Beispiel #1
0
def test_deepfm():
    data_config = DataConfig()
    train_config = TrainConfig()
    device_id = int(os.getenv('DEVICE_ID'))
    context.set_context(mode=context.GRAPH_MODE,
                        device_target="Ascend",
                        device_id=device_id)
    rank_size = None
    rank_id = None

    dataset_path = "/home/workspace/mindspore_dataset/criteo_data/criteo_h5/"
    print("dataset_path:", dataset_path)
    ds_train = create_dataset(dataset_path,
                              train_mode=True,
                              epochs=1,
                              batch_size=train_config.batch_size,
                              data_type=DataType(data_config.data_format),
                              rank_size=rank_size,
                              rank_id=rank_id)

    model_builder = ModelBuilder(ModelConfig, TrainConfig)
    train_net, eval_net = model_builder.get_train_eval_net()
    auc_metric = AUCMetric()
    model = Model(train_net,
                  eval_network=eval_net,
                  metrics={"auc": auc_metric})

    loss_file_name = './loss.log'
    time_callback = TimeMonitor(data_size=ds_train.get_dataset_size())
    loss_callback = LossCallBack(loss_file_path=loss_file_name)
    callback_list = [time_callback, loss_callback]

    eval_file_name = './auc.log'
    ds_eval = create_dataset(dataset_path,
                             train_mode=False,
                             epochs=1,
                             batch_size=train_config.batch_size,
                             data_type=DataType(data_config.data_format))
    eval_callback = EvalCallBack(model,
                                 ds_eval,
                                 auc_metric,
                                 eval_file_path=eval_file_name)
    callback_list.append(eval_callback)

    print("train_config.train_epochs:", train_config.train_epochs)
    model.train(train_config.train_epochs, ds_train, callbacks=callback_list)

    export_loss_value = 0.51
    print("loss_callback.loss:", loss_callback.loss)
    assert loss_callback.loss < export_loss_value
    export_per_step_time = 40.0
    print("time_callback:", time_callback.per_step_time)
    assert time_callback.per_step_time < export_per_step_time
    print("*******test case pass!********")
Beispiel #2
0
                    default="Ascend",
                    help='Ascend, GPU, or CPU')
args_opt, _ = parser.parse_known_args()
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE,
                    device_target=args_opt.device_target,
                    device_id=device_id)


def add_write(file_path, print_str):
    with open(file_path, 'a+', encoding='utf-8') as file_out:
        file_out.write(print_str + '\n')


if __name__ == '__main__':
    data_config = DataConfig()
    model_config = ModelConfig()
    train_config = TrainConfig()

    ds_eval = create_dataset(args_opt.dataset_path,
                             train_mode=False,
                             epochs=1,
                             batch_size=train_config.batch_size,
                             data_type=DataType(data_config.data_format))
    model_builder = ModelBuilder(ModelConfig, TrainConfig)
    train_net, eval_net = model_builder.get_train_eval_net()
    train_net.set_train()
    eval_net.set_train(False)
    auc_metric = AUCMetric()
    model = Model(train_net,
                  eval_network=eval_net,