Beispiel #1
0
def single_model_forecasting(data, lag, h_train, h_test, lr, epoch, batch_size,
                             hidden_num, method, use_cuda):

    # normalize time series
    scaler = MinMaxScaler(feature_range=(0, 1))
    dataset = scaler.fit_transform(data)

    trainData, testData = divideTrainTest(dataset)

    flag = True  # using RNN format or not
    trainX, trainY = create_multi_ahead_samples(trainData,
                                                lag,
                                                h_train,
                                                RNN=flag)
    testX, testY = create_multi_ahead_samples(testData, lag, h_test, RNN=flag)
    trainY = np.squeeze(trainY).reshape(-1, h_train)
    testY = np.squeeze(testY).reshape(-1, h_test)
    print("train X shape:", trainX.shape)
    print("train y shape:", trainY.shape)
    print("test X shape:", testX.shape)
    print("test y shape:", testY.shape)

    net = train(trainX,
                trainY,
                epoch=epoch,
                lr=lr,
                batchSize=batch_size,
                lag=lag,
                method=method,
                hidden_num=hidden_num,
                use_cuda=use_cuda)

    testPred = predict_iteration(net,
                                 testX,
                                 h_test,
                                 use_cuda=use_cuda,
                                 RNN=flag)
    # trainPred = predict_iteration(net, trainX, h_train, use_cuda=use_cuda, RNN=flag)
    # print("train pred shape:", trainPred.shape)
    print("test pred shape:", testPred.shape)

    testPred = scaler.inverse_transform(testPred)
    testY = scaler.inverse_transform(testY)

    # evaluation
    MAE = eval.calcMAE(testY, testPred)
    print("test MAE", MAE)
    MRSE = eval.calcRMSE(testY, testPred)
    print("test RMSE", MRSE)
    MAPE = eval.calcMAPE(testY, testPred)
    print("test MAPE", MAPE)
    SMAPE = eval.calcSMAPE(testY, testPred)
    print("test SMAPE", SMAPE)

    return testPred, testY
Beispiel #2
0
def decompose_ML_forecasting(model, lag, freq, h_train, h_test):

    # 序列分解
    trend, seasonal, residual = ts_decompose(ts, freq)
    print("ts decomposition is finished!")
    print("trend shape is", trend.shape)
    print("season shape is", seasonal.shape)
    print("residual shape is", residual.shape)

    # forecasting sub-series independently
    trend_pred, trend_y = ML_forecasting(trend,
                                         model,
                                         lag=lag,
                                         train_look_ahead=h_train,
                                         test_look_ahead=h_test)
    res_pred, res_y = ML_forecasting(residual,
                                     model,
                                     lag=lag,
                                     train_look_ahead=h_train,
                                     test_look_ahead=h_test)
    season_pred, season_y = ML_forecasting(seasonal,
                                           model,
                                           lag=lag,
                                           train_look_ahead=h_train,
                                           test_look_ahead=h_test)

    trend_pred = trend_pred.reshape(-1, h_test)
    trend_y = trend_y.reshape(-1, h_test)
    res_pred = res_pred.reshape(-1, h_test)
    res_y = res_y.reshape(-1, h_test)
    season_pred = season_pred.reshape(-1, h_test)
    season_y = season_y.reshape(-1, h_test)

    print("trend_pred shape is", trend_pred.shape)
    print("res_pred shape is", res_pred.shape)
    print("season_pred shape is", season_pred.shape)
    print("trend_y shape is", trend_y.shape)
    print("res_y shape is", res_y.shape)
    print("season_y shape is", season_y.shape)

    testPred = trend_pred + res_pred + season_pred
    testY = trend_y + res_y + season_y

    # evaluation
    MAE = eval.calcMAE(testY, testPred)
    print("test MAE", MAE)
    MRSE = eval.calcRMSE(testY, testPred)
    print("test RMSE", MRSE)
    MAPE = eval.calcMAPE(testY, testPred)
    print("test MAPE", MAPE)
    SMAPE = eval.calcSMAPE(testY, testPred)
    print("test SMAPE", SMAPE)

    return testPred, testY
def decomposition_model_forecasting(ts, dataset, lag, h_train, h_test, freq, epoch, lr, batch_size, hidden_num, use_cuda, method):

    # time series decomposition
    trend, seasonal, residual = ts_decompose(ts, freq)
    print("ts decomposition is finished!")
    print("trend shape is", trend.shape)
    print("season shape is", seasonal.shape)
    print("residual shape is", residual.shape)

    # forecasting sub-series independently
    
    print('Trend')
    trend_pred, trend_y = single_model_forecasting(trend, lag=lag, h_train=h_train, h_test=h_test, epoch=epoch, lr=lr,
                                                   hidden_num=hidden_num, batch_size=batch_size, method=method, use_cuda=use_cuda)

    print('Residual')
    res_pred, res_y = single_model_forecasting(residual, lag=lag, h_train=h_train, h_test=h_test, epoch=epoch, lr=lr,
                                               hidden_num=hidden_num, batch_size=batch_size, method=method, use_cuda=use_cuda)
    
    print('Season')
    season_pred, season_y = single_model_forecasting(seasonal, lag=lag, h_train=h_train, h_test=h_test, epoch=epoch, lr=lr,
                                                     hidden_num=hidden_num, batch_size=batch_size, method=method, use_cuda=use_cuda)

    trend_pred = trend_pred.reshape(-1, h_test)
    trend_y = trend_y.reshape(-1, h_test)
    res_pred = res_pred.reshape(-1, h_test)
    res_y = res_y.reshape(-1, h_test)
    season_pred = season_pred.reshape(-1, h_test)
    season_y = season_y.reshape(-1, h_test)

    print("trend_pred shape is", trend_pred.shape)
    print("res_pred shape is", res_pred.shape)
    print("season_pred shape is", season_pred.shape)
    print("trend_y shape is", trend_y.shape)
    print("res_y shape is", res_y.shape)
    print("season_y shape is", season_y.shape)

    testPred = trend_pred + res_pred + season_pred
    testY = trend_y + res_y + season_y

    # evaluation
    MAE = eval.calcMAE(testY, testPred)
    print("test MAE", MAE)
    MRSE = eval.calcRMSE(testY, testPred)
    print("test RMSE", MRSE)
    MAPE = eval.calcMAPE(testY, testPred)
    print("test MAPE", MAPE)
    SMAPE = eval.calcSMAPE(testY, testPred)
    print("test SMAPE", SMAPE)

    return testPred, testY
def single_model_forecasting(data, lookBack, epoch, lr, batchSize, method,
                             modelPath, hidden_num, use_cuda):

    # 归一化数据
    scaler = MinMaxScaler(feature_range=(0, 1))
    dataset = scaler.fit_transform(data)

    trainData, testData = divideTrainTest(dataset)

    flag = True
    trainX, trainY = createSamples(trainData, lookBack, RNN=flag)
    testX, testY = createSamples(testData, lookBack, RNN=flag)
    print("testX shape:", testX.shape)
    print("testy shape:", testY.shape)
    print("trainX shape:", trainX.shape)
    print("trainy shape:", trainY.shape)

    net = train(trainX,
                trainY,
                epoch=epoch,
                lr=lr,
                batchSize=batchSize,
                modelPath=modelPath,
                lookBack=lookBack,
                method=method,
                hidden_num=hidden_num,
                use_cuda=use_cuda)

    testPred = predict(testX, net, use_cuda=use_cuda)
    trainPred = predict(trainX, net, use_cuda=use_cuda)
    print("train pred shape:", trainPred.shape)
    print("test pred shape:", testPred.shape)

    testPred = scaler.inverse_transform(testPred)
    testY = scaler.inverse_transform(testY)

    MAE = eval.calcMAE(testY, testPred)
    print("test MAE", MAE)
    MRSE = eval.calcRMSE(testY, testPred)
    print("test RMSE", MRSE)
    MAPE = eval.calcMAPE(testY, testPred)
    print("test MAPE", MAPE)
    SMAPE = eval.calcSMAPE(testY, testPred)
    print("test SMAPE", SMAPE)

    return trainPred, testPred, MAE, MRSE, SMAPE
def decomposition_model_forecasting(ts, dataset, lookBack, freq, epoch, lr,
                                    batchSize, hidden_num, use_cuda):

    # 序列分解
    trend, seasonal, residual = ts_decompose(ts, freq)
    print("fcd decompose is finised!")
    print("trend shape is", trend.shape)
    print("season shape is", seasonal.shape)
    print("residual shape is", residual.shape)

    # 分别预测

    MODEL_PATH = "../models/ResRNN_model.pkl"
    trTrain, trTest, MAE1, MRSE1, SMAPE1 = single_model_forecasting(
        trend,
        lookBack=lag,
        epoch=epoch,
        lr=lr,
        use_cuda=use_cuda,
        batchSize=batchSize,
        method=METHOD,
        modelPath=MODEL_PATH,
        hidden_num=hidden_num)
    resTrain, resTest, MAE2, MRSE2, SMAPE2 = single_model_forecasting(
        residual,
        lookBack=lag,
        epoch=epoch,
        lr=lr,
        use_cuda=use_cuda,
        batchSize=batchSize,
        method=METHOD,
        modelPath=MODEL_PATH,
        hidden_num=hidden_num)

    trTrain = trTrain.reshape(-1, 1)
    trTest = trTest.reshape(-1, 1)
    resTrain = resTrain.reshape(-1, 1)
    resTest = resTest.reshape(-1, 1)

    print("trTrain shape is", trTrain.shape)
    print("resTrain shape is", resTrain.shape)

    trendPred, resPred = align(trTrain, trTest, lookBack, resTrain, resTest,
                               lookBack)

    print("trendPred shape is", trendPred.shape)
    print("resPred shape is", resPred.shape)

    # 获取最终预测结果
    finalPred = trendPred + seasonal + resPred

    trainPred = trTrain + seasonal[lookBack:lookBack +
                                   trTrain.shape[0]] + resTrain
    testPred = trTest + seasonal[2 * lookBack + resTrain.shape[0]:] + resTest

    # 获得ground-truth数据
    data = dataset[freq // 2:-(freq // 2)]
    trainY = data[lookBack:lookBack + trTrain.shape[0]]
    testY = data[2 * lookBack + resTrain.shape[0]:]
    print(trainY.shape)
    print(testY.shape)
    print(trainPred.shape)
    print(testPred.shape)

    # 评估指标
    MAE = eval.calcMAE(trainY, trainPred)
    print("train MAE", MAE)
    MRSE = eval.calcRMSE(trainY, trainPred)
    print("train MRSE", MRSE)
    MAPE = eval.calcMAPE(trainY, trainPred)
    print("train MAPE", MAPE)
    MAE = eval.calcMAE(testY, testPred)
    print("test MAE", MAE)
    MRSE = eval.calcRMSE(testY, testPred)
    print("test RMSE", MRSE)
    MAPE = eval.calcMAPE(testY, testPred)
    print("test MAPE", MAPE)
    SMAPE = eval.calcSMAPE(testY, testPred)
    print("test SMAPE", SMAPE)

    return trainPred, testPred, MAE, MRSE, SMAPE
Beispiel #6
0
print("trainX shape:", trainX.shape)
print("trainy shape:", trainY.shape)

groud_truth = []
prediction = []
for i in range(len(testX)):
    data = testX[i, :].transpose().flatten()
    model = ExponentialSmoothing(data,
                                 trend='add',
                                 seasonal='add',
                                 seasonal_periods=12)
    model = model.fit(smoothing_level=None)
    pred = model.predict(start=0, end=0 + h_test - 1)
    real_y = testY[i].tolist()
    groud_truth.extend(pred)
    prediction.extend(real_y)
    print("data:", i)
    print(pred)
    print(real_y)

groud_truth = np.array(groud_truth).reshape(-1, 1)
prediction = np.array(prediction).reshape(-1, 1)
MAE = eval.calcMAE(groud_truth, prediction)
RMSE = eval.calcRMSE(groud_truth, prediction)
SMAPE = eval.calcSMAPE(groud_truth, prediction)
MAPE = eval.calcMAPE(groud_truth, prediction)
print('Test MAE: %.8f' % MAE)
print('Test RMSE: %.8f' % RMSE)
print("test MAPE", MAPE)
print('Test SMAPE: %.8f' % SMAPE)