Beispiel #1
0
def apply_flow(phi, u):
  surf = sqp_problem.make_interp(phi)
  out = np.empty_like(phi)
  for i in range(out.shape[0]):
    for j in range(out.shape[1]):
      out[i,j] = surf.eval_xys(surf.to_xys([i,j])[0] - u[i,j,:])
  return out
Beispiel #2
0
    def __init__(self, init_phi):
        self.phi_surf = sqp_problem.make_interp(init_phi)
        self.curr_u = np.zeros(sqp_problem.Config.GRID_SHAPE + (2, ))
        self.curr_obs = None
        self.prob = None

        self.phi_cmap = np.zeros((256, 3), dtype='uint8')
        self.phi_cmap[:128, 0] = 255
        self.phi_cmap[:128, 1] = np.linspace(0, 255, 128).astype(int)
        self.phi_cmap[:128, 2] = np.linspace(0, 255, 128).astype(int)
        self.phi_cmap[128:, 0] = np.linspace(255, 0, 128).astype(int)
        self.phi_cmap[128:, 1] = np.linspace(255, 0, 128).astype(int)
        self.phi_cmap[128:, 2] = 255
Beispiel #3
0
  def __init__(self, init_phi):
    self.phi_surf = sqp_problem.make_interp(init_phi)
    self.curr_u = np.zeros(sqp_problem.Config.GRID_SHAPE + (2,))
    self.curr_obs = None
    self.prob = None

    self.phi_cmap = np.zeros((256, 3), dtype='uint8')
    self.phi_cmap[:128,0] = 255
    self.phi_cmap[:128,1] = np.linspace(0, 255, 128).astype(int)
    self.phi_cmap[:128,2] = np.linspace(0, 255, 128).astype(int)
    self.phi_cmap[128:,0] = np.linspace(255, 0, 128).astype(int)
    self.phi_cmap[128:,1] = np.linspace(255, 0, 128).astype(int)
    self.phi_cmap[128:,2] = 255
Beispiel #4
0
def apply_flow_forwards(fig, N, phi, u, x=None, y=None, z=None):
  # x goes to x + u(x)
  # so we want out(x+u(x)) == phi(x)
  surf = sqp_problem.make_interp(phi)
  pts = np.empty((phi.shape + (2,)))
  if x is None or y is None or z is None:
    x, y, z = [], [], []
    for i in range(phi.shape[0]):
      for j in range(phi.shape[1]):
        p = surf.to_xys([i,j])[0] + u[i,j,:]
        x.append(p[0])
        y.append(p[1])
        z.append(phi[i,j])

  ax = fig.add_subplot(N, aspect='equal')
  #pts = pts.reshape((-1,2))
  #ax.scatter(pts[:,0], pts[:,1], c=phi.reshape(-1), cmap='Greys_r')
  ax.scatter(x, y, c=z, cmap='Greys_r')
Beispiel #5
0
  def optimize_sqp(self):
    if self.prob is None:
      self.prob = sqp_problem.TrackingProblem()
      self.prob.set_coeffs(flow_agree=0)

    self.prob.set_obs_points(self.curr_obs)
    self.prob.set_prev_phi_surf(self.phi_surf)

    self.phi_surf, self.curr_u = self.prob.optimize(self.prob.prev_phi_surf.data, np.zeros((SIZE,SIZE,2)))
    print 'phi max, min:', abs(self.phi_surf.data).max(), abs(self.phi_surf.data).min()
    # rescale
    self.phi_surf = sqp_problem.make_interp(self.phi_surf.data / abs(self.phi_surf.data).max())
    # print 'smoothing'
    # print self.phi_surf.data
    # self.phi_surf = sqp_problem.make_interp(smooth_by_edt(self.phi_surf.data))
    # print 'after'
    # print self.phi_surf.data
    # print 'done'

    self.prob.set_coeffs(flow_agree=1)
Beispiel #6
0
    def optimize_sqp(self):
        if self.prob is None:
            self.prob = sqp_problem.TrackingProblem()
            self.prob.set_coeffs(flow_agree=0)

        self.prob.set_obs_points(self.curr_obs)
        self.prob.set_prev_phi_surf(self.phi_surf)

        self.phi_surf, self.curr_u = self.prob.optimize(
            self.prob.prev_phi_surf.data, np.zeros((SIZE, SIZE, 2)))
        print 'phi max, min:', abs(self.phi_surf.data).max(), abs(
            self.phi_surf.data).min()
        # rescale
        self.phi_surf = sqp_problem.make_interp(self.phi_surf.data /
                                                abs(self.phi_surf.data).max())
        # print 'smoothing'
        # print self.phi_surf.data
        # self.phi_surf = sqp_problem.make_interp(smooth_by_edt(self.phi_surf.data))
        # print 'after'
        # print self.phi_surf.data
        # print 'done'

        self.prob.set_coeffs(flow_agree=1)
Beispiel #7
0
def simple():

    empty_phi = np.ones((SIZE, SIZE))

    square_phi = np.ones_like(empty_phi)
    square_phi[int(SIZE / 2.), int(SIZE / 4.):-int(SIZE / 4.)] = 0.
    square_phi[int(SIZE / 2.):-int(SIZE / 4.), int(SIZE / 4.)] = 0.
    square_phi[int(SIZE / 2.):-int(SIZE / 4.), -int(SIZE / 4.)] = 0.
    square_phi[-int(SIZE / 4.), int(SIZE / 4.):-int(SIZE / 4.) + 1] = 0.
    init_phi = square_phi
    # init_phi = np.ones_like(empty_phi)
    # init_phi[int(SIZE/2.),int(SIZE/4.):-int(SIZE/4.)] = 0.
    # init_phi[int(SIZE/4.),int(SIZE/3.):-int(SIZE/3.)] = 0.
    init_phi = smooth(init_phi)
    # negate inside
    init_phi[int(SIZE / 2.):-int(SIZE / 4.),
             int(SIZE / 4.):-int(SIZE / 4.)] *= -1

    # import cPickle
    # with open('/tmp/init_phi.pkl', 'w') as f: cPickle.dump(init_phi, f)

    init_phi_observed = np.ones_like(empty_phi)
    init_phi_observed[int(SIZE / 2.), int(SIZE / 4.):-int(SIZE / 4.)] = 0.
    # init_phi_observed = smooth(init_phi_observed)

    new_phi_observed = init_phi_observed
    new_phi_observed[int(SIZE / 2.),
                     int(SIZE / 10.):-int(SIZE / 10.)] = 0.
    # new_phi_observed = sn.interpolation.zoom(init_phi_observed, 1.2, cval=1., order=0)
    # new_phi_observed = sn.interpolation.shift(init_phi_observed, [2,0], cval=1., order=0)
    # new_phi_observed = sn.interpolation.rotate(init_phi_observed, 5., cval=1., order=0)
    # plt.imshow(new_phi_observed, cmap=cm.Greys_r)
    # plt.show()
    obs_pts = np.transpose(np.nonzero(new_phi_observed == 0))

    # prob = sqp_problem.TrackingProblem()
    prob = ctimbpy.TrackingProblem(WORLD_MIN[0], WORLD_MAX[0], WORLD_MIN[1],
                                   WORLD_MAX[1], SIZE, SIZE)
    prob.set_observation_points(obs_pts)
    prob.set_prev_phi(init_phi)

    # prob.set_coeffs(flow_norm=1e-9, flow_rigidity=1e-3, flow_tps=0, obs=1, flow_agree=1)

    init_u = np.zeros(init_phi.shape + (2, ))
    #init_u[:,:,0] = 1.

    # out_phis, out_us, opt_result = prob.optimize(init_phi, init_u, return_full=True)
    result = prob.optimize()
    out_phis = [result.phi]
    out_us = [result.u]
    opt_result = result.opt_result

    for out_phi, out_u in [zip(out_phis, out_us)[-1]]:
        # import cPickle
        # with open('/tmp/dump.pkl', 'w') as f:
        #   cPickle.dump((out_phi, out_u, opt_result), f)

        global fig
        fig = plt.figure(figsize=(15, 15))

        init_phi[obs_pts[:, 0], obs_pts[:, 1]] = 0
        plot_phi(221, sqp_problem.make_interp(init_phi))

        ax = fig.add_subplot(224)
        ax.plot(np.arange(len(opt_result.cost_over_iters)),
                opt_result.cost_over_iters)

        #out_phi = reintegrate(out_phi)
        plot_phi(223, sqp_problem.make_interp(out_phi))
        plot_u(222, out_u)

        plt.show()
Beispiel #8
0
def rotate():
    empty_phi = np.ones((SIZE, SIZE))

    square_phi = np.ones_like(empty_phi)
    square_phi[int(SIZE / 2.), int(SIZE / 4.):-int(SIZE / 4.)] = 0.
    square_phi[int(SIZE / 2.):-int(SIZE / 4.), int(SIZE / 4.)] = 0.
    square_phi[int(SIZE / 2.):-int(SIZE / 4.), -int(SIZE / 4.)] = 0.
    square_phi[-int(SIZE / 4.), int(SIZE / 4.):-int(SIZE / 4.) + 1] = 0.
    orig_phi = smooth(square_phi)

    init_phi = np.ones_like(empty_phi)
    init_obs_inds = calc_observable_inds(square_phi)
    init_phi[init_obs_inds[:, 0], init_obs_inds[:, 1]] = 0.
    init_phi = smooth(init_phi)

    # go through a rotation of the square
    prob = sqp_problem.TrackingProblem()
    prob.set_coeffs(flow_norm=1e-9, flow_rigidity=1, obs=1, flow_agree=1)
    for i_iter, angle in enumerate(np.arange(0, 359, 5)):
        if i_iter == 0:
            prob.set_coeffs(flow_agree=0)
        else:
            prob.set_coeffs(flow_agree=1)
        print 'Current angle:', angle
        # make an observation
        rotated = sn.interpolation.rotate(square_phi,
                                          angle,
                                          cval=1.,
                                          order=0,
                                          reshape=False)
        print rotated.shape, square_phi.shape
        obs_inds = calc_observable_inds(rotated)
        prob.set_obs_points(obs_inds)
        prob.set_prev_phi(init_phi)

        init_u = np.zeros(init_phi.shape + (2, ))
        out_phis, out_us, opt_result = prob.optimize(init_phi,
                                                     init_u,
                                                     return_full=True)

        for out_phi, out_u in [zip(out_phis, out_us)[-1]]:
            global fig
            fig = plt.figure()

            not_oob = (0 <= obs_inds[:, 0]) & (
                obs_inds[:, 0] < init_phi.shape[0]) & (0 <= obs_inds[:, 1]) & (
                    obs_inds[:, 1] < init_phi.shape[1])
            init_phi[obs_inds[:, 0][not_oob], obs_inds[:, 1][not_oob]] = .5
            plot_phi(231, sqp_problem.make_interp(init_phi))

            ax = fig.add_subplot(234)
            tmp = rotated.copy()
            tmp[obs_inds[:, 0], obs_inds[:, 1]] = .5
            tmp = np.flipud(tmp.T)
            ax.imshow(tmp, cmap=cm.Greys_r).set_interpolation('nearest')
            # ax = fig.add_subplot(224)
            # ax.plot(np.arange(len(opt_result.costs_over_iters)), opt_result.costs_over_iters)

            plot_phi(232, sqp_problem.make_interp(out_phi))
            plot_u(233, out_u)

            # zero_thresh = sqp_problem.make_interp(out_phi).eval_ijs(obs_inds).mean()
            # print 'zero thresh', zero_thresh
            out_phi = reintegrate(out_phi)  #, zero_thresh)
            plot_phi(235, sqp_problem.make_interp(out_phi))

            plt.show()

        # TODO: REINTEGRATE HERE
        init_phi = out_phi
Beispiel #9
0
def rotate_full_obs():
    square_phi = make_square_phi()
    init_phi = square_phi.copy()

    # go through a rotation of the square
    prob = sqp_problem.TrackingProblem()
    prob.set_coeffs(flow_norm=1e-9,
                    flow_rigidity=1e-3,
                    flow_tps=1e-5,
                    obs=1,
                    flow_agree=1)
    for i_iter, angle in enumerate(np.arange(0, 359, 5)):
        print 'Current angle:', angle
        # make an observation
        rotated = sn.interpolation.rotate(square_phi,
                                          angle,
                                          cval=1.,
                                          order=0,
                                          reshape=False)
        print rotated.shape, square_phi.shape
        obs_inds = calc_observable_inds(rotated)
        prob.set_obs_points(obs_inds)
        prob.set_prev_phi(init_phi)

        init_u = np.zeros(init_phi.shape + (2, ))
        out_phis, out_us, opt_result = prob.optimize(init_phi,
                                                     init_u,
                                                     return_full=True)

        for out_phi, out_u in [zip(out_phis, out_us)[-1]]:
            global fig
            fig = plt.figure()

            # superimpose observation drawing
            not_oob = (0 <= obs_inds[:, 0]) & (
                obs_inds[:, 0] < init_phi.shape[0]) & (0 <= obs_inds[:, 1]) & (
                    obs_inds[:, 1] < init_phi.shape[1])
            init_phi[obs_inds[:, 0][not_oob], obs_inds[:, 1][not_oob]] = 0
            plot_phi(231, sqp_problem.make_interp(init_phi))

            # ax = fig.add_subplot(234)
            # tmp = rotated.copy()
            # tmp[obs_inds[:,0],obs_inds[:,1]] = .5
            # tmp = np.flipud(tmp.T)
            # ax.imshow(tmp, cmap=cm.Greys_r).set_interpolation('nearest')
            ax = fig.add_subplot(234)
            ax.plot(np.arange(len(opt_result.costs_over_iters)),
                    opt_result.costs_over_iters)

            plot_phi(232, sqp_problem.make_interp(out_phi))
            plot_u(233, out_u)

            out_phi = reintegrate(out_phi)
            plot_phi(235, sqp_problem.make_interp(out_phi))

            plt.show()

        init_phi = out_phi

    init_phi_observed = np.ones_like(empty_phi)
    init_phi_observed[int(SIZE / 2.), int(SIZE / 4.):-int(SIZE / 4.)] = 0.

    new_phi_observed = init_phi_observed
    new_phi_observed[int(SIZE / 2.),
                     int(SIZE / 10.):-int(SIZE / 10.)] = 0.
    obs_pts = np.transpose(np.nonzero(new_phi_observed == 0))

    prob = sqp_problem.TrackingProblem()
    prob.set_obs_points(obs_pts)
    prob.set_prev_phi(init_phi)

    prob.set_coeffs(flow_norm=1e-9,
                    flow_rigidity=1e-8,
                    flow_tps=1e-5,
                    obs=1,
                    flow_agree=1)

    init_u = np.zeros(init_phi.shape + (2, ))
    #init_u[:,:,0] = 1.

    out_phis, out_us, opt_result = prob.optimize(init_phi,
                                                 init_u,
                                                 return_full=True)

    for out_phi, out_u in [zip(out_phis, out_us)[-1]]:
        # import cPickle
        # with open('/tmp/dump.pkl', 'w') as f:
        #   cPickle.dump((out_phi, out_u, opt_result), f)

        global fig
        fig = plt.figure(figsize=(15, 15))

        init_phi[obs_pts[:, 0], obs_pts[:, 1]] = 0
        plot_phi(221, sqp_problem.make_interp(init_phi))

        ax = fig.add_subplot(224)
        ax.plot(np.arange(len(opt_result.costs_over_iters)),
                opt_result.costs_over_iters)

        out_phi = reintegrate(out_phi)
        plot_phi(223, sqp_problem.make_interp(out_phi))
        plot_u(222, out_u)

        plt.show()
Beispiel #10
0
def simple():

  empty_phi = np.ones((SIZE, SIZE))

  square_phi = np.ones_like(empty_phi)
  square_phi[int(SIZE/2.),int(SIZE/4.):-int(SIZE/4.)] = 0.
  square_phi[int(SIZE/2.):-int(SIZE/4.),int(SIZE/4.)] = 0.
  square_phi[int(SIZE/2.):-int(SIZE/4.),-int(SIZE/4.)] = 0.
  square_phi[-int(SIZE/4.),int(SIZE/4.):-int(SIZE/4.)+1] = 0.
  init_phi = square_phi
  # init_phi = np.ones_like(empty_phi)
  # init_phi[int(SIZE/2.),int(SIZE/4.):-int(SIZE/4.)] = 0.
  # init_phi[int(SIZE/4.),int(SIZE/3.):-int(SIZE/3.)] = 0.
  init_phi = smooth(init_phi)
  # negate inside
  init_phi[int(SIZE/2.):-int(SIZE/4.),int(SIZE/4.):-int(SIZE/4.)] *= -1

  # import cPickle
  # with open('/tmp/init_phi.pkl', 'w') as f: cPickle.dump(init_phi, f)

  init_phi_observed = np.ones_like(empty_phi)
  init_phi_observed[int(SIZE/2.),int(SIZE/4.):-int(SIZE/4.)] = 0.
  # init_phi_observed = smooth(init_phi_observed)


  new_phi_observed = init_phi_observed; new_phi_observed[int(SIZE/2.),int(SIZE/10.):-int(SIZE/10.)] = 0.
  # new_phi_observed = sn.interpolation.zoom(init_phi_observed, 1.2, cval=1., order=0)
  # new_phi_observed = sn.interpolation.shift(init_phi_observed, [2,0], cval=1., order=0)
  # new_phi_observed = sn.interpolation.rotate(init_phi_observed, 5., cval=1., order=0)
  # plt.imshow(new_phi_observed, cmap=cm.Greys_r)
  # plt.show()
  obs_pts = np.transpose(np.nonzero(new_phi_observed == 0))

  # prob = sqp_problem.TrackingProblem()
  prob = ctimbpy.TrackingProblem(WORLD_MIN[0], WORLD_MAX[0], WORLD_MIN[1], WORLD_MAX[1], SIZE, SIZE)
  prob.set_observation_points(obs_pts)
  prob.set_prev_phi(init_phi)

  # prob.set_coeffs(flow_norm=1e-9, flow_rigidity=1e-3, flow_tps=0, obs=1, flow_agree=1)

  init_u = np.zeros(init_phi.shape + (2,))
  #init_u[:,:,0] = 1.

  # out_phis, out_us, opt_result = prob.optimize(init_phi, init_u, return_full=True)
  result = prob.optimize()
  out_phis = [result.phi]
  out_us = [result.u]
  opt_result = result.opt_result

  for out_phi, out_u in [zip(out_phis, out_us)[-1]]:
    # import cPickle
    # with open('/tmp/dump.pkl', 'w') as f:
    #   cPickle.dump((out_phi, out_u, opt_result), f)

    global fig
    fig = plt.figure(figsize=(15,15))

    init_phi[obs_pts[:,0],obs_pts[:,1]] = 0
    plot_phi(221, sqp_problem.make_interp(init_phi))

    ax = fig.add_subplot(224)
    ax.plot(np.arange(len(opt_result.cost_over_iters)), opt_result.cost_over_iters)

    #out_phi = reintegrate(out_phi)
    plot_phi(223, sqp_problem.make_interp(out_phi))
    plot_u(222, out_u)

    plt.show()
Beispiel #11
0
def rotate():
  empty_phi = np.ones((SIZE, SIZE))

  square_phi = np.ones_like(empty_phi)
  square_phi[int(SIZE/2.),int(SIZE/4.):-int(SIZE/4.)] = 0.
  square_phi[int(SIZE/2.):-int(SIZE/4.),int(SIZE/4.)] = 0.
  square_phi[int(SIZE/2.):-int(SIZE/4.),-int(SIZE/4.)] = 0.
  square_phi[-int(SIZE/4.),int(SIZE/4.):-int(SIZE/4.)+1] = 0.
  orig_phi = smooth(square_phi)

  init_phi = np.ones_like(empty_phi)
  init_obs_inds = calc_observable_inds(square_phi)
  init_phi[init_obs_inds[:,0],init_obs_inds[:,1]] = 0.
  init_phi = smooth(init_phi)

  # go through a rotation of the square
  prob = sqp_problem.TrackingProblem()
  prob.set_coeffs(flow_norm=1e-9, flow_rigidity=1, obs=1, flow_agree=1)
  for i_iter, angle in enumerate(np.arange(0, 359, 5)):
    if i_iter == 0:
      prob.set_coeffs(flow_agree=0)
    else:
      prob.set_coeffs(flow_agree=1)
    print 'Current angle:', angle
    # make an observation
    rotated = sn.interpolation.rotate(square_phi, angle, cval=1., order=0, reshape=False)
    print rotated.shape, square_phi.shape
    obs_inds = calc_observable_inds(rotated)
    prob.set_obs_points(obs_inds)
    prob.set_prev_phi(init_phi)

    init_u = np.zeros(init_phi.shape + (2,))
    out_phis, out_us, opt_result = prob.optimize(init_phi, init_u, return_full=True)


    for out_phi, out_u in [zip(out_phis, out_us)[-1]]:
      global fig
      fig = plt.figure()

      not_oob = (0 <= obs_inds[:,0]) & (obs_inds[:,0] < init_phi.shape[0]) & (0 <= obs_inds[:,1]) & (obs_inds[:,1] < init_phi.shape[1])
      init_phi[obs_inds[:,0][not_oob],obs_inds[:,1][not_oob]] = .5
      plot_phi(231, sqp_problem.make_interp(init_phi))

      ax = fig.add_subplot(234)
      tmp = rotated.copy()
      tmp[obs_inds[:,0],obs_inds[:,1]] = .5
      tmp = np.flipud(tmp.T)
      ax.imshow(tmp, cmap=cm.Greys_r).set_interpolation('nearest')
      # ax = fig.add_subplot(224)
      # ax.plot(np.arange(len(opt_result.costs_over_iters)), opt_result.costs_over_iters)

      plot_phi(232, sqp_problem.make_interp(out_phi))
      plot_u(233, out_u)

      # zero_thresh = sqp_problem.make_interp(out_phi).eval_ijs(obs_inds).mean()
      # print 'zero thresh', zero_thresh
      out_phi = reintegrate(out_phi)#, zero_thresh)
      plot_phi(235, sqp_problem.make_interp(out_phi))

      plt.show()


    # TODO: REINTEGRATE HERE
    init_phi = out_phi
Beispiel #12
0
def rotate_full_obs():
  square_phi = make_square_phi()
  init_phi = square_phi.copy()

  # go through a rotation of the square
  prob = sqp_problem.TrackingProblem()
  prob.set_coeffs(flow_norm=1e-9, flow_rigidity=1e-3, flow_tps=1e-5, obs=1, flow_agree=1)
  for i_iter, angle in enumerate(np.arange(0, 359, 5)):
    print 'Current angle:', angle
    # make an observation
    rotated = sn.interpolation.rotate(square_phi, angle, cval=1., order=0, reshape=False)
    print rotated.shape, square_phi.shape
    obs_inds = calc_observable_inds(rotated)
    prob.set_obs_points(obs_inds)
    prob.set_prev_phi(init_phi)

    init_u = np.zeros(init_phi.shape + (2,))
    out_phis, out_us, opt_result = prob.optimize(init_phi, init_u, return_full=True)

    for out_phi, out_u in [zip(out_phis, out_us)[-1]]:
      global fig
      fig = plt.figure()

      # superimpose observation drawing
      not_oob = (0 <= obs_inds[:,0]) & (obs_inds[:,0] < init_phi.shape[0]) & (0 <= obs_inds[:,1]) & (obs_inds[:,1] < init_phi.shape[1])
      init_phi[obs_inds[:,0][not_oob],obs_inds[:,1][not_oob]] = 0
      plot_phi(231, sqp_problem.make_interp(init_phi))

      # ax = fig.add_subplot(234)
      # tmp = rotated.copy()
      # tmp[obs_inds[:,0],obs_inds[:,1]] = .5
      # tmp = np.flipud(tmp.T)
      # ax.imshow(tmp, cmap=cm.Greys_r).set_interpolation('nearest')
      ax = fig.add_subplot(234)
      ax.plot(np.arange(len(opt_result.costs_over_iters)), opt_result.costs_over_iters)

      plot_phi(232, sqp_problem.make_interp(out_phi))
      plot_u(233, out_u)

      out_phi = reintegrate(out_phi)
      plot_phi(235, sqp_problem.make_interp(out_phi))

      plt.show()

    init_phi = out_phi





  init_phi_observed = np.ones_like(empty_phi)
  init_phi_observed[int(SIZE/2.),int(SIZE/4.):-int(SIZE/4.)] = 0.

  new_phi_observed = init_phi_observed; new_phi_observed[int(SIZE/2.),int(SIZE/10.):-int(SIZE/10.)] = 0.
  obs_pts = np.transpose(np.nonzero(new_phi_observed == 0))

  prob = sqp_problem.TrackingProblem()
  prob.set_obs_points(obs_pts)
  prob.set_prev_phi(init_phi)

  prob.set_coeffs(flow_norm=1e-9, flow_rigidity=1e-8, flow_tps=1e-5, obs=1, flow_agree=1)

  init_u = np.zeros(init_phi.shape + (2,))
  #init_u[:,:,0] = 1.

  out_phis, out_us, opt_result = prob.optimize(init_phi, init_u, return_full=True)

  for out_phi, out_u in [zip(out_phis, out_us)[-1]]:
    # import cPickle
    # with open('/tmp/dump.pkl', 'w') as f:
    #   cPickle.dump((out_phi, out_u, opt_result), f)

    global fig
    fig = plt.figure(figsize=(15,15))

    init_phi[obs_pts[:,0],obs_pts[:,1]] = 0
    plot_phi(221, sqp_problem.make_interp(init_phi))

    ax = fig.add_subplot(224)
    ax.plot(np.arange(len(opt_result.costs_over_iters)), opt_result.costs_over_iters)

    out_phi = reintegrate(out_phi)
    plot_phi(223, sqp_problem.make_interp(out_phi))
    plot_u(222, out_u)

    plt.show()
Beispiel #13
0
#u2 = np.empty_like(u)
#u2[:,:,0] = u[:,:,1]
#u2[:,:,1] = u[:,:,0]
#u = u2

fig = plt.figure()

ax = fig.add_subplot(221, aspect='equal')
#mask = Y[:,:] == 15
#u[:,:,0][np.logical_not(mask)] = 0
#u[:,:,1][np.logical_not(mask)] = 0
print u
ax.quiver(X, Y, u[:,:,0], u[:,:,1], angles='xy', scale_units='xy', scale=1.)

init_phi_surf = sqp_problem.make_interp(init_phi)
plot_phi(fig, 222, init_phi_surf)

out_phi = apply_flow(init_phi, u)
apply_flow_forwards(fig, 224, init_phi, u, X2.ravel(), Y2.ravel(), init_phi.ravel())

#for i in range(20):
#  print i
#  out_phi = apply_flow(out_phi, u)

out_phi_surf = sqp_problem.make_interp(out_phi)
ax = plot_phi(fig, 223, out_phi_surf)
# ax.quiver(X, Y, np.fliplr(u[:,:,0].T), u[:,:,1].T, pivot='tip')

plt.show()