def get_data(pre_win, post_win):
    settings = setup(dataset='test', data_loc='./data/controlIntervention/', subject_n=3)

    data = Dataset(
        settings,
        trim=True,
        check=False,
        used_data_types=[DATA_TYPES.event, DATA_TYPES.fitbit]
    )

    minutes = post_win+pre_win
    PNUM = 0

    bars = []
    for evt in data.subject_data[0].event_data.time:
        time = evt-timedelta(minutes=pre_win)
        bars.append(data.get_steps_after_time(time, minutes, PNUM))

    pids = [1]*len(bars)  # all events are same participant

    return minutes, pids, bars
def get_fake_data(pre_win, post_win, minutes, pids, bars):
    # returns data from randomly chosen fake data points
    settings = setup(dataset='test', data_loc='./data/controlIntervention/', subject_n=3)

    data = Dataset(
        settings,
        trim=True,
        check=False,
        used_data_types=[DATA_TYPES.event, DATA_TYPES.fitbit]
    )

    PNUM = 0
    fake_bars = []
    for evt in data.subject_data[0].event_data.time:
        time = evt-timedelta(days=1, minutes=pre_win)  # get random(ish) time
        fake_bars.append(data.get_steps_after_time(time, minutes, PNUM))

    diff_bars = []
    for i in range(len(bars)):
        diff_bars.append(list_subtract(bars[i], fake_bars[i]))

    return minutes, pids, diff_bars