Beispiel #1
0
def test_lemmatized_text():
    """Test lemmatized text works"""
    text = "She loves dogs"
    output = az.lemmatized_text(text)
    expect = "love dog"
    print(output)
    assert output == expect
def interactive():
    """Page to allow nlp analysis from user input"""
    input_text = st.text_area("Enter text", "Type here")
    token_cb = st.checkbox("Show tokens")
    ner_cb = st.checkbox("Show named entities")
    sentiment_cb = st.checkbox("Show sentiment")
    summary_cb = st.checkbox("Show Summary")

    # st.success("Running Analysis")
    # if st.button("Analysis"):
    if token_cb:
        tokens = az.tokenize(input_text)
        st.write(tokens)
    if ner_cb:
        doc = az.get_nlp(input_text)
        named_entities = az.named_entity_recognization(input_text)
        if len(named_entities) > 0:
            html = spacy.displacy.render(doc, style="ent")
            # Newlines seem to mess with the rendering
            html = html.replace("\n", " ")
            HTML_WRAPPER = """<div style="overflow-x: auto; border: 1px solid \
        #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem">\
        {}</div>"""
            st.write(HTML_WRAPPER.format(html), unsafe_allow_html=True)
        else:
            st.info("No named entity recognized")
    if sentiment_cb:
        sentiments = TextBlob(az.lemmatized_text(input_text))
        st.write(sentiments.sentiment)
    if summary_cb:
        summaries = sz.summarize_text(input_text)
        st.write(summaries)
Beispiel #3
0
def sentiment():
    """Main function for sentiment analysis."""
    senti_df = main_df.copy(deep=True)
    # Initializing the new columns with a numpy array, so the entire series is returned
    senti_df[cts.POSITIVE], senti_df[cts.NEGATIVE] = az.top_polarized_word(
        senti_df[cts.TOKEN].values)

    # calculate overall sentiment from the combined text
    senti_df[cts.SENTI] = senti_df[cts.COMBINED].apply(
        lambda x: TextBlob(az.lemmatized_text(x)).sentiment.polarity)
    senti_df = ut.return_assignment(senti_df, assign_id, assignments)
    senti_type = st.sidebar.selectbox("Type of sentiment analysis",
                                      ["Overall", "Student", "Question"])
    if not assignments:
        st.warning("Please select an assignment for the analysis")
    elif senti_type == "Overall":
        st.sidebar.success(
            'To continue see individual sentiment analysis select "Student"')
        st.header(f"Overall sentiment polarity in **{assignment_string}**")
        overall_senti(senti_df)
    elif senti_type == "Student":
        st.header(
            f"View sentiment by individual students in **{assignment_string}**"
        )
        student_senti(senti_df)
    elif senti_type == "Question":
        st.header(
            f"View sentiment by individual questions in **{assignment_string}**"
        )
        question_senti(senti_df)
Beispiel #4
0
def interactive():
    """Page to allow nlp analysis from user input."""
    input_text = st.text_area("Enter text", "Type here")
    token_cb = st.checkbox("Show tokens")
    ner_cb = st.checkbox("Show named entities")
    sentiment_cb = st.checkbox("Show sentiment")
    summary_cb = st.checkbox("Show Summary")

    # st.success("Running Analysis")
    # if st.button("Analysis"):
    if token_cb:
        tokens = az.tokenize(input_text)
        st.write(tokens)
    if ner_cb:
        displacy_renderer(az.get_nlp(input_text))
    if sentiment_cb:
        sentiments = TextBlob(az.lemmatized_text(input_text))
        st.write(sentiments.sentiment)
    if summary_cb:
        summaries = sz.summarize_text(input_text)
        st.write(summaries)
def sentiment():
    """main function for sentiment analysis"""
    senti_df = main_df.copy(deep=True)
    # calculate overall sentiment from the combined text
    senti_df[cts.SENTI] = senti_df["combined"].apply(
        lambda x: TextBlob(az.lemmatized_text(x)).sentiment.polarity)
    senti_df = senti_df[senti_df[assign_id].isin(assignments)]
    senti_type = st.sidebar.selectbox("Type of sentiment analysis",
                                      ["Overall", "Student", "Question"])
    if senti_type == "Overall":
        st.sidebar.success(
            'To continue see individual sentiment analysis select "Student"')
        st.header(f"Overall sentiment polarity in **{assign_text}**")
        overall_senti(senti_df)
    elif senti_type == "Student":
        st.header(
            f"View sentiment by individual students in **{assign_text}**")
        student_senti(senti_df)
    elif senti_type == "Question":
        st.header(
            f"View sentiment by individual questions in **{assign_text}**")
        question_senti(senti_df)