class Predict(object): def __init__(self, model_path=config.root_path + '/model/saved_dict/bert.ckpt', bert_path=config.root_path + '/model/bert-wwm/', is_cuda=config.is_cuda): self.model_path = model_path self.tokenizer = BertTokenizer.from_pretrained(bert_path) self.is_cuda = is_cuda config.bert_path = config.root_path + '/model/bert/' config.hidden_size = 768 self.model = Model(config).to(config.device) checkpoint = torch.load(self.model_path) self.model.load_state_dict(checkpoint, strict=False) self.model.eval() def process_data(self, text, is_cuda=config.is_cuda): def padding(indice, max_length, pad_idx=0): """ pad 函数 注意 token type id 右侧pad是添加1而不是0,1表示属于句子B """ pad_indice = [ item + [pad_idx] * max(0, max_length - len(item)) for item in indice ] return torch.tensor(pad_indice) text_dict = self.tokenizer.encode_plus( text, # Sentence to encode. add_special_tokens=True, # Add '[CLS]' and '[SEP]' max_length=config.max_length, # Pad & truncate all sentences. ad_to_max_length=True, return_attention_mask=True, # Construct attn. masks. # return_tensors='pt', # Return pytorch tensors. ) input_ids, attention_mask, token_type_ids = text_dict[ 'input_ids'], text_dict['attention_mask'], text_dict[ 'token_type_ids'] token_ids_padded = padding([input_ids], config.max_length) token_type_ids_padded = padding([token_type_ids], config.max_length) attention_mask_padded = padding([attention_mask], config.max_length) return token_ids_padded, token_type_ids_padded, attention_mask_padded def predict(self, text): token_ids_padded, token_type_ids_padded, attention_mask_padded = self.process_data( text) if self.is_cuda: token_ids_padded = token_ids_padded.to(torch.device('cuda')) token_type_ids_padded = token_type_ids_padded.to( torch.device('cuda')) attention_mask_padded = attention_mask_padded.to( torch.device('cuda')) outputs = self.model( (token_ids_padded, attention_mask_padded, token_type_ids_padded)) label = torch.max(outputs.data, 1)[1].cpu().numpy()[0] score = outputs.data[0][torch.max( outputs.data, 1)[1].cpu().numpy()[0]].cpu().numpy().tolist() return label, score
def __init__(self, model_path=config.root_path + '/model/saved_dict/bert.ckpt', bert_path=config.root_path + '/model/bert-wwm/', is_cuda=config.is_cuda): self.model_path = model_path self.tokenizer = BertTokenizer.from_pretrained(bert_path) self.is_cuda = is_cuda config.bert_path = config.root_path + '/model/bert/' config.hidden_size = 768 self.model = Model(config).to(config.device) checkpoint = torch.load(self.model_path) self.model.load_state_dict(checkpoint, strict=False) self.model.eval()
end_time = time.time() print('Elasped time: {}'.format(end_time - start_time)) preds = np.argmax(preds, axis=1) eval_acc = (preds == out_label_ids).mean() return eval_acc if __name__ == '__main__': # Set seed set_seed(config) config.bert_path = config.root_path + '/model/bert/' config.hidden_size = 768 model = Model(config).to(config.device) checkpoint = torch.load(config.root_path + '/model/saved_dict/bert.ckpt') model.load_state_dict(checkpoint, strict=False) tokenizer = BertTokenizer.from_pretrained( config.root_path + '/model/bert', do_lower_case=config.do_lower_case) model.to(config.device) print('finish model load') if config.visualize > -1: start_pos = config.visualize end_pos = start_pos + 1 else: start_pos = config.start_pos end_pos = config.end_pos print('load data') test_dataset = MyDataset(config.test_file,