_quadrant) self._sticky_cards[i].move((x, y)) self._sticky_cards[i].type = 'loco' self._sticky_cards[i].set_layer(LOCO_LAYER) elif self.level == 4: # Place some Locos on the canvas with letters as labels # Just lowercase for i in range(self._counter + 1): self._loco_quadrant = int(uniform(0, 4)) x, y = self._quad_to_xy(self._loco_quadrant) self._sticky_cards[i].move((x, y)) self._sticky_cards[i].type = 'loco' self._sticky_cards[i].set_layer(LOCO_LAYER) self._sticky_cards[i].set_label(ALPHABETLC[int( uniform(0, len(ALPHABETLC)))]) elif self.level == 5: # Place some Locos on the canvas with letters as labels # Uppercase for i in range(self._counter + 1): self._loco_quadrant = int(uniform(0, 4)) x, y = self._quad_to_xy(self._loco_quadrant) self._sticky_cards[i].move((x, y)) self._sticky_cards[i].type = 'loco' self._sticky_cards[i].set_layer(LOCO_LAYER) self._sticky_cards[i].set_label(ALPHABETUC[int( uniform(0, len(ALPHABETUC)))]) elif self.level == 6: x = 0 y = 0 c = 0 for i in range(len(MSGS[self._counter])): if MSGS[self._counter][i] == ' ': y += self._loco_dim[1] x = 0 else: self._sticky_cards[c].move((x, y)) self._sticky_cards[c].type = i self._sticky_cards[c].set_layer(LOCO_LAYER) self._sticky_cards[c].set_label(MSGS[self._counter][i]) c += 1 x += int(self._loco_dim[0] / 2.) if self.level in [0, 1]: self._loco_quadrant += int(uniform(1, 4)) self._loco_quadrant %= 4 x, y = self._quad_to_xy(self._loco_quadrant) if self.level == 0: self._move_loco(x, y, 0) else: self._taunt(x, y, 0) def _quad_to_xy(self, q): x = int(max(0, (self._width / 2.) * uniform(0, 1) - self._loco_dim[0])) if q in [0, 1]: x += int(self._width / 2.) y = int(max(0, (self._height / 2.) * uniform(0, 1) - self._loco_dim[1])) if q in [1, 2]: y += int(self._height / 2.) return x, y def _taunt(self, x, y, i): n = len(self._taunt_cards) self._taunt_cards[(i + 1) % n].hide() if self._clicked: self._timeout_id = None return True else: self._taunt_cards[i % n].move((x, y)) self._taunt_cards[i % n].set_layer(LOCO_LAYER) self._timeout_id = GLib.timeout_add(200, self._taunt, x, y, i + 1) def _move_loco(self, x, y, i): j = (i + 1) % len(self._loco_cards) cx, cy = self._loco_cards[i].get_xy() dx = cx - x dy = cy - y if dx * dx + dy * dy < 100: self._loco_cards[j].move((x, y)) self._loco_pos = (x, y) self._loco_cards[j].hide() self._loco_cards[i].hide() self._man_cards[0].move((x, y)) self._man_cards[0].set_layer(LOCO_LAYER) self._timeout_id = None if self._pause > 50: self._pause -= 10 return True else: if dx > 0: cx -= 5 elif dx < 0: cx += 5 if dy > 0: cy -= 5 elif dy < 0: cy += 5 self._loco_cards[j].move((cx, cy)) self._loco_pos = (cx, cy) self._loco_cards[j].set_layer(LOCO_LAYER) self._loco_cards[i].hide() self._timeout_id = GLib.timeout_add(self._pause, self._move_loco, x, y, j) def _keypress_cb(self, area, event): ''' Keypress ''' # Games 4, 5, and 6 use the keyboard if self.level not in [4, 5, 6]: return True k = Gdk.keyval_name(event.keyval) if self._waiting_for_enter: if k == 'Return': self._waiting_for_enter = False self._panel.hide() self._counter += 1 self._correct = 0 GLib.timeout_add(1000, self.new_game, False) return if k in NOISE_KEYS or k in WHITE_SPACE: return True if self.level == 6 and self._waiting_for_delete: if k in ['BackSpace', 'Delete']: self._waiting_for_delete = False self._sticky_cards[self._correct].set_label_color('white') self._sticky_cards[self._correct].set_label(MSGS[ self._counter][self._sticky_cards[self._correct].type]) self._panel.hide() self._panel.set_label_color('black') return if k[0:5] == 'dead_': self._dead_key = k[5:] return if self.level == 6: n = len(MSGS[self._counter]) else: n = self._counter + 1 if self.level == 6: i = self._correct if self._dead_key is not None: k = DEAD_DICTS[DEAD_KEYS.index(self._dead_key)][k] self._dead_key = None elif k in PUNCTUATION: k = PUNCTUATION[k] elif k in SPECIAL: k = SPECIAL[k] elif len(k) > 1: return True if self._sticky_cards[i].labels[0] == k: self._sticky_cards[i].set_label_color('blue') self._sticky_cards[i].set_label(k) self._correct += 1 else: self._sticky_cards[i].set_label_color('red') self._sticky_cards[i].set_label(k) self._panel.set_label_color('red') self._panel.set_label(ALERTS[1]) self._panel.set_layer(PANEL_LAYER) self._waiting_for_delete = True aplay.play(os.path.join(self._path, 'sounds', 'glass.ogg')) else: for i in range(n): if self._sticky_cards[i].labels[0] == k: self._sticky_cards[i].set_label('') self._sticky_cards[i].hide() break # Test for end condition if self.level == 6 and \ self._correct == len(MSGS[self._counter]) - \ MSGS[self._counter].count(' '): c = 0 for i in range(len(MSGS[self._counter])): if MSGS[self._counter][i] == ' ': continue elif MSGS[self._counter][i] != self._sticky_cards[c].labels[0]: return True c += 1 self._panel.set_label(ALERTS[0]) self._panel.set_layer(PANEL_LAYER) self._waiting_for_enter = True aplay.play(os.path.join(self._path, 'sounds', 'drip.ogg')) return else: for i in range(n): if len(self._sticky_cards[i].labels[0]) > 0: return True self._counter += 1 self._correct = 0 GLib.timeout_add(1000, self.new_game, False) def _mouse_move_cb(self, win, event): ''' Move the mouse. ''' # Games 0, 3, 4, and 5 use move events x, y = list(map(int, event.get_coords())) if self._seconds > 1: self._panel.hide() if not self._clicked and self.level == 0: # For Game 0, see if the mouse is on the Loco dx = x - self._loco_pos[0] - self._loco_dim[0] / 2. dy = y - self._loco_pos[1] - self._loco_dim[1] / 2. if dx * dx + dy * dy < 200: self._clicked = True if self._timeout_id is not None: GLib.source_remove(self._timeout_id) # Play again self._all_clear() self._man_cards[0].move((x - int(self._loco_dim[0] / 2.), y - int(self._loco_dim[1] / 2.))) self._man_cards[0].set_layer(LOCO_LAYER) self._correct += 1 self._counter += 1 GLib.timeout_add(1000, self.new_game, False) elif self.level in [4, 5]: # For Game 4 and 5, we allow dragging if self._press is None: self._drag_pos = [0, 0] return True dx = x - self._drag_pos[0] dy = y - self._drag_pos[1] self._press.move_relative((dx, dy)) self._drag_pos = [x, y] elif self.level == 3: # For Game 3, we are dragging if self._press is None: self._drag_pos = [0, 0] return True dx = x - self._drag_pos[0] dy = y - self._drag_pos[1] self._press.move_relative((dx, dy)) self._drag_pos = [x, y] if x > self._width / 2.: self._press.set_shape(self._man_pixbuf) if self._press.type == 'loco': self._correct += 1 self._press.type = 'man' return True def _button_release_cb(self, win, event): # Game 3 uses release if self.level == 3: # Move to release if self._correct == self._counter + 1: self._counter += 1 self._correct = 0 GLib.timeout_add(2000, self.new_game, False) self._press = None self._drag_pos = [0, 0] return True def _button_press_cb(self, win, event): self._press = None x, y = list(map(int, event.get_coords())) if self.level == 0: return spr = self._sprites.find_sprite((x, y)) if spr is None: return if spr.type != 'loco': return if self.level < 2 and self._timeout_id is None: return if self._clicked: return # Games 1, 2, and 3 involve clicks; Games 4 and 5 allow click to drag if self.level == 1: self._all_clear() self._man_cards[0].move((x - int(self._loco_dim[0] / 2.), y - int(self._loco_dim[1] / 2.))) self._man_cards[0].set_layer(LOCO_LAYER) self._clicked = True self._counter += 1 self._correct += 1 if self._timeout_id is not None: GLib.source_remove(self._timeout_id) GLib.timeout_add(2000, self.new_game, False) elif self.level == 2: spr.set_shape(self._ghost_pixbuf) spr.type = 'ghost' if self._correct == self._counter: self._counter += 1 self._correct = 0 GLib.timeout_add(2000, self.new_game, False) else: self._correct += 1 elif self.level in [3, 4, 5]: # In Games 4 and 5, dragging is used to remove overlaps self._press = spr self._drag_pos = [x, y] return True def __draw_cb(self, canvas, cr): self._sprites.redraw_sprites(cr=cr) def do_expose_event(self, event): ''' Handle the expose-event by drawing ''' # Restrict Cairo to the exposed area cr = self._canvas.window.cairo_create() cr.rectangle(event.area.x, event.area.y, event.area.width, event.area.height) cr.clip() # Refresh sprite list self._sprites.redraw_sprites(cr=cr) def _destroy_cb(self, win, event): Gtk.main_quit()
class Game(): def __init__(self, canvas, parent=None, path=None, root=None, mode='array', colors=['#A0FFA0', '#FF8080']): self._canvas = canvas self._parent = parent self._path = path self._root = root self._mode = mode self.current_image = 0 self.playing = False self._timeout_id = None self._prev_mouse_pos = (0, 0) self._start_time = 0 self._colors = ['#FFFFFF'] self._colors.append(colors[0]) self._colors.append(colors[1]) self._canvas.add_events( Gdk.EventMask.BUTTON_PRESS_MASK | Gdk.EventMask.BUTTON_RELEASE_MASK | Gdk.EventMask.BUTTON_MOTION_MASK | Gdk.EventMask.POINTER_MOTION_MASK | Gdk.EventMask.POINTER_MOTION_HINT_MASK | Gdk.EventMask.TOUCH_MASK) self._canvas.connect('draw', self.__draw_cb) self._canvas.connect('event', self.__event_cb) self.configure(move=False) self.we_are_sharing = False self._start_time = 0 self._timeout_id = None # Find the image files self._PATHS = glob.glob(os.path.join(self._path, 'images', '*.svg')) # Generate the sprites we'll need... self._sprites = Sprites(self._canvas) a = max(Gdk.Screen.width(), Gdk.Screen.height()) b = min(Gdk.Screen.width(), Gdk.Screen.height()) self._bg_pixbufs = [] if self._parent.tablet_mode: # text on top # landscape self._bg_pixbufs.append(svg_str_to_pixbuf(genhole( a, a, 3 * style.GRID_CELL_SIZE, style.DEFAULT_SPACING, a - 3 * style.GRID_CELL_SIZE, style.GRID_CELL_SIZE * 3 + style.DEFAULT_SPACING))) # portrait self._bg_pixbufs.append(svg_str_to_pixbuf(genhole( a, a, 3 * style.GRID_CELL_SIZE, style.DEFAULT_SPACING, b - 3 * style.GRID_CELL_SIZE, style.GRID_CELL_SIZE * 3 + style.DEFAULT_SPACING))) else: # text on bottom # landscape self._bg_pixbufs.append(svg_str_to_pixbuf(genhole( a, a, 3 * style.GRID_CELL_SIZE, b - style.GRID_CELL_SIZE * 4 - style.DEFAULT_SPACING, a - 3 * style.GRID_CELL_SIZE, b - style.GRID_CELL_SIZE - style.DEFAULT_SPACING))) # portrait self._bg_pixbufs.append(svg_str_to_pixbuf(genhole( a, a, 3 * style.GRID_CELL_SIZE, a - style.GRID_CELL_SIZE * 4 - style.DEFAULT_SPACING, b - 3 * style.GRID_CELL_SIZE, a - style.GRID_CELL_SIZE - style.DEFAULT_SPACING))) if Gdk.Screen.width() > Gdk.Screen.height(): self._bg = Sprite(self._sprites, 0, 0, self._bg_pixbufs[0]) else: self._bg = Sprite(self._sprites, 0, 0, self._bg_pixbufs[1]) self._bg.set_layer(-2) self._bg.type = 'background' size = 3 * self._dot_size + 4 * self._space x = int((Gdk.Screen.width() - size) / 2.) self._dots = [] self._Dots = [] # larger dots for linear mode X = int((Gdk.Screen.width() - self._dot_size * 3) / 2.) Y = style.GRID_CELL_SIZE + self._yoff if self._parent.tablet_mode: yoffset = self._space * 2 + self._yoff else: yoffset = self._yoff for y in range(3): for x in range(3): xoffset = int((self._width - 3 * self._dot_size - 2 * self._space) / 2.) self._dots.append( Sprite(self._sprites, xoffset + x * (self._dot_size + self._space), y * (self._dot_size + self._space) + yoffset, self._new_dot_surface(color=self._colors[0]))) self._dots[-1].type = -1 # No image self._dots[-1].set_label_attributes(72) self._dots[-1].set_label('?') self._Dots.append( Sprite( self._sprites, X, Y, self._new_dot_surface(color=self._colors[0], large=True))) self._Dots[-1].type = -1 # No image self._Dots[-1].set_label_attributes(72 * 3) self._Dots[-1].set_label('?') self.number_of_images = len(self._PATHS) if USE_ART4APPS: self._art4apps = Art4Apps() self.number_of_images = len(self._art4apps.get_words()) self._record_pixbufs = [] for icon in ['media-audio', 'media-audio-recording']: self._record_pixbufs.append( GdkPixbuf.Pixbuf.new_from_file_at_size( os.path.join(self._root, 'icons', icon + '.svg'), style.GRID_CELL_SIZE, style.GRID_CELL_SIZE)) self._play_pixbufs = [] for icon in ['play-inactive', 'play']: self._play_pixbufs.append( GdkPixbuf.Pixbuf.new_from_file_at_size( os.path.join(self._root, 'icons', icon + '.svg'), style.GRID_CELL_SIZE, style.GRID_CELL_SIZE)) self._speak_pixbufs = [] for icon in ['speak-inactive', 'speak']: self._speak_pixbufs.append( GdkPixbuf.Pixbuf.new_from_file_at_size( os.path.join(self._root, 'icons', icon + '.svg'), style.GRID_CELL_SIZE, style.GRID_CELL_SIZE)) left = style.GRID_CELL_SIZE right = Gdk.Screen.width() - 2 * style.GRID_CELL_SIZE y0 = style.DEFAULT_SPACING + style.DEFAULT_PADDING y1 = y0 + style.GRID_CELL_SIZE y2 = y1 + style.GRID_CELL_SIZE if not self._parent.tablet_mode: dy = Gdk.Screen.height() - 4 * style.GRID_CELL_SIZE - \ 2 * style.DEFAULT_SPACING y0 += dy y1 += dy y2 += dy y3 = int((Gdk.Screen.height() - 2 * style.GRID_CELL_SIZE) / 2) self._record = Sprite( self._sprites, right, y0, self._record_pixbufs[RECORD_OFF]) self._record.set_layer(1) self._record.type = 'record' self._play = Sprite( self._sprites, right, y1, self._play_pixbufs[PLAY_OFF]) self._play.set_layer(1) self._play.type = 'play-inactive' self._speak = Sprite( self._sprites, right, y2, self._speak_pixbufs[SPEAK_OFF]) self._speak.set_layer(1) self._speak.type = 'speak-inactive' self._next_prev_pixbufs = [] for icon in ['go-previous', 'go-next', 'go-previous-inactive', 'go-next-inactive']: self._next_prev_pixbufs.append( GdkPixbuf.Pixbuf.new_from_file_at_size( os.path.join(self._root, 'icons', icon + '.svg'), style.GRID_CELL_SIZE, style.GRID_CELL_SIZE)) self._prev = Sprite( self._sprites, left, y3, self._next_prev_pixbufs[PREV_INACTIVE]) self._prev.set_layer(1) self._prev.type = 'prev' if self._mode == 'array': self._prev.hide() self._next = Sprite( self._sprites, right, y3, self._next_prev_pixbufs[NEXT]) self._next.set_layer(1) self._next.type = 'next' if self._mode == 'array': self._next.hide() def configure(self, move=True): self._width = Gdk.Screen.width() self._height = Gdk.Screen.height() - style.GRID_CELL_SIZE if not move: if self._height < self._width: self._scale = self._height / (3 * DOT_SIZE * 1.2) else: self._scale = self._width / (3 * DOT_SIZE * 1.2) self._scale /= 1.5 self._dot_size = int(DOT_SIZE * self._scale) if self._parent.tablet_mode: # text on top self._yoff = style.GRID_CELL_SIZE * 3 + style.DEFAULT_SPACING else: self._yoff = style.DEFAULT_SPACING self._space = int(self._dot_size / 5.) return left = style.GRID_CELL_SIZE right = Gdk.Screen.width() - 2 * style.GRID_CELL_SIZE y0 = style.DEFAULT_SPACING + style.DEFAULT_PADDING y1 = y0 + style.GRID_CELL_SIZE y2 = y1 + style.GRID_CELL_SIZE if not self._parent.tablet_mode: dy = Gdk.Screen.height() - 4 * style.GRID_CELL_SIZE - \ 2 * style.DEFAULT_SPACING y0 += dy y1 += dy y2 += dy y3 = int((Gdk.Screen.height() - 2 * style.GRID_CELL_SIZE) / 2) self._record.move((right, y0)) self._play.move((right, y1)) self._speak.move((right, y2)) self._prev.move((left, y3)) self._next.move((right, y3)) # Move the dots X = int((Gdk.Screen.width() - self._dot_size * 3) / 2.) Y = style.GRID_CELL_SIZE + self._yoff if self._parent.tablet_mode: yoffset = self._space * 2 + self._yoff else: yoffset = self._yoff for y in range(3): for x in range(3): xoffset = int((self._width - 3 * self._dot_size - 2 * self._space) / 2.) self._dots[x + y * 3].move( (xoffset + x * (self._dot_size + self._space), y * (self._dot_size + self._space) + yoffset)) self._Dots[x + y * 3].move((X, Y)) # switch orientation the bg sprite if Gdk.Screen.width() > Gdk.Screen.height(): self._bg.set_image(self._bg_pixbufs[0]) else: self._bg.set_image(self._bg_pixbufs[1]) self._bg.set_layer(-2) def set_speak_icon_state(self, state): if state: self._speak.set_image(self._speak_pixbufs[SPEAK_ON]) self._speak.type = 'speak' else: self._speak.set_image(self._speak_pixbufs[SPEAK_OFF]) self._speak.type = 'speak-inactive' self._speak.set_layer(1) def set_record_icon_state(self, state): if state: self._record.set_image(self._record_pixbufs[RECORD_ON]) else: self._record.set_image(self._record_pixbufs[RECORD_OFF]) self._record.set_layer(1) def set_play_icon_state(self, state): if state: self._play.set_image(self._play_pixbufs[PLAY_ON]) self._play.type = 'play' else: self._play.set_image(self._play_pixbufs[PLAY_OFF]) self._play.type = 'play-inactive' self._play.set_layer(1) def autoplay(self): self.set_mode('linear') # forces current image to 0 self.playing = True self._autonext(next=False) def stop(self): self.playing = False if self._parent.audio_process is not None: self._parent.audio_process.terminate() self._parent.audio_process = None if self._timeout_id is not None: GObject.source_remove(self._timeout_id) self._timeout_id = None self._parent.autoplay_button.set_icon_name('media-playback-start') self._parent.autoplay_button.set_tooltip(_('Play')) self._parent.array_button.set_sensitive(True) def _autonext(self, next=True): self._timeout_id = None if not self.playing: return if next: self._Dots[self.current_image].hide() self.current_image += 1 self._Dots[self.current_image].set_layer(100) if self.current_image == 8: self._next.set_image( self._next_prev_pixbufs[NEXT_INACTIVE]) self._next.set_layer(1) self._prev.set_image(self._next_prev_pixbufs[PREV]) self._prev.set_layer(1) self._parent.check_audio_status() self._parent.check_text_status() GObject.idle_add(self._play_sound) def _poll_audio(self): if self._parent.audio_process is None: # Already stopped? return if self._parent.audio_process.poll() is None: GObject.timeout_add(200, self._poll_audio) else: self._parent.audio_process = None self._next_image() def _play_sound(self): self._start_time = time.time() # Either play back a recording or speak the text if self._play.type == 'play': self._parent.playback_recording_cb() self._poll_audio() elif self._speak.type == 'speak': bounds = self._parent.text_buffer.get_bounds() text = self._parent.text_buffer.get_text( bounds[0], bounds[1], True) speak(text) self._next_image() def _next_image(self): accumulated_time = int(time.time() - self._start_time) if accumulated_time < 5: pause = 5 - accumulated_time else: pause = 1 if self.playing and self.current_image < 8: self._timeout_id = GObject.timeout_add(pause * 1000, self._autonext) else: self.stop() def __event_cb(self, win, event): ''' The mouse button was pressed. Is it on a sprite? or there was a gesture. ''' left = right = False if event.type in (Gdk.EventType.TOUCH_BEGIN, Gdk.EventType.TOUCH_CANCEL, Gdk.EventType.TOUCH_END, Gdk.EventType.BUTTON_PRESS, Gdk.EventType.BUTTON_RELEASE): x = int(event.get_coords()[1]) y = int(event.get_coords()[2]) if event.type in (Gdk.EventType.TOUCH_BEGIN, Gdk.EventType.BUTTON_PRESS): self._prev_mouse_pos = (x, y) elif event.type in (Gdk.EventType.TOUCH_END, Gdk.EventType.BUTTON_RELEASE): if self._parent.audio_process is not None: self._parent.audio_process.terminate() self._parent.audio_process = None terminated_audio = True else: terminated_audio = False if self.playing: self.stop() new_mouse_pos = (x, y) mouse_movement = (new_mouse_pos[0] - self._prev_mouse_pos[0], new_mouse_pos[1] - self._prev_mouse_pos[1]) # horizontal gestures only if (abs(mouse_movement[0]) / 5) > abs(mouse_movement[1]): if abs(mouse_movement[0]) > abs(mouse_movement[1]): if mouse_movement[0] < 0: right = True else: left = True if event.type in (Gdk.EventType.TOUCH_END, Gdk.EventType.BUTTON_RELEASE): spr = self._sprites.find_sprite((x, y)) if left or right or spr is not None: if spr.type in ['record', 'play', 'play-inactive', 'speak', 'speak-inactive']: if spr.type == 'record': self._parent.record_cb() elif spr.type == 'play' and not terminated_audio: self._parent.playback_recording_cb() elif spr.type == 'speak': bounds = self._parent.text_buffer.get_bounds() text = self._parent.text_buffer.get_text( bounds[0], bounds[1], True) speak(text) return elif self._mode == 'array': return self._parent.speak_text_cb() if self._parent.recording: self._parent.record_cb() if (left or spr.type == 'prev') and self.current_image > 0: self._Dots[self.current_image].hide() self.current_image -= 1 self._Dots[self.current_image].set_layer(100) if self.current_image == 0: self._prev.set_image( self._next_prev_pixbufs[PREV_INACTIVE]) self._next.set_image(self._next_prev_pixbufs[NEXT]) elif (right or spr.type == 'next') and self.current_image < 8: self._Dots[self.current_image].hide() self.current_image += 1 self._Dots[self.current_image].set_layer(100) if self.current_image == 8: self._next.set_image( self._next_prev_pixbufs[NEXT_INACTIVE]) self._prev.set_image(self._next_prev_pixbufs[PREV]) elif spr.type not in ['prev', 'background'] and \ self.current_image < 8: self._Dots[self.current_image].hide() self.current_image += 1 self._Dots[self.current_image].set_layer(100) if self.current_image == 8: self._next.set_image( self._next_prev_pixbufs[NEXT_INACTIVE]) self._prev.set_image(self._next_prev_pixbufs[PREV]) self._parent.check_audio_status() self._parent.check_text_status() self._prev.set_layer(1) self._next.set_layer(1) return False def get_mode(self): return self._mode def set_mode(self, mode): self.current_image = 0 self._prev.set_image(self._next_prev_pixbufs[PREV_INACTIVE]) self._next.set_image(self._next_prev_pixbufs[NEXT]) if mode == 'array': self._mode = 'array' self._prev.hide() self._next.hide() else: self._mode = 'linear' self._prev.set_layer(1) self._next.set_layer(1) for i in range(9): if self._mode == 'array': self._dots[i].set_layer(100) self._Dots[i].hide() else: self._dots[i].hide() if self.current_image == i: self._Dots[i].set_layer(100) else: self._Dots[i].hide() def _all_clear(self): ''' Things to reinitialize when starting up a new game. ''' if self._timeout_id is not None: GObject.source_remove(self._timeout_id) self.set_mode(self._mode) if self._mode == 'array': for dot in self._dots: if dot.type != -1: dot.type = -1 dot.set_shape(self._new_dot_surface( self._colors[abs(dot.type)])) dot.set_label('?') else: for dot in self._Dots: if dot.type != -1: dot.type = -1 dot.set_shape(self._new_dot_surface( self._colors[abs(dot.type)], large=True)) dot.set_label('?') self._dance_counter = 0 self._dance_step() def _dance_step(self): ''' Short animation before loading new game ''' if self._mode == 'array': for dot in self._dots: dot.set_shape(self._new_dot_surface( self._colors[int(uniform(0, 3))])) else: self._Dots[0].set_shape(self._new_dot_surface( self._colors[int(uniform(0, 3))], large=True)) self._dance_counter += 1 if self._dance_counter < 10: self._timeout_id = GObject.timeout_add(500, self._dance_step) else: self._new_images() def new_game(self): ''' Start a new game. ''' self._all_clear() def _new_images(self): ''' Select pictures at random ''' used_images = [0] * self.number_of_images for i in range(9): random_selection = int(uniform(0, self.number_of_images)) while used_images[random_selection] != 0: random_selection = int(uniform(0, self.number_of_images)) used_images[random_selection] = 1 self._dots[i].set_label('') self._dots[i].type = random_selection self._dots[i].set_shape(self._new_dot_surface( image=self._dots[i].type)) self._Dots[i].set_label('') self._Dots[i].type = self._dots[i].type self._Dots[i].set_shape(self._new_dot_surface( image=self._Dots[i].type, large=True)) if self._mode == 'array': self._dots[i].set_layer(100) self._Dots[i].hide() else: if self.current_image == i: self._Dots[i].set_layer(100) else: self._Dots[i].hide() self._dots[i].hide() if self.we_are_sharing: self._parent.send_new_images() def restore_game(self, dot_list): ''' Restore a game from the Journal or share ''' self.set_mode(self._mode) for i, dot in enumerate(dot_list): self._dots[i].type = dot self._dots[i].set_shape(self._new_dot_surface( image=self._dots[i].type)) self._dots[i].set_label('') self._Dots[i].type = dot self._Dots[i].set_shape(self._new_dot_surface( image=self._Dots[i].type, large=True)) self._Dots[i].set_label('') if self._mode == 'array': self._dots[i].set_layer(100) self._Dots[i].hide() else: if self.current_image == i: self._Dots[i].set_layer(100) else: self._Dots[i].hide() self._dots[i].hide() def save_game(self): ''' Return dot list for saving to Journal or sharing ''' dot_list = [] for dot in self._dots: dot_list.append(dot.type) return dot_list def set_sharing(self, share=True): self.we_are_sharing = share def _grid_to_dot(self, pos): ''' calculate the dot index from a column and row in the grid ''' return pos[0] + pos[1] * 3 def _dot_to_grid(self, dot): ''' calculate the grid column and row for a dot ''' return [dot % 3, int(dot / 3)] def __draw_cb(self, canvas, cr): self._sprites.redraw_sprites(cr=cr) def __expose_cb(self, win, event): ''' Callback to handle window expose events ''' self.do_expose_event(event) return True # Handle the expose-event by drawing def do_expose_event(self, event): # Create the cairo context cr = self._canvas.window.cairo_create() # Restrict Cairo to the exposed area; avoid extra work cr.rectangle(event.area.x, event.area.y, event.area.width, event.area.height) cr.clip() # Refresh sprite list if cr is not None: self._sprites.redraw_sprites(cr=cr) def _destroy_cb(self, win, event): Gtk.main_quit() def export(self): ''' Write dot to cairo surface. ''' if self._mode == 'array': w = h = int(4 * self._space + 3 * self._dot_size) png_surface = cairo.ImageSurface(cairo.FORMAT_RGB24, w, h) cr = cairo.Context(png_surface) cr.set_source_rgb(192, 192, 192) cr.rectangle(0, 0, w, h) cr.fill() for i in range(9): y = self._space + int(i / 3.) * (self._dot_size + self._space) x = self._space + (i % 3) * (self._dot_size + self._space) cr.save() cr.set_source_surface(self._dots[i].images[0], x, y) cr.rectangle(x, y, self._dot_size, self._dot_size) cr.fill() cr.restore() else: w = h = int(2 * self._space + 3 * self._dot_size) png_surface = cairo.ImageSurface(cairo.FORMAT_RGB24, w, h) cr = cairo.Context(png_surface) cr.set_source_rgb(192, 192, 192) cr.rectangle(0, 0, w, h) cr.fill() y = self._space x = self._space cr.save() cr.set_source_surface(self._Dots[self.current_image].images[0], x, y) cr.rectangle(x, y, 3 * self._dot_size, 3 * self._dot_size) cr.fill() cr.restore() return png_surface def _new_dot_surface(self, color='#000000', image=None, large=False): ''' generate a dot of a color color ''' if large: size = self._dot_size * 3 else: size = self._dot_size self._svg_width = size self._svg_height = size if image is None: # color dot self._stroke = color self._fill = color pixbuf = svg_str_to_pixbuf( self._header() + self._circle(size / 2., size / 2., size / 2.) + self._footer()) else: if USE_ART4APPS: word = self._art4apps.get_words()[image] try: pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_size( self._art4apps.get_image_filename(word), size, size) except Exception, e: _logger.error('new dot surface %s %s: %s' % (image, word, e)) word = 'zebra' # default in case image is not found pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_size( self._art4apps.get_image_filename(word), size, size) else:
class Turtle: def __init__(self, turtles, turtle_name, turtle_colors=None): ''' The turtle is not a block, just a sprite with an orientation ''' self.spr = None self.label_block = None self._turtles = turtles self._shapes = [] self._custom_shapes = False self._name = turtle_name self._hidden = False self._remote = False self._x = 0.0 self._y = 0.0 self._heading = 0.0 self._half_width = 0 self._half_height = 0 self._drag_radius = None self._pen_shade = 50 self._pen_color = 0 self._pen_gray = 100 if self._turtles.turtle_window.coord_scale == 1: self._pen_size = 5 else: self._pen_size = 1 self._pen_state = True self._pen_fill = False self._poly_points = [] self._prep_shapes(turtle_name, self._turtles, turtle_colors) # Create a sprite for the turtle in interactive mode. if turtles.sprite_list is not None: self.spr = Sprite(self._turtles.sprite_list, 0, 0, self._shapes[0]) self._calculate_sizes() # Choose a random angle from which to attach the turtle # label to be used when sharing. angle = uniform(0, pi * 4 / 3.0) # 240 degrees width = self._shapes[0].get_width() radius = width * 0.67 # Restrict the angle to the sides: 30-150; 210-330 if angle > pi * 2 / 3.0: angle += pi / 2.0 # + 90 self.label_xy = [int(radius * sin(angle)), int(radius * cos(angle) + width / 2.0)] else: angle += pi / 6.0 # + 30 self.label_xy = [int(radius * sin(angle) + width / 2.0), int(radius * cos(angle) + width / 2.0)] self._turtles.add_to_dict(turtle_name, self) def _calculate_sizes(self): self._half_width = int(self.spr.rect.width / 2.0) self._half_height = int(self.spr.rect.height / 2.0) self._drag_radius = ((self._half_width * self._half_width) + (self._half_height * self._half_height)) / 6 def set_remote(self): self._remote = True def get_remote(self): return self._remote def _prep_shapes(self, name, turtles=None, turtle_colors=None): # If the turtle name is an int, we'll use a palette color as the # turtle color try: int_key = int(name) use_color_table = True except ValueError: use_color_table = False if turtle_colors is not None: self.colors = turtle_colors[:] self._shapes = generate_turtle_pixbufs(self.colors) elif use_color_table: fill = wrap100(int_key) stroke = wrap100(fill + 10) self.colors = ['#%06x' % (COLOR_TABLE[fill]), '#%06x' % (COLOR_TABLE[stroke])] self._shapes = generate_turtle_pixbufs(self.colors) else: if turtles is not None: self.colors = DEFAULT_TURTLE_COLORS self._shapes = turtles.get_pixbufs() def set_turtle_colors(self, turtle_colors): ''' reset the colors of a preloaded turtle ''' if turtle_colors is not None: self.colors = turtle_colors[:] self._shapes = generate_turtle_pixbufs(self.colors) self.set_heading(self._heading, share=False) def set_shapes(self, shapes, i=0): ''' Reskin the turtle ''' n = len(shapes) if n == 1 and i > 0: # set shape[i] if i < len(self._shapes): self._shapes[i] = shapes[0] elif n == SHAPES: # all shapes have been precomputed self._shapes = shapes[:] else: # rotate shapes if n != 1: debug_output("%d images passed to set_shapes: ignoring" % (n), self._turtles.turtle_window.running_sugar) if self._heading == 0.0: # rotate the shapes images = [] w, h = shapes[0].get_width(), shapes[0].get_height() nw = nh = int(sqrt(w * w + h * h)) for i in range(SHAPES): surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, nw, nh) context = cairo.Context(surface) context = gtk.gdk.CairoContext(context) context.translate(nw / 2.0, nh / 2.0) context.rotate(i * 10 * pi / 180.) context.translate(-nw / 2.0, -nh / 2.0) context.set_source_pixbuf(shapes[0], (nw - w) / 2.0, (nh - h) / 2.0) context.rectangle(0, 0, nw, nh) context.fill() images.append(surface) self._shapes = images[:] else: # associate shape with image at current heading j = int(self._heading + 5) % 360 / (360 / SHAPES) self._shapes[j] = shapes[0] self._custom_shapes = True self.show() self._calculate_sizes() def reset_shapes(self): ''' Reset the shapes to the standard turtle ''' if self._custom_shapes: self._shapes = generate_turtle_pixbufs(self.colors) self._custom_shapes = False self._calculate_sizes() def set_heading(self, heading, share=True): ''' Set the turtle heading (one shape per 360/SHAPES degrees) ''' try: self._heading = heading except (TypeError, ValueError): debug_output('bad value sent to %s' % (__name__), self._turtles.turtle_window.running_sugar) return self._heading %= 360 self._update_sprite_heading() if self._turtles.turtle_window.sharing() and share: event = 'r|%s' % (data_to_string([self._turtles.turtle_window.nick, round_int(self._heading)])) self._turtles.turtle_window.send_event(event) def _update_sprite_heading(self): ''' Update the sprite to reflect the current heading ''' i = (int(self._heading + 5) % 360) / (360 / SHAPES) if not self._hidden and self.spr is not None: try: self.spr.set_shape(self._shapes[i]) except IndexError: self.spr.set_shape(self._shapes[0]) def set_color(self, color=None, share=True): ''' Set the pen color for this turtle. ''' # Special case for color blocks if color is not None and color in COLORDICT: self.set_shade(COLORDICT[color][1], share) self.set_gray(COLORDICT[color][2], share) if COLORDICT[color][0] is not None: self.set_color(COLORDICT[color][0], share) color = COLORDICT[color][0] else: color = self._pen_color elif color is None: color = self._pen_color try: self._pen_color = color except (TypeError, ValueError): debug_output('bad value sent to %s' % (__name__), self._turtles.turtle_window.running_sugar) return self._turtles.turtle_window.canvas.set_fgcolor(shade=self._pen_shade, gray=self._pen_gray, color=self._pen_color) if self._turtles.turtle_window.sharing() and share: event = 'c|%s' % (data_to_string([self._turtles.turtle_window.nick, round_int(self._pen_color)])) self._turtles.turtle_window.send_event(event) def set_gray(self, gray=None, share=True): ''' Set the pen gray level for this turtle. ''' if gray is not None: try: self._pen_gray = gray except (TypeError, ValueError): debug_output('bad value sent to %s' % (__name__), self._turtles.turtle_window.running_sugar) return if self._pen_gray < 0: self._pen_gray = 0 if self._pen_gray > 100: self._pen_gray = 100 self._turtles.turtle_window.canvas.set_fgcolor(shade=self._pen_shade, gray=self._pen_gray, color=self._pen_color) if self._turtles.turtle_window.sharing() and share: event = 'g|%s' % (data_to_string([self._turtles.turtle_window.nick, round_int(self._pen_gray)])) self._turtles.turtle_window.send_event(event) def set_shade(self, shade=None, share=True): ''' Set the pen shade for this turtle. ''' if shade is not None: try: self._pen_shade = shade except (TypeError, ValueError): debug_output('bad value sent to %s' % (__name__), self._turtles.turtle_window.running_sugar) return self._turtles.turtle_window.canvas.set_fgcolor(shade=self._pen_shade, gray=self._pen_gray, color=self._pen_color) if self._turtles.turtle_window.sharing() and share: event = 's|%s' % (data_to_string([self._turtles.turtle_window.nick, round_int(self._pen_shade)])) self._turtles.turtle_window.send_event(event) def set_pen_size(self, pen_size=None, share=True): ''' Set the pen size for this turtle. ''' if pen_size is not None: try: self._pen_size = max(0, pen_size) except (TypeError, ValueError): debug_output('bad value sent to %s' % (__name__), self._turtles.turtle_window.running_sugar) return self._turtles.turtle_window.canvas.set_pen_size( self._pen_size * self._turtles.turtle_window.coord_scale) if self._turtles.turtle_window.sharing() and share: event = 'w|%s' % (data_to_string([self._turtles.turtle_window.nick, round_int(self._pen_size)])) self._turtles.turtle_window.send_event(event) def set_pen_state(self, pen_state=None, share=True): ''' Set the pen state (down==True) for this turtle. ''' if pen_state is not None: self._pen_state = pen_state if self._turtles.turtle_window.sharing() and share: event = 'p|%s' % (data_to_string([self._turtles.turtle_window.nick, self._pen_state])) self._turtles.turtle_window.send_event(event) def set_fill(self, state=False): self._pen_fill = state if not self._pen_fill: self._poly_points = [] def set_poly_points(self, poly_points=None): if poly_points is not None: self._poly_points = poly_points[:] def start_fill(self): self._pen_fill = True self._poly_points = [] def stop_fill(self, share=True): self._pen_fill = False if len(self._poly_points) == 0: return self._turtles.turtle_window.canvas.fill_polygon(self._poly_points) if self._turtles.turtle_window.sharing() and share: shared_poly_points = [] for p in self._poly_points: x, y = self._turtles.turtle_to_screen_coordinates( (p[1], p[2])) if p[0] in ['move', 'line']: shared_poly_points.append((p[0], x, y)) elif p[0] in ['rarc', 'larc']: shared_poly_points.append((p[0], x, y, p[3], p[4], p[5])) event = 'F|%s' % (data_to_string( [self._turtles.turtle_window.nick, shared_poly_points])) self._turtles.turtle_window.send_event(event) self._poly_points = [] def hide(self): if self.spr is not None: self.spr.hide() if self.label_block is not None: self.label_block.spr.hide() self._hidden = True def show(self): if self.spr is not None: self.spr.set_layer(TURTLE_LAYER) self._hidden = False self.move_turtle_spr((self._x, self._y)) self.set_heading(self._heading, share=False) if self.label_block is not None: self.label_block.spr.set_layer(TURTLE_LAYER + 1) def move_turtle(self, pos=None): ''' Move the turtle's position ''' if pos is None: pos = self.get_xy() self._x, self._y = pos[0], pos[1] if self.spr is not None: self.move_turtle_spr(pos) def move_turtle_spr(self, pos): ''' Move the turtle's sprite ''' pos = self._turtles.turtle_to_screen_coordinates(pos) pos[0] -= self._half_width pos[1] -= self._half_height if not self._hidden and self.spr is not None: self.spr.move(pos) if self.label_block is not None: self.label_block.spr.move((pos[0] + self.label_xy[0], pos[1] + self.label_xy[1])) def right(self, degrees, share=True): ''' Rotate turtle clockwise ''' try: self._heading += degrees except (TypeError, ValueError): debug_output('bad value sent to %s' % (__name__), self._turtles.turtle_window.running_sugar) return self._heading %= 360 self._update_sprite_heading() if self._turtles.turtle_window.sharing() and share: event = 'r|%s' % (data_to_string([self._turtles.turtle_window.nick, round_int(self._heading)])) self._turtles.turtle_window.send_event(event) def _draw_line(self, old, new, pendown): if self._pen_state and pendown: self._turtles.turtle_window.canvas.set_source_rgb() pos1 = self._turtles.turtle_to_screen_coordinates(old) pos2 = self._turtles.turtle_to_screen_coordinates(new) self._turtles.turtle_window.canvas.draw_line(pos1[0], pos1[1], pos2[0], pos2[1]) if self._pen_fill: if self._poly_points == []: self._poly_points.append(('move', pos1[0], pos1[1])) self._poly_points.append(('line', pos2[0], pos2[1])) def forward(self, distance, share=True): scaled_distance = distance * self._turtles.turtle_window.coord_scale old = self.get_xy() try: xcor = old[0] + scaled_distance * sin(self._heading * DEGTOR) ycor = old[1] + scaled_distance * cos(self._heading * DEGTOR) except (TypeError, ValueError): debug_output('bad value sent to %s' % (__name__), self._turtles.turtle_window.running_sugar) return self._draw_line(old, (xcor, ycor), True) self.move_turtle((xcor, ycor)) if self._turtles.turtle_window.sharing() and share: event = 'f|%s' % (data_to_string([self._turtles.turtle_window.nick, int(distance)])) self._turtles.turtle_window.send_event(event) def set_xy(self, x, y, share=True, pendown=True, dragging=False): old = self.get_xy() try: if dragging: xcor = x ycor = y else: xcor = x * self._turtles.turtle_window.coord_scale ycor = y * self._turtles.turtle_window.coord_scale except (TypeError, ValueError): debug_output('bad value sent to %s' % (__name__), self._turtles.turtle_window.running_sugar) return self._draw_line(old, (xcor, ycor), pendown) self.move_turtle((xcor, ycor)) if self._turtles.turtle_window.sharing() and share: event = 'x|%s' % (data_to_string([self._turtles.turtle_window.nick, [round_int(xcor), round_int(ycor)]])) self._turtles.turtle_window.send_event(event) def arc(self, a, r, share=True): ''' Draw an arc ''' if self._pen_state: self._turtles.turtle_window.canvas.set_source_rgb() try: if a < 0: pos = self.larc(-a, r) else: pos = self.rarc(a, r) except (TypeError, ValueError): debug_output('bad value sent to %s' % (__name__), self._turtles.turtle_window.running_sugar) return self.move_turtle(pos) if self._turtles.turtle_window.sharing() and share: event = 'a|%s' % (data_to_string([self._turtles.turtle_window.nick, [round_int(a), round_int(r)]])) self._turtles.turtle_window.send_event(event) def rarc(self, a, r): ''' draw a clockwise arc ''' r *= self._turtles.turtle_window.coord_scale if r < 0: r = -r a = -a pos = self.get_xy() cx = pos[0] + r * cos(self._heading * DEGTOR) cy = pos[1] - r * sin(self._heading * DEGTOR) if self._pen_state: npos = self._turtles.turtle_to_screen_coordinates((cx, cy)) self._turtles.turtle_window.canvas.rarc(npos[0], npos[1], r, a, self._heading) if self._pen_fill: if self._poly_points == []: self._poly_points.append(('move', npos[0], npos[1])) self._poly_points.append(('rarc', npos[0], npos[1], r, (self._heading - 180) * DEGTOR, (self._heading - 180 + a) * DEGTOR)) self.right(a, False) return [cx - r * cos(self._heading * DEGTOR), cy + r * sin(self._heading * DEGTOR)] def larc(self, a, r): ''' draw a counter-clockwise arc ''' r *= self._turtles.turtle_window.coord_scale if r < 0: r = -r a = -a pos = self.get_xy() cx = pos[0] - r * cos(self._heading * DEGTOR) cy = pos[1] + r * sin(self._heading * DEGTOR) if self._pen_state: npos = self._turtles.turtle_to_screen_coordinates((cx, cy)) self._turtles.turtle_window.canvas.larc(npos[0], npos[1], r, a, self._heading) if self._pen_fill: if self._poly_points == []: self._poly_points.append(('move', npos[0], npos[1])) self._poly_points.append(('larc', npos[0], npos[1], r, (self._heading) * DEGTOR, (self._heading - a) * DEGTOR)) self.right(-a, False) return [cx + r * cos(self._heading * DEGTOR), cy - r * sin(self._heading * DEGTOR)] def draw_pixbuf(self, pixbuf, a, b, x, y, w, h, path, share=True): ''' Draw a pixbuf ''' self._turtles.turtle_window.canvas.draw_pixbuf( pixbuf, a, b, x, y, w, h, self._heading) if self._turtles.turtle_window.sharing() and share: if self._turtles.turtle_window.running_sugar: tmp_path = get_path(self._turtles.turtle_window.activity, 'instance') else: tmp_path = '/tmp' tmp_file = os.path.join( get_path(self._turtles.turtle_window.activity, 'instance'), 'tmpfile.png') pixbuf.save(tmp_file, 'png', {'quality': '100'}) data = image_to_base64(tmp_file, tmp_path) height = pixbuf.get_height() width = pixbuf.get_width() pos = self._turtles.screen_to_turtle_coordinates((x, y)) event = 'P|%s' % (data_to_string([self._turtles.turtle_window.nick, [round_int(a), round_int(b), round_int(pos[0]), round_int(pos[1]), round_int(w), round_int(h), round_int(width), round_int(height), data]])) gobject.idle_add(self._turtles.turtle_window.send_event, event) os.remove(tmp_file) def draw_text(self, label, x, y, size, w, share=True): ''' Draw text ''' self._turtles.turtle_window.canvas.draw_text( label, x, y, size, w, self._heading, self._turtles.turtle_window.coord_scale) if self._turtles.turtle_window.sharing() and share: event = 'W|%s' % (data_to_string([self._turtles.turtle_window.nick, [label, round_int(x), round_int(y), round_int(size), round_int(w)]])) self._turtles.turtle_window.send_event(event) def get_name(self): return self._name def get_xy(self): return [self._x, self._y] def get_x(self): return self._x def get_y(self): return self._y def get_heading(self): return self._heading def get_color(self): return self._pen_color def get_gray(self): return self._pen_gray def get_shade(self): return self._pen_shade def get_pen_size(self): return self._pen_size def get_pen_state(self): return self._pen_state def get_fill(self): return self._pen_fill def get_poly_points(self): return self._poly_points def get_pixel(self): pos = self._turtles.turtle_to_screen_coordinates(self.get_xy()) return self._turtles.turtle_window.canvas.get_pixel(pos[0], pos[1]) def get_drag_radius(self): if self._drag_radius is None: self._calculate_sizes() return self._drag_radius
class Turtle: def __init__(self, turtles, key, turtle_colors=None): """ The turtle is not a block, just a sprite with an orientation """ self.x = 0.0 self.y = 0.0 self.hidden = False self.shapes = [] self.custom_shapes = False self.type = 'turtle' self.name = key self.heading = 0.0 self.pen_shade = 50 self.pen_color = 0 self.pen_gray = 100 self.pen_size = 5 self.pen_state = True self.label_block = None self._prep_shapes(key, turtles, turtle_colors) # Choose a random angle from which to attach the turtle label. if turtles.sprite_list is not None: self.spr = Sprite(turtles.sprite_list, 0, 0, self.shapes[0]) angle = uniform(0, pi * 4 / 3.0) # 240 degrees w = self.shapes[0].get_width() r = w * 0.67 # Restrict angle the the sides 30-150; 210-330 if angle > pi * 2 / 3.0: angle += pi / 2.0 # + 90 self.label_xy = [int(r * sin(angle)), int(r * cos(angle) + w / 2.0)] else: angle += pi / 6.0 # + 30 self.label_xy = [int(r * sin(angle) + w / 2.0), int(r * cos(angle) + w / 2.0)] else: self.spr = None turtles.add_to_dict(key, self) def _prep_shapes(self, name, turtles=None, turtle_colors=None): # If the turtle name is an int, we'll use a palette color as the # turtle color try: int_key = int(name) use_color_table = True except ValueError: use_color_table = False if turtle_colors is not None: self.colors = turtle_colors[:] self.shapes = generate_turtle_pixbufs(self.colors) elif use_color_table: fill = wrap100(int_key) stroke = wrap100(fill + 10) self.colors = ['#%06x' % (COLOR_TABLE[fill]), '#%06x' % (COLOR_TABLE[stroke])] self.shapes = generate_turtle_pixbufs(self.colors) else: if turtles is not None: self.colors = DEFAULT_TURTLE_COLORS self.shapes = turtles.get_pixbufs() def set_turtle_colors(self, turtle_colors): ''' reset the colors of a preloaded turtle ''' if turtle_colors is not None: self.colors = turtle_colors[:] self.shapes = generate_turtle_pixbufs(self.colors) self.set_heading(self.heading) def set_shapes(self, shapes, i=0): """ Reskin the turtle """ n = len(shapes) if n == 1 and i > 0: # set shape[i] if i < len(self.shapes): self.shapes[i] = shapes[0] elif n == SHAPES: # all shapes have been precomputed self.shapes = shapes[:] else: # rotate shapes if n != 1: debug_output("%d images passed to set_shapes: ignoring" % (n), self.tw.running_sugar) if self.heading == 0.0: # rotate the shapes images = [] w, h = shapes[0].get_width(), shapes[0].get_height() nw = nh = int(sqrt(w * w + h * h)) for i in range(SHAPES): surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, nw, nh) context = cairo.Context(surface) context = gtk.gdk.CairoContext(context) context.translate(nw / 2., nh / 2.) context.rotate(i * 10 * pi / 180.) context.translate(-nw / 2., -nh / 2.) context.set_source_pixbuf(shapes[0], (nw - w) / 2., (nh - h) / 2.) context.rectangle(0, 0, nw, nh) context.fill() images.append(surface) self.shapes = images[:] else: # associate shape with image at current heading j = int(self.heading + 5) % 360 / (360 / SHAPES) self.shapes[j] = shapes[0] self.custom_shapes = True self.show() def reset_shapes(self): """ Reset the shapes to the standard turtle """ if self.custom_shapes: self.shapes = generate_turtle_pixbufs(self.colors) self.custom_shapes = False def set_heading(self, heading): """ Set the turtle heading (one shape per 360/SHAPES degrees) """ self.heading = heading i = (int(self.heading + 5) % 360) / (360 / SHAPES) if not self.hidden and self.spr is not None: try: self.spr.set_shape(self.shapes[i]) except IndexError: self.spr.set_shape(self.shapes[0]) def set_color(self, color): """ Set the pen color for this turtle. """ self.pen_color = color def set_gray(self, gray): """ Set the pen gray level for this turtle. """ self.pen_gray = gray def set_shade(self, shade): """ Set the pen shade for this turtle. """ self.pen_shade = shade def set_pen_size(self, pen_size): """ Set the pen size for this turtle. """ self.pen_size = pen_size def set_pen_state(self, pen_state): """ Set the pen state (down==True) for this turtle. """ self.pen_state = pen_state def hide(self): """ Hide the turtle. """ if self.spr is not None: self.spr.hide() if self.label_block is not None: self.label_block.spr.hide() self.hidden = True def show(self): """ Show the turtle. """ if self.spr is not None: self.spr.set_layer(TURTLE_LAYER) self.hidden = False self.move((self.x, self.y)) self.set_heading(self.heading) if self.label_block is not None: self.label_block.spr.set_layer(TURTLE_LAYER + 1) def move(self, pos): """ Move the turtle. """ self.x, self.y = pos[0], pos[1] if not self.hidden and self.spr is not None: self.spr.move((int(pos[0]), int(pos[1]))) if self.label_block is not None: self.label_block.spr.move((int(pos[0] + self.label_xy[0]), int(pos[1] + self.label_xy[1]))) return(self.x, self.y) def get_name(self): ''' return turtle name (key) ''' return self.name def get_xy(self): """ Return the turtle's x, y coordinates. """ return(self.x, self.y) def get_heading(self): """ Return the turtle's heading. """ return(self.heading) def get_color(self): """ Return the turtle's color. """ return(self.pen_color) def get_gray(self): """ Return the turtle's gray level. """ return(self.pen_gray) def get_shade(self): """ Return the turtle's shade. """ return(self.pen_shade) def get_pen_size(self): """ Return the turtle's pen size. """ return(self.pen_size) def get_pen_state(self): """ Return the turtle's pen state. """ return(self.pen_state)