del get_masks_gen.X_deltaout_train, get_masks_gen.X_eval, get_masks_gen.Y_tf, get_masks_gen.Y_eval print("STEP 2 : DONE") print("---" * 100) if args.end_after_step2: sys.exit(1) #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------- print("STEP 3 : MAKE TABLE OF TRUTH") print() print("NEW DATA: "+ str(args.create_new_data_for_ToT) + " | PURE ToT: " + str(args.create_ToT_with_only_sample_from_cipher) ) print() table_of_truth = ToT(args, nn_model_ref.net, path_save_model, rng, creator_data_binary, device, get_masks_gen.masks, nn_model_ref) table_of_truth.create_DDT() del table_of_truth.c0l_create_ToT, table_of_truth.c0r_create_ToT del table_of_truth.c1l_create_ToT, table_of_truth.c1r_create_ToT print("STEP 3 : DONE") print("---" * 100) #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------- print("STEP 4 : CREATE DATA PROBA AND CLASSIFY") print() print("NEW DATA: "+ str(args.create_new_data_for_classifier)) print() generator_data = Genrator_data_prob_classifier(args, nn_model_ref.net, path_save_model, rng, creator_data_binary, device, get_masks_gen.masks, nn_model_ref) generator_data.create_data_g(table_of_truth)