Beispiel #1
0
def main(start_epoch):
    (model, graph, saver_seq2seq) = build_model()
    config = gpu_config()

    with tf.Session(graph=graph, config=config) as sess:
        sess.run(tf.global_variables_initializer())
        print("Initialized.")

        restore_ckpt = None
        if start_epoch > -1:
            if force_restore_point != "":
                restore_ckpt = force_restore_point
            else:
                restore_ckpt = f"{ckpt_path}/seq2seq_RL{restore_extra_str}_{start_epoch}"

        if restore_ckpt is not None:
            saver_seq2seq.restore(sess, restore_ckpt)
            print("Restored from", restore_ckpt)

        for i in xrange(num_epochs):
            if not infer_only:  # for getting perplexity of test data, use train branch
                mode = "train"
                start_epoch += 1
                run_vhred(model, sess, mode, start_epoch)

                if not no_validation and not glimpse_training and start_epoch % 5 == 0 and start_epoch >= 10:
                    mode = "valid"
                    zipped_responses = run_vhred(model, sess, mode,
                                                 start_epoch)
                else:
                    continue
            else:
                print("Inferring on test set...")
                mode = "test"
                zipped_responses = run_vhred(model, sess, mode, start_epoch)

            # Make sure sent is not empty and always ends with an eou
            flattened = [
                decode2string(index2token,
                              sent,
                              end_token=end_token_str,
                              remove_END_TOKEN=True) for tp in zipped_responses
                for sent in tp
            ]
            flattened = [maybe_add(sent, eou_str) for sent in flattened]

            # now we mark sentences that are generated by our model
            marked_G = [("G: " + sent) if k % 3 == 1 else sent
                        for (k, sent) in enumerate(flattened)]

            marked_M = [("M: " + sent) if k % 3 == 2 else sent
                        for (k, sent) in enumerate(marked_G)]

            filename = f"{output_path}/{extra_str[1:]}_{mode}_result_{start_epoch}.txt"

            write_lines(filename, marked_M)

            # only need 1 epoch for inferring or getting PPL
            if infer_only:
                break
            assert len(polite_responses) == len(neutral_responses) == len(rude_responses)

            num_responses = len(polite_responses)
            zipped = zip_lsts(
                [source_test[:num_responses], 
                 target_test[:num_responses],
                 polite_responses, 
                 neutral_responses, 
                 rude_responses])

            flattened = [decode2string(index2token, sent, remove_END_TOKEN=True) 
                         for tp in zipped for sent in tp]

            # now we mark sentences that are generated by our model
            marked_G = [("G: " + sent) 
                        if k % 5 == 1 else sent
                        for (k, sent) in enumerate(flattened)]
            marked_P = [("P: " + sent) 
                        if k % 5 == 2 else sent
                        for (k, sent) in enumerate(marked_G)]
            marked_N = [("N: " + sent) 
                        if k % 5 == 3 else sent
                        for (k, sent) in enumerate(marked_P)]
            marked_R = [("R: " + sent) 
                        if k % 5 == 4 else sent
                        for (k, sent) in enumerate(marked_N)]

            write_lines(filename, marked_R)

        dump_pickle(
            data_path + "/fusion_%.1f_%d_infer.pkl" %
            (fusion_rate, seq2seq_epoch), responses)

        responses_lst.append(responses)

    num_responses = len(responses_lst[0])
    print("Generated %d responses for each fusion rate." % num_responses)

    # add in source sents and ground truths
    zipped_responses = zip_lsts([source_test[:num_responses]] +
                                [target_test[:num_responses]] + responses_lst)

    # Write results to file
    filename = data_path + "fusion_responses_%.1f.txt" % fusion_rate_candidates[
        0]

    text_zipped_responses = [[
        label + decode2string(index2token, response, remove_END_TOKEN=True)
        for (label, response) in
        zip(["", "G: "] +
            convert_list_to_str_list(fusion_rate_candidates), responses)
    ] for responses in zipped_responses]

    flattened_text_responses = [
        response for responses in text_zipped_responses
        for response in responses
    ]

    write_lines(filename, flattened_text_responses)